Biomechanical Study and Analysis for Cardiovascular/Skeletal Materials and Devices

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983). This special issue belongs to the section "Biomaterials for Tissue Engineering and Regenerative Medicine".

Deadline for manuscript submissions: closed (31 March 2023) | Viewed by 48188

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
Interests: biomechanics; cardiovascular intervention; structure design and mechanical analysis; hemodynamics; numerical simulation; medical devices; biomaterials; computer-aided surgical planning
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Environment and Life, Beijing University of Technology, Beijing, China
Interests: skeletal biomechanics; mechanobiology; biomaterial; medical device; bone; numerical simulation

E-Mail Website
Guest Editor
School of Metallurgy, Northeastern University, Shenyang 110819, China
Interests: mechanical properties; biodegradable alloys; composites; porous materials; microstructure; aluminum alloys; metal foams
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Biomedical materials are a promising solution to overcome tissue and organ failure both in cardiovascular and skeletal systems. In recent decades, there has been incredible progress towards the repair, remodelling and regeneration of tissues such as vasculature, heart valves, joint, cartilage, cornea, retina etc.  There is a great need for novel therapeutic options in treating numerous cardiovascular/skeletal diseases related to tissue failure. The biomechanical studies and analyses for cardiovascular/skeletal materials and devices are critical topics for the solution strategies of related clinical concerns.

The aim of this Special Issue is to demonstrate the state of the art of biomechanical studies and analyses for cardiovascular/skeletal materials, devices and their applications. Its scope includes—but is not limited to—fundamental studies of related materials, structures, devices and application issues. Both research and review articles are welcome.

Prof. Dr. Aike Qiao
Prof. Dr. Haisheng Yang
Prof. Dr. Yongliang Mu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomaterial
  • intervention/implant devices
  • cardiovascular disease and treatment
  • skeletal disease and treatment
  • mechanical property
  • structure optimation
  • computer aided surgical planning
  • regeneration
  • remodelling
  • numerical simulation
  • constitutive relationship
  • stress–growth relationship

Published Papers (23 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

3 pages, 180 KiB  
Editorial
Biomechanical Study and Analysis for Cardiovascular/Skeletal Materials and Devices
by Aike Qiao, Tianming Du, Haisheng Yang and Yongliang Mu
J. Funct. Biomater. 2023, 14(8), 398; https://doi.org/10.3390/jfb14080398 - 26 Jul 2023
Cited by 1 | Viewed by 675
Abstract
The Special Issue entitled “Biomechanical Study and Analysis for Cardiovascular/Skeletal Materials and Devices” addresses biological functional materials and devices relevant to cardiovascular diseases and orthopedic conditions [...] Full article

Research

Jump to: Editorial, Review

15 pages, 8994 KiB  
Article
Simulation and Experimental Investigation of Balloon Folding and Inserting Performance for Angioplasty: A Comparison of Two Materials, Polyamide-12 and Pebax
by Tao Li, Zhuo Zhang, Wenyuan Wang, Aijia Mao, Yu Chen, Yan Xiong and Fei Gao
J. Funct. Biomater. 2023, 14(6), 312; https://doi.org/10.3390/jfb14060312 - 05 Jun 2023
Cited by 2 | Viewed by 1885
Abstract
Background: A balloon dilatation catheter is a vital tool in percutaneous transluminal angioplasty. Various factors, including the material used, influence the ability of different types of balloons to navigate through lesions during delivery. Objective: Thus far, numerical simulation studies comparing the impacts of [...] Read more.
Background: A balloon dilatation catheter is a vital tool in percutaneous transluminal angioplasty. Various factors, including the material used, influence the ability of different types of balloons to navigate through lesions during delivery. Objective: Thus far, numerical simulation studies comparing the impacts of different materials on the trackability of balloon catheters has been limited. This project seeks to unveil the underlying patterns more effectively by utilizing a highly realistic balloon-folding simulation method to compare the trackability of balloons made from different materials. Methods: Two materials, nylon-12 and Pebax, were examined for their insertion forces via a bench test and a numerical simulation. The simulation built a model identical to the bench test’s groove and simulated the balloon’s folding process prior to insertion to better replicate the experimental conditions. Results: In the bench test, nylon-12 demonstrated the highest insertion force, peaking at 0.866 N, significantly outstripping the 0.156 N force exhibited by the Pebax balloon. In the simulation, nylon-12 experienced a higher level of stress after folding, while Pebax had demonstrated a higher effective strain and surface energy density. In terms of insertion force, nylon-12 was higher than Pebax in specific areas. Conclusion: nylon-12 exerts greater pressure on the vessel wall in curved pathways when compared to Pebax. The simulated insertion forces of nylon-12 align with the experimental results. However, when using the same friction coefficient, the difference in insertion forces between the two materials is minimal. The numerical simulation method used in this study can be used for relevant research. This method can assess the performance of balloons made from diverse materials navigating curved paths and can yield more precise and detailed data feedback compared to benchtop experiments. Full article
Show Figures

Figure 1

14 pages, 4743 KiB  
Article
Analysis of the Effect of Thickness on the Performance of Polymeric Heart Valves
by Jingyuan Zhou, Yijing Li, Tao Li, Xiaobao Tian, Yan Xiong and Yu Chen
J. Funct. Biomater. 2023, 14(6), 309; https://doi.org/10.3390/jfb14060309 - 01 Jun 2023
Viewed by 1690
Abstract
Polymeric heart valves (PHVs) are a promising and more affordable alternative to mechanical heart valves (MHVs) and bioprosthetic heart valves (BHVs). Materials with good durability and biocompatibility used for PHVs have always been the research focus in the field of prosthetic heart valves [...] Read more.
Polymeric heart valves (PHVs) are a promising and more affordable alternative to mechanical heart valves (MHVs) and bioprosthetic heart valves (BHVs). Materials with good durability and biocompatibility used for PHVs have always been the research focus in the field of prosthetic heart valves for many years, and leaflet thickness is a major design parameter for PHVs. The study aims to discuss the relationship between material properties and valve thickness, provided that the basic functions of PHVs are qualified. The fluid−structure interaction (FSI) approach was employed to obtain a more reliable solution of the effective orifice area (EOA), regurgitant fraction (RF), and stress and strain distribution of the valves with different thicknesses under three materials: Carbothane PC−3585A, xSIBS and SIBS−CNTs. This study demonstrates that the smaller elastic modulus of Carbothane PC−3585A allowed for a thicker valve (>0.3 mm) to be produced, while for materials with an elastic modulus higher than that of xSIBS (2.8 MPa), a thickness less than 0.2 mm would be a good attempt to meet the RF standard. What is more, when the elastic modulus is higher than 23.9 MPa, the thickness of the PHV is recommended to be 0.l–0.15 mm. Reducing the RF is one of the directions of PHV optimization in the future. Reducing the thickness and improving other design parameters are reliable means to reduce the RF for materials with high and low elastic modulus, respectively. Full article
Show Figures

