Special Issue "Spatial Intelligence and Learning"

A special issue of Journal of Intelligence (ISSN 2079-3200).

Deadline for manuscript submissions: closed (10 April 2023) | Viewed by 5166

Special Issue Editors

Prof. Susan C. Levine
E-Mail Website
Guest Editor
Department of Psychology, University of Chicago, Chicago, IL 60637, USA
Interests: cognitive development; early spatial and numerical thinking
Prof. Nora S. Newcombe
E-Mail Website
Guest Editor
Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122, USA
Interests: cognitive science; cognitive development
Department of Human Development and Quantitative Methodology College of Education, University of Maryland, College Park, MD 20740, USA
Interests: cognitive development, mathematics, symbol grounding

Special Issue Information

Dear Colleagues,

Spatial abilities have been linked to success in the mathematics and STEM domains more broadly. This relation emerges early in life and persists through adulthood. There is also ample evidence that spatial abilities are malleable. Nonetheless, there is little focus on spatial learning in school. This Special Issue invites papers that are relevant to fostering spatial abilities and the use of spatial tools (e.g., maps, graphs, diagrams) throughout the lifespan, a potentially important way to increase STEM success. Research relevant to this topic includes but is not limited to studies examining ways to support spatial thinking, research that develops psychometrically sound measures of spatial skill and attitudes relevant to spatial learning in various age groups, and research examining the mechanism that accounts for the relation between spatial thinking and STEM success. 

Prof. Susan C. Levine
Prof. Nora S. Newcombe
Prof. Kelly S. Mix
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Intelligence is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
A Novel Approach to Assessing Infant and Child Mental Rotation
J. Intell. 2023, 11(8), 168; https://doi.org/10.3390/jintelligence11080168 - 20 Aug 2023
Viewed by 507
Abstract
Mental rotation is a critically important, early developing spatial skill that is related to other spatial cognitive abilities. Understanding the early development of this skill, however, requires a developmentally appropriate assessment that can be used with infants, toddlers, and young children. We present [...] Read more.
Mental rotation is a critically important, early developing spatial skill that is related to other spatial cognitive abilities. Understanding the early development of this skill, however, requires a developmentally appropriate assessment that can be used with infants, toddlers, and young children. We present here a new eye-tracking task that uses a staircase procedure to assess mental rotation in 12-, 24-, and 36-month-old children (N = 41). To ensure that all children understood the task, the session began with training and practice, in which the children learned to fixate which of two houses a giraffe, facing either left or right, would approach. The adaptive two-up, one-down staircase procedure assessed the children’s ability to fixate the correct house when the giraffe was rotated in 30° (up) or 15° (down) increments. The procedure was successful, with most children showing evidence of mental rotation. In addition, the children were less likely to succeed as the angle of rotation increased, and the older children succeeded at higher angles of rotation than the younger children, replicating previous findings with other procedures. The present study contributes a new paradigm that can assess the development of mental rotation in young children and holds promise for yielding insights into individual differences in mental rotation. Full article
(This article belongs to the Special Issue Spatial Intelligence and Learning)
Show Figures

Figure 1

Article
Measuring Spatial Abilities in Children: A Comparison of Mental-Rotation and Perspective-Taking Tasks
J. Intell. 2023, 11(8), 165; https://doi.org/10.3390/jintelligence11080165 - 16 Aug 2023
Viewed by 603
Abstract
Mental rotation (MR) and perspective taking (PT) are important spatial abilities and predictive of performance in other cognitive domains. Yet, age-appropriate measures to assess these spatial abilities in children are still rare. This study examined psychometric properties of four MR tasks in 6- [...] Read more.
Mental rotation (MR) and perspective taking (PT) are important spatial abilities and predictive of performance in other cognitive domains. Yet, age-appropriate measures to assess these spatial abilities in children are still rare. This study examined psychometric properties of four MR tasks in 6- to 9-year-olds (N = 96). Two were developed specifically for children and two were based on established assessments for adults; one of each was a computerized and one was a paper–pencil task. Furthermore, spatial perspective taking (PT)—a different but closely related ability—was assessed to determine discriminant validity. Factor analyses showed that all MR tasks loaded on one single factor, with PT only loading weakly on the same factor, suggesting high construct validity. The computerized task for adults showed moderate factor loadings, constituted its own (but correlated) factor when a two-factor solution was forced, and showed the lowest reliabilities, suggesting that it was very difficult for children. On average, the new MR tasks had good to excellent reliabilities, differentiated well between age groups, and proved to be well-suited to assess MR in this age range. The PT task also showed good reliability and a steep developmental progression. Relations to verbal skills, gaming experience, and TV consumption are discussed. Full article
(This article belongs to the Special Issue Spatial Intelligence and Learning)
Show Figures

