Endodontic Biomaterials

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983). This special issue belongs to the section "Dental Biomaterials".

Deadline for manuscript submissions: closed (31 March 2023) | Viewed by 47234

Special Issue Editor

Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
Interests: pulp biology and regeneration; biocompatibility; bioactivity; bioceramic materials; endodontics; chlorhexidine; animal models
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Endodontics is currently going through one of the most exciting periods of knowledge expansion within the history of the discipline, especially in terms of the future clinical translation of scientific attainments, largely driven by new insights in pulp biology and biomaterial development.

One of the focuses of biomaterials science is to engineer substances to be used in therapeutic procedures, able to interact with the components of living systems and promote specific treatment goals in order to improve the expected clinical outcomes. The immense advances verified over the last two decades with the introduction of breakthrough materials for root canal filling, pulp capping and regenerative endodontic procedures represent a leap forward in our capacity to simplify current complex therapeutic approaches in the endodontic field. Hopefully this will allow for more conservative treatment options to manage pulpal and periapical pathology and preserve the natural dentition of our patients.

The aim of this Special Issue is to present the various aspects of biomaterials development and testing, from physicochemical evaluations to biological in vitro and in vivo assessments of performance before their introduction to clinical use.

Prof. Dr. João M. Santos
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Biocompatibility
  • In vitro testing
  • In vivo testing
  • Bioceramics
  • Regenerative endodontics
  • Vital pulp therapy
  • Root canal filling

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

14 pages, 2202 KiB  
Article
Ex Vivo Osteogenesis Induced by Calcium Silicate-Based Cement Extracts
by Gabriel Kato, Rita Araújo, Cláudia Rodrigues, Pedro Sousa Gomes, Liliana Grenho and Maria Helena Fernandes
J. Funct. Biomater. 2023, 14(6), 314; https://doi.org/10.3390/jfb14060314 - 07 Jun 2023
Viewed by 1162
Abstract
Calcium silicate-based cements are used in a variety of clinical conditions affecting the pulp tissue, relying on their inductive effect on tissue mineralization. This work aimed to evaluate the biological response of calcium silicate-based cements with distinct properties—the fast-setting Biodentine™ and TotalFill® [...] Read more.
Calcium silicate-based cements are used in a variety of clinical conditions affecting the pulp tissue, relying on their inductive effect on tissue mineralization. This work aimed to evaluate the biological response of calcium silicate-based cements with distinct properties—the fast-setting Biodentine™ and TotalFill® BC RRM™ Fast Putty, and the classical slow-setting ProRoot® MTA, in an ex vivo model of bone development. Briefly, eleven-day-old embryonic chick femurs were cultured for 10 days in organotypic conditions, being exposed to the set cements’ eluates and, at the end of the culture period, evaluated for osteogenesis/bone formation by combining microtomographic analysis and histological histomorphometric assessment. ProRoot® MTA and TotalFill® extracts presented similar levels of calcium ions, although significantly lower than those released from BiodentineTM. All extracts increased the osteogenesis/tissue mineralization, assayed by microtomographic (BV/TV) and histomorphometric (% of mineralized area; % of total collagen area, and % of mature collagen area) indexes, although displaying distinct dose-dependent patterns and quantitative values. The fast-setting cements displayed better performance than that of ProRoot® MTA, with BiodentineTM presenting the best performance, within the assayed experimental model. Full article
(This article belongs to the Special Issue Endodontic Biomaterials)
Show Figures