Figure 1

13 pages, 3160 KiB  
Article
Collarless Polished Tapered Stems of Identical Shape Provide Differing Outcomes for Stainless Steel and Cobalt Chrome: A Biomechanical Study
by Ayumi Kaneuji, Mingliang Chen, Eiji Takahashi, Noriyuki Takano, Makoto Fukui, Daisuke Soma, Yoshiyuki Tachi, Yugo Orita, Toru Ichiseki and Norio Kawahara
J. Funct. Biomater. 2023, 14(5), 262; https://doi.org/10.3390/jfb14050262 - 09 May 2023
Cited by 3 | Viewed by 1402
Abstract
Cemented polished tapered femoral stems (PTS) made of cobalt–chrome alloy (CoCr) are a known risk factor for periprosthetic fracture (PPF). The mechanical differences between CoCr-PTS and stainless-steel (SUS) PTS were investigated. CoCr stems having the same shape and surface roughness as the SUS [...] Read more.
Cemented polished tapered femoral stems (PTS) made of cobalt–chrome alloy (CoCr) are a known risk factor for periprosthetic fracture (PPF). The mechanical differences between CoCr-PTS and stainless-steel (SUS) PTS were investigated. CoCr stems having the same shape and surface roughness as the SUS Exeter® stem were manufactured and dynamic loading tests were performed on three each. Stem subsidence and the compressive force at the bone–cement interface were recorded. Tantalum balls were injected into the cement, and their movement was tracked to indicate cement movement. Stem motions in the cement were greater for the CoCr stems than for the SUS stems. In addition, although we found a significant positive correlation between stem subsidence and compressive force in all stems, CoCr stems generated a compressive force over three times higher than SUS stems at the bone–cement interface with the same stem subsidence (p < 0.01). The final stem subsidence amount and final force were greater in the CoCr group (p < 0.01), and the ratio of tantalum ball vertical distance to stem subsidence was significantly smaller for CoCr than for SUS (p < 0.01). CoCr stems appear to move more easily in cement than SUS stems, which might contribute to the increased occurrence of PPF with the use of CoCr-PTS. Full article
Show Figures

Figure 1

17 pages, 2748 KiB  
Article
Combining IVUS + OCT Data, Biomechanical Models and Machine Learning Method for Accurate Coronary Plaque Morphology Quantification and Cap Thickness and Stress/Strain Index Predictions
by Rui Lv, Liang Wang, Akiko Maehara, Mitsuaki Matsumura, Xiaoya Guo, Habib Samady, Don P. Giddens, Jie Zheng, Gary S. Mintz and Dalin Tang
J. Funct. Biomater. 2023, 14(1), 41; https://doi.org/10.3390/jfb14010041 - 11 Jan 2023
Cited by 3 | Viewed by 1910
Abstract
Assessment and prediction of vulnerable plaque progression and rupture risk are of utmost importance for diagnosis, management and treatment of cardiovascular diseases and possible prevention of acute cardiovascular events such as heart attack and stroke. However, accurate assessment of plaque vulnerability assessment and [...] Read more.
Assessment and prediction of vulnerable plaque progression and rupture risk are of utmost importance for diagnosis, management and treatment of cardiovascular diseases and possible prevention of acute cardiovascular events such as heart attack and stroke. However, accurate assessment of plaque vulnerability assessment and prediction of its future changes require accurate plaque cap thickness, tissue component and structure quantifications and mechanical stress/strain calculations. Multi-modality intravascular ultrasound (IVUS), optical coherence tomography (OCT) and angiography image data with follow-up were acquired from ten patients to obtain accurate and reliable plaque morphology for model construction. Three-dimensional thin-slice finite element models were constructed for 228 matched IVUS + OCT slices to obtain plaque stress/strain data for analysis. Quantitative plaque cap thickness and stress/strain indices were introduced as substitute quantitative plaque vulnerability indices (PVIs) and a machine learning method (random forest) was employed to predict PVI changes with actual patient IVUS + OCT follow-up data as the gold standard. Our prediction results showed that optimal prediction accuracies for changes in cap-PVI (C-PVI), mean cap stress PVI (meanS-PVI) and mean cap strain PVI (meanSn-PVI) were 90.3% (AUC = 0.877), 85.6% (AUC = 0.867) and 83.3% (AUC = 0.809), respectively. The improvements in prediction accuracy by the best combination predictor over the best single predictor were 6.6% for C-PVI, 10.0% for mean S-PVI and 8.0% for mean Sn-PVI. Our results demonstrated the potential using multi-modality IVUS + OCT image to accurately and efficiently predict plaque cap thickness and stress/strain index changes. Combining mechanical and morphological predictors may lead to better prediction accuracies. Full article
Show Figures

