Research Progress on Deep-Sea Organisms in Extreme Environments

A special issue of Journal of Marine Science and Engineering (ISSN 2077-1312). This special issue belongs to the section "Marine Biology".

Deadline for manuscript submissions: 30 August 2024 | Viewed by 2103

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Deep-Sea Science and Engineering, Chinese Academy Sciences, Sanya, China
Interests: adaptation of deep-sea macro-organisms to extrem environment; deep-sea biology; symbiosis; omics study

Special Issue Information

Dear Colleagues,

This Special Issue aims to publish all types of manuscripts (i.e., research articles, reviews, and short communications) covering a wide range of topics including, but not limited to, the biology, ecology and evolution of organisms in extreme environments, the interaction between biotic and abiotic factors, and, especially, research on the application of new methods and interdisciplinary research involving organisms living in extreme environments.

Prof. Dr. Lisheng He
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Marine Science and Engineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • organisms in extreme environments
  • biology and ecology
  • molecules and evolution
  • survival strategies and mechanisms
  • in situ study
  • interdisciplinary research.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 2592 KiB  
Article
Discovery of Prevalent Ciliophora, Discoba, and Copepoda Protists in Deep Sea Water by In Situ Nucleotide Extraction
by Peikuan Xu, Ming Yang, Lisheng He, Hongxi Zhang, Zhaoming Gao, Yuelu Jiang and Yong Wang
J. Mar. Sci. Eng. 2024, 12(1), 61; https://doi.org/10.3390/jmse12010061 - 26 Dec 2023
Viewed by 611
Abstract
Deep-sea eukaryotic microorganisms play a vital role in degrading organic matter and geochemically cycling elements in the deep ocean. However, the impact of sampling methods on detection of these microorganisms under high hydrostatic pressure remains uncertain. In this study, we compared a traditional [...] Read more.
Deep-sea eukaryotic microorganisms play a vital role in degrading organic matter and geochemically cycling elements in the deep ocean. However, the impact of sampling methods on detection of these microorganisms under high hydrostatic pressure remains uncertain. In this study, we compared a traditional water sampling method using a Niskin bottle, an in situ microbial filtration and fixation method (ISMIFF), and a multiple in situ nucleic acid collection (MISNAC) method to exhibit differences in the community structures that were collected at ~590–3100 m in the South China Sea (SCS). The classification and biodiversity indices of 18S rDNA Illumina sequencing reads from the V9 variation region revealed higher diversity for MISNAC DNA absorption column samples compared to others. Importantly, the relative abundance of Ciliophora (19.49%), Copepoda (23.31%), and Diplonemea (10.67%) was higher in MISNAC adsorption column samples, while Retaria (48.86%) were dominant in the MISNAC membrane samples. This indicates that MISNAC columns might collect more DNA in situ for the naked protists, while Retaria with a carbonate shell were more likely retained on the membrane. In conclusion, MISNAC is an effective method for DNA collection of deep-sea eukaryotic microorganisms and provides valuable materials for studying deep-sea microbial ecosystems. Full article
(This article belongs to the Special Issue Research Progress on Deep-Sea Organisms in Extreme Environments)
Show Figures

Figure 1

15 pages, 2414 KiB  
Article
Comparably Characterizing the Gut Microbial Communities of Amphipods from Littoral to Hadal Zones
by Taoshu Wei, Yanwen Liao, Yong Wang, Junyuan Li and Lisheng He
J. Mar. Sci. Eng. 2023, 11(11), 2197; https://doi.org/10.3390/jmse11112197 - 18 Nov 2023
Viewed by 1024
Abstract
Amphipods are an important group of invertebrates in marine ecosystems due to their high abundance and diversity. As an essential part of the marine food web, amphipods play a vital role in nutrient recycling and provide large amounts of detritus-derived fine-particulate organic matter [...] Read more.
Amphipods are an important group of invertebrates in marine ecosystems due to their high abundance and diversity. As an essential part of the marine food web, amphipods play a vital role in nutrient recycling and provide large amounts of detritus-derived fine-particulate organic matter for other invertebrates. Although the importance of gut microbiota and the necessity to consider them has been increasingly recognized, the gut microbial community and diversity of amphipods have not been well studied. Here, we comparatively studied the gut microbiota of diverse amphipod species inhabiting from coastal to hadopelagic zones. The results showed that four phyla, including Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota, occupied more than 90% of the total microbes in the studied amphipod guts, with Firmicutes being dominant in the hadal amphipods. The gut microbiome of amphipods from the hadal zone displayed the lowest richness, lowest diversity, and shared few microorganisms with the surrounding seawater compared to others. Amphipods in different inhabiting regions have discriminant taxa for their gut microbial communities. Taken together, amphipod gut microbiota was affected by both biological and abiotic factors, yet these factors are not independent. This article provides us with a further understanding of the structure and characteristics of the gut microbiota of invertebrate organisms. Full article
(This article belongs to the Special Issue Research Progress on Deep-Sea Organisms in Extreme Environments)
Show Figures

Figure 1

Back to TopTop