Figure 1

13 pages, 12519 KiB  
Article
Dentin Sealing of Calcium Silicate-Based Sealers in Root Canal Retreatment: A Confocal Laser Microscopy Study
by Blanca Ortiz-Blanco, José Luis Sanz, Carmen Llena, Adrián Lozano and Leopoldo Forner
J. Funct. Biomater. 2022, 13(3), 114; https://doi.org/10.3390/jfb13030114 - 04 Aug 2022
Cited by 1 | Viewed by 2093
Abstract
The aim of the present in vitro study was to evaluate the intratubular penetration of three bioceramic sealers in root canal retreatment. Here, 30 single-rooted human teeth were instrumented with the Protaper Universal system and filled with gutta-percha and the epoxy-resin-based sealer AH [...] Read more.
The aim of the present in vitro study was to evaluate the intratubular penetration of three bioceramic sealers in root canal retreatment. Here, 30 single-rooted human teeth were instrumented with the Protaper Universal system and filled with gutta-percha and the epoxy-resin-based sealer AH Plus mixed with rhodamine B. After two weeks in a humid environment, they were re-instrumented with Reciproc Blue and divided into three groups according to the endodontic sealer to be used in the re-filling (n = 10): G1: CeraSeal, G2: TotalFill BC Sealer, G3: TotalFill BC Sealer HiFlow. For the filling, a single cone technique was used, and the respective sealers were mixed with fluorescein. The roots were then sectioned at 2, 5, and 8 mm (apical, medial, and coronal measurement points, respectively) from the apex, and the dentinal tubule penetration depth and percentage of penetration around the canal perimeter were evaluated by means of confocal laser scanning microscopy (CLSM). Penetration between groups was compared using the Kruskal−Wallis test, and within each group using the Wilcoxon test. Statistical significance was established at p < 0.05. A non-significant reduction was found in the penetration depths and in a percentage of penetration around the canal perimeter between AH Plus and the tested calcium-silicate-based sealers (p > 0.05). Consequently, this reduction may not affect the three-dimensional seal of the root canal system in a negative manner. The penetration depth and percentage of penetration around the canal perimeter at both the root canal treatment and retreatment were significantly reduced from the coronal to apical points in all groups (p < 0.05). Full article
(This article belongs to the Special Issue Endodontic Biomaterials)
Show Figures

Figure 1

15 pages, 2741 KiB  
Article
Impact of Bi2O3 and ZrO2 Radiopacifiers on the Early Hydration and C–S–H Gel Structure of White Portland Cement
by Qiu Li and Nichola J. Coleman
J. Funct. Biomater. 2019, 10(4), 46; https://doi.org/10.3390/jfb10040046 - 18 Oct 2019
Cited by 17 | Viewed by 5295
Abstract
Bismuth oxide (monoclinic α-Bi2O3) and zirconium oxide (monoclinic ZrO2) are the most popular radiopacifiers in commercial Portland cement-based endodontic restoratives, yet their effects on the setting and hydration reactions are not fully understood. This study compares the [...] Read more.
Bismuth oxide (monoclinic α-Bi2O3) and zirconium oxide (monoclinic ZrO2) are the most popular radiopacifiers in commercial Portland cement-based endodontic restoratives, yet their effects on the setting and hydration reactions are not fully understood. This study compares the impact of 20 wt.% of Bi2O3 or ZrO2 on the early hydration reactions and C–S–H gel structure of white Portland cement (WPC). Cement paste samples were hydrated at 37.5 °C prior to analysis by 29Si and 27Al magic angle spinning nuclear magnetic resonance spectroscopy at 3 h and 24 h, and transmission electron microscopy at 3 h. Initial and final setting times were determined using a Vicat apparatus and reaction kinetics were monitored by isothermal conduction calorimetry. Bi2O3 was found to prolong initial and final setting times and retard the degree of hydration by 32% at 24 h. Heat evolution during the acceleration and deceleration phases of the hydration process was reduced and the exotherm arising from renewed ettringite formation was delayed and diminished in the presence of Bi2O3. Conversely, ZrO2 had no significant impact on either setting time; although, it accelerated hydration by 23% within 24 h. Increases in the mean silicate chain length and the extent of aluminum substitution in the C–S–H gel were observed in the presence of both radiopacifying agents after 24 h relative to those of the unblended WPC. The Bi2O3 and ZrO2 particles remained intact within the cement matrix and neither bismuth nor zirconium was chemically incorporated in the hydration products. Full article
(This article belongs to the Special Issue Endodontic Biomaterials)
Show Figures