Figure 1

17 pages, 4180 KiB  
Article
Experimental Study of the Propagation Process of Dissection Using an Aortic Silicone Phantom
by Qing-Zhuo Chi, Yang-Yang Ge, Zhen Cao, Li-Li Long, Li-Zhong Mu, Ying He and Yong Luan
J. Funct. Biomater. 2022, 13(4), 290; https://doi.org/10.3390/jfb13040290 - 09 Dec 2022
Cited by 2 | Viewed by 1363
Abstract
Background: The mortality of acute aortic dissection (AD) can reach 65~70%. However, it is challenging to follow the progress of AD formation. The purpose of this work was to observe the process of dissection development using a novel tear-embedded silicone phantom. Methods: Silicone [...] Read more.
Background: The mortality of acute aortic dissection (AD) can reach 65~70%. However, it is challenging to follow the progress of AD formation. The purpose of this work was to observe the process of dissection development using a novel tear-embedded silicone phantom. Methods: Silicone phantoms were fabricated by embedding a torn area and primary tear feature on the inner layer. CT scanning and laser lightening were conducted to observe the variations in thickness and volume of the true lumen (TL) and false lumen (FL) during development. Results: The model with a larger interlayer adhesion damage required a lower pressure to trigger the development of dissection. At the initiation stage of dissection, the volume of TL increased by 25.5%, accompanied by a 19.5% enlargement of tear size. The force analysis based on the change of tear size verified the deduction of the process of interlaminar separation from the earlier studies. Conclusions: The primary tear and the weakening adhesion of the vessel layers are key factors in AD development, suggesting that some forms of primary damage to the arterial wall, in particular, the lumen morphology of vessels with straight inner lumen, should be considered as early risk predictors of AD. Full article
Show Figures

Figure 1

15 pages, 4470 KiB  
Article
Quasi-Static Mechanical Properties and Continuum Constitutive Model of the Thyroid Gland
by Peng Su, Chao Yue, Likun Cui, Qinjian Zhang, Baoguo Liu and Tian Liu
J. Funct. Biomater. 2022, 13(4), 283; https://doi.org/10.3390/jfb13040283 - 08 Dec 2022
Viewed by 1128
Abstract
The purpose of this study is to obtain the digital twin parameters of the thyroid gland and to build a constitutional model of the thyroid gland based on continuum mechanics, which will lay the foundation for the establishment of a surgical training system [...] Read more.
The purpose of this study is to obtain the digital twin parameters of the thyroid gland and to build a constitutional model of the thyroid gland based on continuum mechanics, which will lay the foundation for the establishment of a surgical training system for the thyroid surgery robot and the development of the digital twin of the thyroid gland. First, thyroid parenchyma was obtained from fresh porcine thyroid tissue and subjected to quasi-static unconfined uniaxial compression tests using a biomechanical test platform with two strain rates (0.005 s−1 and 0.05 s−1) and two loading orientations (perpendicular to the thyroid surface and parallel to the thyroid surface). Based on this, a tensile thyroid model was established to simulate the stretching process by using the finite element method. The thyroid stretching test was carried out under the same parameters to verify the validity of the hyperelastic constitutive model. The quasi-static mechanical property parameters of the thyroid tissue were obtained by a quasi-static unconstrained uniaxial compression test, and a constitutional model that can describe the quasi-static mechanical properties of thyroid tissue was proposed based on the principle of continuum media mechanics, which is of great value for the establishment of a surgical training system for the head and neck surgery robot and for the development of the thyroid digital twin. Full article
Show Figures

Figure 1

16 pages, 3580 KiB  
Article
Hemodynamic Analysis of the Geometric Features of Side Holes Based on GDK Catheter
by Yang Yang, Yijing Li, Chen Liu, Jingyuan Zhou, Tao Li, Yan Xiong and Ling Zhang
J. Funct. Biomater. 2022, 13(4), 236; https://doi.org/10.3390/jfb13040236 - 11 Nov 2022
Cited by 2 | Viewed by 1985
Abstract
Hemodialysis is an important means to maintain life in patients with end-stage renal disease (ESRD). Approximately 76.8% of patients who begin hemodialysis do so through catheters, which play vital roles in the delivery of hemodialysis to patients. During the past decade, the materials, [...] Read more.
Hemodialysis is an important means to maintain life in patients with end-stage renal disease (ESRD). Approximately 76.8% of patients who begin hemodialysis do so through catheters, which play vital roles in the delivery of hemodialysis to patients. During the past decade, the materials, structures, and surface-coating technologies of catheters have constantly been evolving to ameliorate catheter-related problems, such as recirculation, thrombosis, catheter-related infections, and malfunction. In this study, based on the commercial GDK catheter, six catheter models (GDK, GDK1, GDK2, GDK3, GDK4, and GDK5) with different lumen diameters and different geometric features of side holes were established, and computational flow dynamics (CFD) were used to measure flow rate, shear stress, residence time (RT), and platelet lysis index (PLI). These six catheters were then printed with polycarbonate PC using 3D printing technology to verify recirculation rates. The results indicated that: (1) the catheter with a 5.5 mm outer diameter had the smallest average shear stress in the arterial lumen and the smallest proportion of areas with shear stress > 10 pa. With increasing catheter diameter, the shear stress in the tip volume became lower, the average RT increased, and the PLI decreased due to larger changes in shear stress; (2) the catheters with oval-shaped side holes had smaller shear stress levels than those with circular-shaped holes, indicating that the oval design was more effective; (3) the catheter with parallel dual side holes had uniformly distributed flow around side holes and exhibited lower recirculation rates in both forward and reverse connections, while linear multi-side holes had higher shear stress levels due to the large differences in flow around side holes. The selection of the material and the optimization of the side holes of catheters have significant impacts on hemodynamic performances and reduce the probability of thrombosis, thus improving the efficiency of dialysis. This study would provide some guidance for optimizing catheter structures and help toward the commercialization of more efficient HD catheters. Full article
Show Figures