Figure 1

Article
Building Numeracy Skills: Associations between DUPLO® Block Construction and Numeracy in Early Childhood
J. Intell. 2023, 11(8), 161; https://doi.org/10.3390/jintelligence11080161 - 10 Aug 2023
Viewed by 507
Abstract
Research shows that children’s block construction skills are positively associated with their concurrent and later mathematics performance. Furthermore, there is evidence that block construction training is particularly beneficial for improving early mathematics skills in children from low-Socio Economic Status (SES) groups who are [...] Read more.
Research shows that children’s block construction skills are positively associated with their concurrent and later mathematics performance. Furthermore, there is evidence that block construction training is particularly beneficial for improving early mathematics skills in children from low-Socio Economic Status (SES) groups who are known to have lower maths performance than their peers. The current study investigates (a) the association between block construction and mathematics in children just before the start of formal schooling (4 years-of-age in the UK) and (b) whether the association between block construction and mathematics differs between children from more compared to less affluent families. Participants in this study included 116 children (M = 3 years 11 months, SD = 3 months) who all completed numeracy, block construction, and receptive vocabulary tasks. Socio-economic status and demographic information (child age, gender, ethnicity) were also obtained from parents. Findings show a strong positive association between block construction and early numeracy skills. Block construction skills explained approximately 5% of the variation in numeracy, even after controlling for age in months, household income, and child receptive vocabulary. When separated by SES group, for children from less affluent families, block construction explained a significant amount of variability (14.5%) in numeracy performance after covariates. For children from more affluent families, block construction did not explain a significant amount of variation in numeracy. These findings suggest that, interventions involving block construction skills may help to reduce SES-based attainment gaps in UK children’s mathematics achievement. Full article
(This article belongs to the Special Issue Spatial Intelligence and Learning)
Show Figures

Figure 1

Article
Exploring the Influence of Item Characteristics in a Spatial Reasoning Task
J. Intell. 2023, 11(8), 152; https://doi.org/10.3390/jintelligence11080152 - 31 Jul 2023
Viewed by 483
Abstract
Well-designed spatial assessments can incorporate multiple sources of complexity that reflect important aspects of spatial reasoning. When these aspects are systematically included in spatial reasoning items, researchers can use psychometric models to examine the impact of each aspect on item difficulty. These methods [...] Read more.
Well-designed spatial assessments can incorporate multiple sources of complexity that reflect important aspects of spatial reasoning. When these aspects are systematically included in spatial reasoning items, researchers can use psychometric models to examine the impact of each aspect on item difficulty. These methods can then help the researchers to understand the nature and development of spatial reasoning and can also inform the development of new items to better reflect the construct. This study investigated sources of item difficulty for object assembly (OA), a format for the assessment of spatial reasoning, by specifying nine item characteristics that were predicted to contribute to item difficulty. We used data from two focal samples including high-ability students in grades 3 to 7 and undergraduate students who responded to 15 newly developed OA items. Results from the linear logistic test model (LLTM) indicated that eight of the nine identified item characteristics significantly contributed to item difficulty. This suggests that an LLTM approach is useful in examining the contributions of various aspects of spatial reasoning to item difficulty and informing item development for spatial reasoning assessments. Full article
(This article belongs to the Special Issue Spatial Intelligence and Learning)
Show Figures

Figure 1

Article
Spatial Visualization Supports Students’ Math: Mechanisms for Spatial Transfer
J. Intell. 2023, 11(6), 127; https://doi.org/10.3390/jintelligence11060127 - 20 Jun 2023
Viewed by 1422
Abstract
The present study conducted a randomized control trial to assess the efficacy of two spatial intervention programs aimed to improve Grade 4 (N = 287) students’ spatial visualization skills and math performance. The first treatment (N = 98) focused on isolated spatial training [...] Read more.
The present study conducted a randomized control trial to assess the efficacy of two spatial intervention programs aimed to improve Grade 4 (N = 287) students’ spatial visualization skills and math performance. The first treatment (N = 98) focused on isolated spatial training that included 40 min of digital spatial training across fourteen weeks. The second treatment (N = 92) embedded spatial visualization skill development into math lessons, along with the digital spatial training that provided practice of the newly acquired skills. A business-as-usual group acted as a control (N = 97). Engagement with the embedded intervention program (i.e., both lessons and digital training) showed large additive effects, highlighting the role of spatial reasoning tools to support the transfer of spatial reasoning to math. The isolated intervention program with the digital spatial training had a transfer effect on math, compared to a business-as-usual control, while spatial reasoning improvements for this group were mixed. The spatial skills targeted in the digital training had a mediation effect on math performance, despite not increasing in the pre–post-test design. The effects of the digital training cohort were moderated by initial spatial skill, with students with lower spatial reasoning making the least gains in math. Full article
(This article belongs to the Special Issue Spatial Intelligence and Learning)
Show Figures

Figure 1

Article
Spatial–Numerical Magnitude Estimation Mediates Early Sex Differences in the Use of Advanced Arithmetic Strategies
J. Intell. 2023, 11(5), 97; https://doi.org/10.3390/jintelligence11050097 - 18 May 2023
Viewed by 722
Abstract
An accumulating body of literature points to a link between spatial reasoning and mathematics learning. The present study contributes to this line of research by investigating sex differences both in spatial representations of magnitude and in the use of arithmetic strategies, as well [...] Read more.
An accumulating body of literature points to a link between spatial reasoning and mathematics learning. The present study contributes to this line of research by investigating sex differences both in spatial representations of magnitude and in the use of arithmetic strategies, as well as the relation between the two. To test the hypothesis that sex differences in spatial–numerical magnitude knowledge mediate sex differences in the use of advanced strategies (retrieval and decomposition), two studies were conducted. Study 1 included 96 US first graders (53% girls); Study 2 included 210 Russian first graders (49% girls). All participants completed a number line estimation task (a spatially based measure of numerical magnitude knowledge) and an arithmetic strategy task (a measure of strategy choice). The studies showed parallel results: boys produced more accurate numerical magnitude estimates on the number line estimation task and used advanced strategies more frequently on the arithmetic task. Critically, both studies provide support for the mediation hypothesis (although there were some differences in the pattern obtained for the two strategies). The results are discussed in the context of broader research about the relation between spatial and mathematical skills. Full article
(This article belongs to the Special Issue Spatial Intelligence and Learning)
Show Figures

Figure 1

Back to TopTop