Figure 1

35 pages, 1622 KiB  
Article
An Insight into Advanced Approaches for Photosensitizer Optimization in Endodontics—A Critical Review
by Patrícia Diogo, M. Amparo F. Faustino, M. Graça P. M. S. Neves, Paulo J. Palma, Isabel P. Baptista, Teresa Gonçalves and João Miguel Santos
J. Funct. Biomater. 2019, 10(4), 44; https://doi.org/10.3390/jfb10040044 - 30 Sep 2019
Cited by 35 | Viewed by 8379
Abstract
Apical periodontitis is a biofilm-mediated disease; therefore, an antimicrobial approach is essential to cure or prevent its development. In the quest for efficient strategies to achieve this objective, antimicrobial photodynamic therapy (aPDT) has emerged as an alternative to classical endodontic irrigation solutions and [...] Read more.
Apical periodontitis is a biofilm-mediated disease; therefore, an antimicrobial approach is essential to cure or prevent its development. In the quest for efficient strategies to achieve this objective, antimicrobial photodynamic therapy (aPDT) has emerged as an alternative to classical endodontic irrigation solutions and antibiotics. The aim of the present critical review is to summarize the available evidence on photosensitizers (PSs) which has been confirmed in numerous studies from diverse areas combined with several antimicrobial strategies, as well as emerging options in order to optimize their properties and effects that might be translational and useful in the near future in basic endodontic research. Published data notably support the need for continuing the search for an ideal endodontic photosensitizer, that is, one which acts as an excellent antimicrobial agent without causing toxicity to the human host cells or presenting the risk of tooth discoloration. The current literature on experimental studies mainly relies on assessment of mixed disinfection protocols, combining approaches which are already available with aPDT as an adjunct therapy. In this review, several approaches concerning aPDT efficiency are appraised, such as the use of bacteriophages, biopolymers, drug and light delivery systems, efflux pump inhibitors, negative pressure systems, and peptides. The authors also analyzed their combination with other approaches for aPDT improvement, such as sonodynamic therapy. All of the aforementioned techniques have already been tested, and we highlight the biological challenges of each formulation, predicting that the collected information may encourage the development of other effective photoactive materials, in addition to being useful in endodontic basic research. Moreover, special attention is dedicated to studies on detailed conditions, aPDT features with a focus on PS enhancer strategies, and the respective final antimicrobial outcomes. From all the mentioned approaches, the two which are most widely discussed and which show the most promising outcomes for endodontic purposes are drug delivery systems (with strong development in nanoparticles) and PS solubilizers. Full article
(This article belongs to the Special Issue Endodontic Biomaterials)
Show Figures

Figure 1

18 pages, 2890 KiB  
Article
The Application of 29Si NMR Spectroscopy to the Analysis of Calcium Silicate-Based Cement using Biodentine™ as an Example
by Qiu Li, Andrew P. Hurt and Nichola J. Coleman
J. Funct. Biomater. 2019, 10(2), 25; https://doi.org/10.3390/jfb10020025 - 30 May 2019
Cited by 26 | Viewed by 7407
Abstract
Biodentine is one of the most successful and widely studied among the second generation of calcium silicate-based endodontic cements. Despite its popularity, the setting reactions of this cement system are not currently well understood. In particular, very little is known about the formation [...] Read more.
Biodentine is one of the most successful and widely studied among the second generation of calcium silicate-based endodontic cements. Despite its popularity, the setting reactions of this cement system are not currently well understood. In particular, very little is known about the formation and structure of the major calcium silicate hydrate (C-S-H) gel phase, as it is difficult to obtain information on this poorly crystalline material by the traditional techniques of powder X-ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). In this study, the hydration reactions of Biodentine are monitored by XRD, FTIR, isothermal conduction calorimetry and, for the first time, 29Si magic angle spinning nuclear magnetic resonance spectroscopy (29Si MAS NMR) is used to investigate the structures of the anhydrous calcium silicate phases and the early C-S-H gel product. XRD analysis indicated that the anhydrous powder comprises 73.8 wt% triclinic tricalcium silicate, 4.45 wt% monoclinic β-dicalcium silicate, 16.6 wt% calcite and 5.15 wt% zirconium oxide. Calorimetry confirmed that the induction period for hydration is short, and that the setting reactions are rapid with a maximum heat evolution of 28.4 mW g−1 at 42 min. A progressive shift in the FTIR peak maximum from 905 to 995 cm−1 for the O-Si-O stretching vibrations accompanies the formation of the C-S-H gel during 1 week. The extent of hydration was determined by 29Si MAS NMR to be 87.0%, 88.8% and 93.7% at 6 h, 1 day and 1 week, respectively, which is significantly higher than that of MTA. The mean silicate chain length (MCL) of the C-S-H gel was also estimated by this technique to be 3.7 at 6 h and 1 day, and to have increased to 4.1 after 1 week. The rapid hydration kinetics of Biodentine, arising from the predominance of the tricalcium silicate phase, small particle size, and ‘filler effect’ of calcite and zirconium oxide, is a favorable characteristic of an endodontic cement, and the high values of MCL are thought to promote the durability of the cement matrix. Full article
(This article belongs to the Special Issue Endodontic Biomaterials)
Show Figures