Figure 1

14 pages, 3368 KiB  
Article
Human Coronary Plaque Optical Coherence Tomography Image Repairing, Multilayer Segmentation and Impact on Plaque Stress/Strain Calculations
by Mengde Huang, Akiko Maehara, Dalin Tang, Jian Zhu, Liang Wang, Rui Lv, Yanwen Zhu, Xiaoguo Zhang, Mitsuaki Matsumura, Lijuan Chen, Genshan Ma and Gary S. Mintz
J. Funct. Biomater. 2022, 13(4), 213; https://doi.org/10.3390/jfb13040213 - 02 Nov 2022
Cited by 2 | Viewed by 1381
Abstract
Coronary vessel layer structure may have a considerable impact on plaque stress/strain calculations. Most current plaque models use single-layer vessel structures due to the lack of available multilayer segmentation techniques. In this paper, an automatic multilayer segmentation and repair method was developed to [...] Read more.
Coronary vessel layer structure may have a considerable impact on plaque stress/strain calculations. Most current plaque models use single-layer vessel structures due to the lack of available multilayer segmentation techniques. In this paper, an automatic multilayer segmentation and repair method was developed to segment coronary optical coherence tomography (OCT) images to obtain multilayer vessel geometries for biomechanical model construction. Intravascular OCT data were acquired from six patients (one male; mean age: 70.0) using a protocol approved by the local institutional review board with informed consent obtained. A total of 436 OCT slices were selected in this study. Manually segmented data were used as the gold standard for method development and validation. The edge detection method and cubic spline surface fitting were applied to detect and repair the internal elastic membrane (IEM), external elastic membrane (EEM) and adventitia–periadventitia interface (ADV). The mean errors of automatic contours compared to manually segmented contours were 1.40%, 4.34% and 6.97%, respectively. The single-layer mean plaque stress value from lumen was 117.91 kPa, 10.79% lower than that from three-layer models (132.33 kPa). On the adventitia, the single-layer mean plaque stress value was 50.46 kPa, 156.28% higher than that from three-layer models (19.74 kPa). The proposed segmentation technique may have wide applications in vulnerable plaque research. Full article
Show Figures

Figure 1

15 pages, 4854 KiB  
Article
Lingering Dynamics of Type 2 Diabetes Mellitus Red Blood Cells in Retinal Arteriolar Bifurcations
by Lili Long, Huimin Chen, Ying He, Lizhong Mu and Yong Luan
J. Funct. Biomater. 2022, 13(4), 205; https://doi.org/10.3390/jfb13040205 - 27 Oct 2022
Cited by 3 | Viewed by 1689
Abstract
It has been proven that the deformability of red blood cells (RBC) is reduced owing to changes in mechanical properties, such as diabetes mellitus and hypertension. To probe the effects of RBC morphological and physical parameters on the flow field in bifurcated arterioles, [...] Read more.
It has been proven that the deformability of red blood cells (RBC) is reduced owing to changes in mechanical properties, such as diabetes mellitus and hypertension. To probe the effects of RBC morphological and physical parameters on the flow field in bifurcated arterioles, three types of RBC models with various degrees of biconcave shapes were built based on the in vitro experimental data. The dynamic behaviors of the RBCs in shear flow were simulated to validate the feasibility of the finite element-Arbitrary Lagrangian–Eulerian method with a moving mesh. The influences of the shear rate and viscosity ratios on RBC motions were investigated. The motion of RBCs in arteriolar bifurcations was further simulated. Abnormal variations in the morphological and physical parameters of RBCs may lead to diminished tank-tread motion and enhanced tumbling motion in shear flow. Moreover, abnormal RBC variations can result in slower RBC motion at the bifurcation with a longer transmit time and greater flow resistance, which may further cause inadequate local oxygen supply. These findings would provide useful insights into the microvascular complications in diabetes mellitus. Full article
Show Figures

Figure 1

13 pages, 5356 KiB  
Article
A Finite Element Investigation on Material and Design Parameters of Ventricular Septal Defect Occluder Devices
by Zhuo Zhang, Yan Xiong, Jinpeng Hu, Xuying Guo, Xianchun Xu, Juan Chen, Yunbing Wang and Yu Chen
J. Funct. Biomater. 2022, 13(4), 182; https://doi.org/10.3390/jfb13040182 - 09 Oct 2022
Cited by 1 | Viewed by 1599
Abstract
Background and Objective: Ventricular septal defects (VSDs) are the most common form of congenital heart defects. The incidence of VSD accounts for 40% of all congenital heart defects (CHDs). With the development of interventional therapy technology, transcatheter VSD closure was introduced as an [...] Read more.
Background and Objective: Ventricular septal defects (VSDs) are the most common form of congenital heart defects. The incidence of VSD accounts for 40% of all congenital heart defects (CHDs). With the development of interventional therapy technology, transcatheter VSD closure was introduced as an alternative to open heart surgery. Clinical trials of VSD occluders have yielded promising results, and with the development of new material technologies, biodegradable materials have been introduced into the application of occluders. At present, the research on the mechanical properties of occluders is focused on experimental and clinical trials, and numerical simulation is still a considerable challenge due to the braided nature of the VSD occluder. Finite element analysis (FEA) has proven to be a valid and efficient method to virtually investigate and optimize the mechanical behavior of minimally invasive devices. The objective of this study is to explore the axial resistive performance through experimental and computational testing, and to present the systematic evaluation of the effect of various material and braid parameters by FEA. Methods: In this study, an experimental test was used to investigate the axial resistive force (ARF) of VSD Nitinol occluders under axial displacement loading (ADL), then the corresponding numerical simulation was developed and compared with the experimental results to verify the effectiveness. Based on the above validation, numerical simulations of VSD occluders with different materials (polydioxanone (PDO) and Nitinol with different austenite moduli) and braid parameters (wire density, wire diameter, and angle between left and right discs) provided a clear presentation of mechanical behaviors that included the maximal axial resistive force (MARF), maximal axial displacement (MAD) and initial axial stiffness (IAS), the stress distribution and the maximum principal strain distribution of the device under ADL. Results: The results showed that: (1) In the experimental testing, the axial resistive force (ARF) of the tested occluder, caused by axial displacement loading (ADL), was recorded and it increased linearly from 0 to 4.91 N before reducing. Subsequent computational testing showed that a similar performance in the ARF was experienced, albeit that the peak value of ARF was smaller. (2) The investigated design parameters of wire density, wire diameter and the angle between the left and right discs demonstrated an effective improvement (7.59%, 9.48%, 1.28%, respectively, for MARF, and 1.28%, 1.80%, 3.07%, respectively, for IAS) for the mechanical performance for Nitinol occluders. (3) The most influencing factor was the material; the performance rose by 30% as the Nitinol austenite modulus (EA) increased by 10,000 MPa. The performance of Nitinol was better than that of PDO for certain wire diameters, and the performance improved more obviously (1.80% for Nitinol and 0.64% for PDO in IAS, 9.48% for Nitinol and 2.00% for PDO in MARF) with the increase in wire diameter. (4) For all of the models, the maximum stresses under ADL were distributed at the edge of the disc on the loaded side of the occluders. Conclusions: The experimental testing presented in the study showed that the mechanical performance of the Nitinol occluder and the MARF prove that it has sufficient ability to resist falling out from its intended placement. This study also represents the first experimentally validated computational model of braided occluders, and provides a perception of the influence of geometrical and material parameters in these systems. The results could further provide meaningful suggestions for the design of biodegradable VSD closure devices and to realize a series of applications for biodegradable materials in VSD. Full article
Show Figures

Figure 1

13 pages, 14334 KiB  
Article
Interstitial Fluid Flows along Perivascular and Adventitial Clearances around Neurovascular Bundles
by Yiya Kong, Xiaobin Yu, Gang Peng, Fang Wang and Yajun Yin
J. Funct. Biomater. 2022, 13(4), 172; https://doi.org/10.3390/jfb13040172 - 01 Oct 2022
Cited by 2 | Viewed by 2474
Abstract
This study reports new phenomena of the interstitial fluid (ISF) microflow along perivascular and adventitial clearances (PAC) around neurovascular bundles. The fluorescent tracing was used to observe the ISF flow along the PAC of neurovascular bundles in 8–10 week old BALB/c mice. The [...] Read more.
This study reports new phenomena of the interstitial fluid (ISF) microflow along perivascular and adventitial clearances (PAC) around neurovascular bundles. The fluorescent tracing was used to observe the ISF flow along the PAC of neurovascular bundles in 8–10 week old BALB/c mice. The new results include: (1) the topologic structure of the PAC around the neurovascular bundles is revealed; (2) the heart-orientated ISF flow along the PAC is observed; (3) the double-belt ISF flow along the venous adventitial clearance of the PAC is recorded; (4) the waterfall-like ISF flow induced by the small branching vessel or torn fascia along the PAC is discovered. Based on the above new phenomena, this paper approached the following objectives: (1) the kinematic laws of the ISF flow along the PAC around neurovascular bundles are set up; (2) the applicability of the hypothesis on the PAC and its subspaces by numerical simulations are examined. The findings of this paper not only enriched the image of the ISF flow through the body but also explained the kernel structure of the ISF flow (i.e., the PAC). It helps to lay the foundation for the kinematics and dynamics of the ISF flow along the PAC around neurovascular bundles. Full article
Show Figures

Figure 1

15 pages, 4635 KiB  
Article
Finite Element Analysis of the Non-Uniform Degradation of Biodegradable Vascular Stents
by Hanbing Zhang, Tianming Du, Shiliang Chen, Yang Liu, Yujia Yang, Qianwen Hou and Aike Qiao
J. Funct. Biomater. 2022, 13(3), 152; https://doi.org/10.3390/jfb13030152 - 14 Sep 2022
Cited by 4 | Viewed by 2052
Abstract
Most of the studies on the finite element analysis (FEA) of biodegradable vascular stents (BVSs) during the degradation process have limited the accuracy of the simulation results due to the application of the uniform degradation model. This paper aims to establish an FEA [...] Read more.
Most of the studies on the finite element analysis (FEA) of biodegradable vascular stents (BVSs) during the degradation process have limited the accuracy of the simulation results due to the application of the uniform degradation model. This paper aims to establish an FEA model for the non-uniform degradation of BVSs by considering factors such as the dynamic changes of the corrosion properties and material properties of the element, as well as the pitting corrosion and stress corrosion. The results revealed that adjusting the corrosion rate according to the number of exposed surfaces of the element and reducing the stress threshold according to the corrosion status accelerates the degradation time of BVSs by 26% and 25%, respectively, compared with the uniform degradation model. The addition of the pitting model reduces the service life of the BVSs by up to 12%. The effective support of the stent to the vessel could reach at least 60% of the treatment effect before the vessel collapsed. These data indicate that the proposed non-uniform degradation model of BVSs with multiple factors produces different phenomena compared with the commonly used models and make the numerical simulation results more consistent with the real degradation scenario. Full article
Show Figures

Figure 1

16 pages, 6928 KiB  
Article
Compressive Properties and Degradable Behavior of Biodegradable Porous Zinc Fabricated with the Protein Foaming Method
by Qiqi Ge, Xiaoqian Liu, Aike Qiao and Yongliang Mu
J. Funct. Biomater. 2022, 13(3), 151; https://doi.org/10.3390/jfb13030151 - 13 Sep 2022
Cited by 5 | Viewed by 1461
Abstract
A new protein foaming–consolidation method for preparing porous zinc was developed using three proteins (egg white protein (EWP), bovine bone collagen protein (BBCP), and fish bone collagen protein (FBCP)) as both consolidating and foaming agents. The preparation route utilized powder mixing and sintering [...] Read more.
A new protein foaming–consolidation method for preparing porous zinc was developed using three proteins (egg white protein (EWP), bovine bone collagen protein (BBCP), and fish bone collagen protein (FBCP)) as both consolidating and foaming agents. The preparation route utilized powder mixing and sintering processing, which could be divided into three steps: slurry preparation, low-temperature foaming, and high-temperature sintering. The morphological characteristics of the pore structures revealed that the porous zinc had an interconnected open-cell structure. Compared to the porous zinc prepared with EWP or BBCP, the porous zinc prepared with FBCP possessed the largest average pore size and the highest compressive properties. The porosity of the porous zinc increased with the stirring time, the content of protein and sucrose, and higher sintering temperatures. Moreover, a compression test and immersion test were performed to investigate the stress–strain behavior and corrosion properties of the resulting porous zinc. A fluctuated stress plateau could be found due to the brittle fracture of the porous cells. The porous zinc prepared with FBCP showed the highest compressive strength and elastic modulus. The corrosion rate of the porous zinc obtained through an immersion test in vitro using simulated bodily fluids on the thirty-second day was close to 0.02 mm/year. The corresponding corrosion mechanism of porous zinc was also discussed. Full article
Show Figures