Figure 1

11 pages, 1165 KiB  
Article
Six-Month Color Stability Assessment of Two Calcium Silicate-Based Cements Used in Regenerative Endodontic Procedures
by Paulo J. Palma, Joana A. Marques, Rui I. Falacho, Eder Correia, Alexandra Vinagre, João Miguel Santos and João C. Ramos
J. Funct. Biomater. 2019, 10(1), 14; https://doi.org/10.3390/jfb10010014 - 28 Feb 2019
Cited by 29 | Viewed by 7367
Abstract
Aim: The purpose of the present study is to assess the color stability of two calcium silicate-based cements (CSCs) used in regenerative endodontic procedures (REPs). Methods: A total of 40 acrylic single-rooted transparent teeth, with immature apex, were used. Root canals were filled [...] Read more.
Aim: The purpose of the present study is to assess the color stability of two calcium silicate-based cements (CSCs) used in regenerative endodontic procedures (REPs). Methods: A total of 40 acrylic single-rooted transparent teeth, with immature apex, were used. Root canals were filled up to 3 mm below the level of the cementoenamel junction, with either saline solution (Mineral Trioxide Aggregate (MTA)/saline and Biodentine/saline) or blood (MTA/blood and Biodentine/blood). Subsequently, ProRoot MTA® or BiodentineTM was placed in the root canal to create a cervical barrier. Color measurement was carried out at four different evaluation periods (3 h, 72 h, 7 days, and 6 months). Shade analysis within the L* a* b* color space was performed and color variation (∆E) calculated. The significance level for statistical analysis was set at p < 0.05. Results: The four groups showed a significant decrease in L* values over time. The ΔE value increased over time for all groups but was not statistically significant for the Biodentine/blood group. Two-way ANOVA showed no interaction between the CSC and treatment (contact with saline solution or blood). CSC used was the factor responsible for ΔE over time, inducing statistically significant color variations from T3H to T7D (p = 0.04) and T3H to T6M (p < 0.01). After 6 months, MTA/saline had 5.08 (p = 0.001) higher ΔE than Biodentine/Saline and the MTA/blood had 3.65 (p = 0.009) higher than Biodentine/blood. Conclusions: After 6 months, regardless of blood exposure, Biodentine exhibits superior color stability compared to MTA. Biodentine might be a suitable alternative to MTA as a cervical barrier material in REPs. Full article
(This article belongs to the Special Issue Endodontic Biomaterials)
Show Figures