Figure 1

14 pages, 4019 KiB  
Article
A Porous Hydrogel with High Mechanical Strength and Biocompatibility for Bone Tissue Engineering
by Changxin Xiang, Xinyan Zhang, Jianan Zhang, Weiyi Chen, Xiaona Li, Xiaochun Wei and Pengcui Li
J. Funct. Biomater. 2022, 13(3), 140; https://doi.org/10.3390/jfb13030140 - 03 Sep 2022
Cited by 12 | Viewed by 2924
Abstract
Polyvinyl alcohol (PVA) hydrogels are considered to be ideal materials for tissue engineering due to their high water content, low frictional behavior, and good biocompatibility. However, their limited mechanical properties restrict them from being applied when repairing load-bearing tissue. Inspired by the composition [...] Read more.
Polyvinyl alcohol (PVA) hydrogels are considered to be ideal materials for tissue engineering due to their high water content, low frictional behavior, and good biocompatibility. However, their limited mechanical properties restrict them from being applied when repairing load-bearing tissue. Inspired by the composition of mussels, we fabricated polyvinyl alcohol/hydroxyapatite/tannic acid (PVA/HA/TA) hydrogels through a facile freeze–thawing method. The resulting composite hydrogels exhibited high moisture content, porous structures, and good mechanical properties. The compressive strength and tensile strength of PVA hydrogels were improved from 0.77 ± 0.11 MPa and 0.08 ± 0.01 MPa to approximately 3.69 ± 0.41 MPa and 0.43 ± 0.01 MPa, respectively, for the PVA/HA/1.5TA hydrogel. The toughness and the compressive elastic modulus of PVA/HA/1.5TA hydrogel also attained 0.86 ± 0.02 MJm−3 and 0.11 ± 0.02 MPa, which was approximately 11 times and 5 times higher than the PVA hydrogel, respectively. The PVA/HA/1.5TA hydrogel also exhibited fatigue resistance abilities. The mechanical properties of the composite hydrogels were improved through the introduction of TA. Furthermore, in vitro PVA/HA/1.5TA hydrogel showed excellent cytocompatibility by promoting cell proliferation in vitro. Scanning electron microscopy analysis indicated that PVA/HA/1.5TA hydrogels provided favorable circumstances for cell adhesion. The aforementioned results also indicate that the composite hydrogels had potential applications in bone tissue engineering, and this study provides a facile method to improve the mechanical properties of PVA hydrogel. Full article
Show Figures

Figure 1

18 pages, 3510 KiB  
Article
Anti-Inflammatory and Mineralization Effects of an ASP/PLGA-ASP/ACP/PLLA-PLGA Composite Membrane as a Dental Pulp Capping Agent
by Wenjuan Yan, Fenghe Yang, Zhongning Liu, Quan Wen, Yike Gao, Xufeng Niu and Yuming Zhao
J. Funct. Biomater. 2022, 13(3), 106; https://doi.org/10.3390/jfb13030106 - 29 Jul 2022
Cited by 6 | Viewed by 2588
Abstract
Dental pulp is essential for the development and long-term preservation of teeth. Dental trauma and caries often lead to pulp inflammation. Vital pulp therapy using dental pulp-capping materials is an approach to preserving the vitality of injured dental pulp. Most pulp-capping materials used [...] Read more.
Dental pulp is essential for the development and long-term preservation of teeth. Dental trauma and caries often lead to pulp inflammation. Vital pulp therapy using dental pulp-capping materials is an approach to preserving the vitality of injured dental pulp. Most pulp-capping materials used in clinics have good biocompatibility to promote mineralization, but their anti-inflammatory effect is weak. Therefore, the failure rate will increase when dental pulp inflammation is severe. The present study developed an amorphous calcium phosphate/poly (L-lactic acid)-poly (lactic-co-glycolic acid) membrane compounded with aspirin (hereafter known as ASP/PLGA-ASP/ACP/PLLA-PLGA). The composite membrane, used as a pulp-capping material, effectively achieved the rapid release of high concentrations of the anti-inflammatory drug aspirin during the early stages as well as the long-term release of low concentrations of aspirin and calcium/phosphorus ions during the later stages, which could repair inflamed dental pulp and promote mineralization. Meanwhile, the composite membrane promoted the proliferation of inflamed dental pulp stem cells, downregulated the expression of inflammatory markers, upregulated the expression of mineralization-related markers, and induced the formation of stronger reparative dentin in the rat pulpitis model. These findings indicate that this material may be suitable for use as a pulp-capping material in clinical applications. Full article
Show Figures

Figure 1

12 pages, 4303 KiB  
Article
A Parametric Study of Flushing Conditions for Improvement of Angioscopy Visibility
by Kohei Mitsuzuka, Yujie Li, Toshio Nakayama, Hitomi Anzai, Daisuke Goanno, Simon Tupin, Mingzi Zhang, Haoran Wang, Kazunori Horie and Makoto Ohta
J. Funct. Biomater. 2022, 13(2), 69; https://doi.org/10.3390/jfb13020069 - 01 Jun 2022
Cited by 3 | Viewed by 1919
Abstract
During an angioscopy operation, a transparent liquid called dextran is sprayed out from a catheter to flush the blood away from the space between the camera and target. Medical doctors usually inject dextran at a constant flow rate. However, they often cannot obtain [...] Read more.
During an angioscopy operation, a transparent liquid called dextran is sprayed out from a catheter to flush the blood away from the space between the camera and target. Medical doctors usually inject dextran at a constant flow rate. However, they often cannot obtain clear angioscopy visibility because the flushing out of the blood is insufficient. Good flushing conditions producing clear angioscopy visibility will increase the rate of success of angioscopy operations. This study aimed to determine a way to improve the clarity for angioscopy under different values for the parameters of the injection waveform, endoscope position, and catheter angle. We also determined the effect of a stepwise waveform for injecting the dextran only during systole while synchronizing the waveform to the cardiac cycle. To evaluate the visibility of the blood-vessel walls, we performed a computational fluid dynamics (CFD) simulation and calculated the visible area ratio (VAR), representing the ratio of the visible wall area to the total area of the wall at each point in time. Additionally, the normalized integration of the VAR called the area ratio (ARVAR) represents the ratio of the visible wall area as a function of the dextran injection period. The results demonstrate that the ARVAR with a stepped waveform, bottom endoscope, and three-degree-angle catheter results in the highest visibility, around 25 times larger than that under the control conditions: a constant waveform, a center endoscope, and 0 degrees. This set of conditions can improve angioscopy visibility. Full article
Show Figures

Figure 1

11 pages, 2342 KiB  
Article
Physical and Chemical Characterization of Biomineralized Collagen with Different Microstructures
by Tianming Du, Yumiao Niu, Youjun Liu, Haisheng Yang, Aike Qiao and Xufeng Niu
J. Funct. Biomater. 2022, 13(2), 57; https://doi.org/10.3390/jfb13020057 - 13 May 2022
Cited by 5 | Viewed by 2518
Abstract
Mineralized collagen is the basic unit in hierarchically organized natural bone with different structures. Polyacrylic acid (PAA) and periodic fluid shear stress (FSS) are the most common chemical and physical means to induce intrafibrillar mineralization. In the present study, non-mineralized collagen, extrafibrillar mineralized [...] Read more.
Mineralized collagen is the basic unit in hierarchically organized natural bone with different structures. Polyacrylic acid (PAA) and periodic fluid shear stress (FSS) are the most common chemical and physical means to induce intrafibrillar mineralization. In the present study, non-mineralized collagen, extrafibrillar mineralized (EM) collagen, intrafibrillar mineralized (IM) collagen, and hierarchical intrafibrillar mineralized (HIM) collagen induced by PAA and FSS were prepared, respectively. The physical and chemical properties of these mineralized collagens with different microstructures were systematically investigated afterwards. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that mineralized collagen with different microstructures was prepared successfully. The pore density of the mineralized collagen scaffold is higher under the action of periodic FSS. Fourier transform infrared spectroscopy (FTIR) analysis showed the formation of the hydroxyapatite (HA) crystal. A significant improvement in the pore density, hydrophilicity, enzymatic stability, and thermal stability of the mineralized collagen indicated that the IM collagen under the action of periodic FSS was beneficial for maintaining collagen activity. HIM collagen fibers, which are prepared under the co-action of periodic FSS and sodium tripolyphosphate (TPP), may pave the way for new bone substitute material applications. Full article
Show Figures

Graphical abstract

Review

Jump to: Editorial, Research

24 pages, 6420 KiB  
Review
Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials
by Yumiao Niu, Tianming Du and Youjun Liu
J. Funct. Biomater. 2023, 14(4), 212; https://doi.org/10.3390/jfb14040212 - 11 Apr 2023
Cited by 12 | Viewed by 3344
Abstract
Bone has a special structure that is both stiff and elastic, and the composition of bone confers it with an exceptional mechanical property. However, bone substitute materials that are made of the same hydroxyapatite (HA) and collagen do not offer the same mechanical [...] Read more.
Bone has a special structure that is both stiff and elastic, and the composition of bone confers it with an exceptional mechanical property. However, bone substitute materials that are made of the same hydroxyapatite (HA) and collagen do not offer the same mechanical properties. It is important for bionic bone preparation to understand the structure of bone and the mineralization process and factors. In this paper, the research on the mineralization of collagen is reviewed in terms of the mechanical properties in recent years. Firstly, the structure and mechanical properties of bone are analyzed, and the differences of bone in different parts are described. Then, different scaffolds for bone repair are suggested considering bone repair sites. Mineralized collagen seems to be a better option for new composite scaffolds. Last, the paper introduces the most common method to prepare mineralized collagen and summarizes the factors influencing collagen mineralization and methods to analyze its mechanical properties. In conclusion, mineralized collagen is thought to be an ideal bone substitute material because it promotes faster development. Among the factors that promote collagen mineralization, more attention should be given to the mechanical loading factors of bone. Full article
Show Figures

Figure 1

29 pages, 2378 KiB  
Review
Updated Perspectives on Direct Vascular Cellular Reprogramming and Their Potential Applications in Tissue Engineered Vascular Grafts
by Saneth Gavishka Sellahewa, Jojo Yijiao Li and Qingzhong Xiao
J. Funct. Biomater. 2023, 14(1), 21; https://doi.org/10.3390/jfb14010021 - 30 Dec 2022
Cited by 2 | Viewed by 1951
Abstract
Cardiovascular disease is a globally prevalent disease with far-reaching medical and socio-economic consequences. Although improvements in treatment pathways and revascularisation therapies have slowed disease progression, contemporary management fails to modulate the underlying atherosclerotic process and sustainably replace damaged arterial tissue. Direct cellular reprogramming [...] Read more.
Cardiovascular disease is a globally prevalent disease with far-reaching medical and socio-economic consequences. Although improvements in treatment pathways and revascularisation therapies have slowed disease progression, contemporary management fails to modulate the underlying atherosclerotic process and sustainably replace damaged arterial tissue. Direct cellular reprogramming is a rapidly evolving and innovative tissue regenerative approach that holds promise to restore functional vasculature and restore blood perfusion. The approach utilises cell plasticity to directly convert somatic cells to another cell fate without a pluripotent stage. In this narrative literature review, we comprehensively analyse and compare direct reprogramming protocols to generate endothelial cells, vascular smooth muscle cells and vascular progenitors. Specifically, we carefully examine the reprogramming factors, their molecular mechanisms, conversion efficacies and therapeutic benefits for each induced vascular cell. Attention is given to the application of these novel approaches with tissue engineered vascular grafts as a therapeutic and disease-modelling platform for cardiovascular diseases. We conclude with a discussion on the ethics of direct reprogramming, its current challenges, and future perspectives. Full article
Show Figures

Graphical abstract

20 pages, 3599 KiB  
Review
Zinc-Based Biodegradable Materials for Orthopaedic Internal Fixation
by Yang Liu, Tianming Du, Aike Qiao, Yongliang Mu and Haisheng Yang
J. Funct. Biomater. 2022, 13(4), 164; https://doi.org/10.3390/jfb13040164 - 26 Sep 2022
Cited by 20 | Viewed by 3413
Abstract
Traditional inert materials used in internal fixation have caused many complications and generally require removal with secondary surgeries. Biodegradable materials, such as magnesium (Mg)-, iron (Fe)- and zinc (Zn)-based alloys, open up a new pathway to address those issues. During the last decades, [...] Read more.
Traditional inert materials used in internal fixation have caused many complications and generally require removal with secondary surgeries. Biodegradable materials, such as magnesium (Mg)-, iron (Fe)- and zinc (Zn)-based alloys, open up a new pathway to address those issues. During the last decades, Mg-based alloys have attracted much attention by researchers. However, the issues with an over-fast degradation rate and release of hydrogen still need to be overcome. Zn alloys have comparable mechanical properties with traditional metal materials, e.g., titanium (Ti), and have a moderate degradation rate, potentially serving as a good candidate for internal fixation materials, especially at load-bearing sites of the skeleton. Emerging Zn-based alloys and composites have been developed in recent years and in vitro and in vivo studies have been performed to explore their biodegradability, mechanical property, and biocompatibility in order to move towards the ultimate goal of clinical application in fracture fixation. This article seeks to offer a review of related research progress on Zn-based biodegradable materials, which may provide a useful reference for future studies on Zn-based biodegradable materials targeting applications in orthopedic internal fixation. Full article
Show Figures

Figure 1

17 pages, 1984 KiB  
Review
Image-Based Finite Element Modeling Approach for Characterizing In Vivo Mechanical Properties of Human Arteries
by Liang Wang, Akiko Maehara, Rui Lv, Xiaoya Guo, Jie Zheng, Kisten L. Billiar, Gary S. Mintz and Dalin Tang
J. Funct. Biomater. 2022, 13(3), 147; https://doi.org/10.3390/jfb13030147 - 11 Sep 2022
Cited by 3 | Viewed by 1939
Abstract
Mechanical properties of the arterial walls could provide meaningful information for the diagnosis, management and treatment of cardiovascular diseases. Classically, various experimental approaches were conducted on dissected arterial tissues to obtain their stress–stretch relationship, which has limited value clinically. Therefore, there is a [...] Read more.
Mechanical properties of the arterial walls could provide meaningful information for the diagnosis, management and treatment of cardiovascular diseases. Classically, various experimental approaches were conducted on dissected arterial tissues to obtain their stress–stretch relationship, which has limited value clinically. Therefore, there is a pressing need to obtain biomechanical behaviors of these vascular tissues in vivo for personalized treatment. This paper reviews the methods to quantify arterial mechanical properties in vivo. Among these methods, we emphasize a novel approach using image-based finite element models to iteratively determine the material properties of the arterial tissues. This approach has been successfully applied to arterial walls in various vascular beds. The mechanical properties obtained from the in vivo approach were compared to those from ex vivo experimental studies to investigate whether any discrepancy in material properties exists for both approaches. Arterial tissue stiffness values from in vivo studies generally were in the same magnitude as those from ex vivo studies, but with lower average values. Some methodological issues, including solution uniqueness and robustness; method validation; and model assumptions and limitations were discussed. Clinical applications of this approach were also addressed to highlight their potential in translation from research tools to cardiovascular disease management. Full article
Show Figures

Figure 1

19 pages, 1707 KiB  
Review
A Review of Functional Analysis of Endothelial Cells in Flow Chambers
by Makoto Ohta, Naoya Sakamoto, Kenichi Funamoto, Zi Wang, Yukiko Kojima and Hitomi Anzai
J. Funct. Biomater. 2022, 13(3), 92; https://doi.org/10.3390/jfb13030092 - 12 Jul 2022
Cited by 3 | Viewed by 2625
Abstract
The vascular endothelial cells constitute the innermost layer. The cells are exposed to mechanical stress by the flow, causing them to express their functions. To elucidate the functions, methods involving seeding endothelial cells as a layer in a chamber were studied. The chambers [...] Read more.
The vascular endothelial cells constitute the innermost layer. The cells are exposed to mechanical stress by the flow, causing them to express their functions. To elucidate the functions, methods involving seeding endothelial cells as a layer in a chamber were studied. The chambers are known as parallel plate, T-chamber, step, cone plate, and stretch. The stimulated functions or signals from endothelial cells by flows are extensively connected to other outer layers of arteries or organs. The coculture layer was developed in a chamber to investigate the interaction between smooth muscle cells in the middle layer of the blood vessel wall in vascular physiology and pathology. Additionally, the microfabrication technology used to create a chamber for a microfluidic device involves both mechanical and chemical stimulation of cells to show their dynamics in in vivo microenvironments. The purpose of this study is to summarize the blood flow (flow inducing) for the functions connecting to endothelial cells and blood vessels, and to find directions for future chamber and device developments for further understanding and application of vascular functions. The relationship between chamber design flow, cell layers, and microfluidics was studied. Full article
Show Figures

Figure 1

Back to TopTop