Figure 1

14 pages, 6429 KiB  
Article
Effects of a New Bioceramic Material on Human Apical Papilla Cells
by Diana B. Sequeira, Catarina M. Seabra, Paulo J. Palma, Ana Luísa Cardoso, João Peça and João Miguel Santos
J. Funct. Biomater. 2018, 9(4), 74; https://doi.org/10.3390/jfb9040074 - 16 Dec 2018
Cited by 41 | Viewed by 10043
Abstract
Background: The development of materials with bioregenerative properties is critically important for vital pulp therapies and regenerative endodontic procedures. The aim of this study was to evaluate the cytocompatibility and cytotoxicity of a new endodontic biomaterial, PulpGuard, in comparison with two other biomaterials [...] Read more.
Background: The development of materials with bioregenerative properties is critically important for vital pulp therapies and regenerative endodontic procedures. The aim of this study was to evaluate the cytocompatibility and cytotoxicity of a new endodontic biomaterial, PulpGuard, in comparison with two other biomaterials widely used in endodontic procedures, ProRoot Mineral Trioxide Aggregate (MTA) and Biodentine. Methods: Apical papilla cells (APCs) were isolated from third molars with incomplete rhizogenesis from patients with orthodontic indication for dental extraction. Cultured APCs were incubated for 24, 48, or 72 h with different dilutions of eluates prepared from the three materials. Cellular viability, mobility, and proliferation were assessed in vitro using the Alamar Blue assay and a wound-healing test. The cells were also cultured in direct contact with the surface of each material. These were then analyzed via Scanning Electron Microscopy (SEM), and the surface chemical composition was determined by Energy-Dispersive Spectroscopy (EDS). Results: Cells incubated in the presence of eluates extracted from ProRoot MTA and PulpGuard presented rates of viability comparable to those of control cells; in contrast, undiluted Biodentine eluates induced a significant reduction of cellular viability. The wound-healing assay revealed that eluates from ProRoot MTA and PulpGuard allowed for unhindered cellular migration and proliferation. Cellular adhesion was observed on the surface of all materials tested. Consistent with their disclosed composition, EDS analysis found high relative abundance of calcium in Biodentine and ProRoot MTA and high abundance of silicon in PulpGuard. Significant amounts of zinc and calcium were also present in PulpGuard discs. Concerning solubility, Biodentine and ProRoot MTA presented mild weight loss after eluate extraction, while PulpGuard discs showed significant water uptake. Conclusions: PulpGuard displayed a good in vitro cytocompatibility profile and did not significantly affect the proliferation and migration rates of APCs. Cells cultured in the presence of PulpGuard eluates displayed a similar profile to those cultured with eluates from the widely used endodontic cement ProRoot MTA. Full article
(This article belongs to the Special Issue Endodontic Biomaterials)
Show Figures

Figure 1

Other

Jump to: Research

18 pages, 2501 KiB  
Systematic Review
Clinical and Radiographic Outcome of Non-Surgical Endodontic Treatment Using Calcium Silicate-Based Versus Resin-Based Sealers—A Systematic Review and Meta-Analysis of Clinical Studies
by Viresh Chopra, Graham Davis and Aylin Baysan
J. Funct. Biomater. 2022, 13(2), 38; https://doi.org/10.3390/jfb13020038 - 07 Apr 2022
Cited by 5 | Viewed by 3823
Abstract
The aim of this paper is to systematically analyse the effect of calcium silicate-based sealers in comparison to resin-based sealers on clinical and radiographic outcomes of non-surgical endodontic treatment in permanent teeth. Methods: The study was conducted according to the guidelines of the [...] Read more.
The aim of this paper is to systematically analyse the effect of calcium silicate-based sealers in comparison to resin-based sealers on clinical and radiographic outcomes of non-surgical endodontic treatment in permanent teeth. Methods: The study was conducted according to the guidelines of the Cochrane Handbook for Systematic Reviews of Interventions and Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement. The literature search was performed using PubMed/MEDLINE, Cochrane Central Register of Controlled Trials, Web of Science, DOAJ and OpenGrey with no language restrictions. Two reviewers critically assessed the studies for eligibility. Grading of Recommendations, Assessment, Development and Evaluations (GRADE) was carried out to assess the evidence. Meta-analysis of the pooled data with subgroups was carried out using the RevMan software (p < 0.05). Results: Results from the included studies showed that there were no significant differences between the groups in the 24 h post-obturation pain levels (mean difference (MD), −0.19, 95% CI = −0.43–0.06, p = 0.14, I2 = 0%), but at 48 h (MD, −0.35, 95% CI = −0.64–0.05, p = 0.02, I2 = 0%), a significant difference was observed in favour of calcium silicate sealers. Furthermore, there were no significant differences between the two sealers due to risk of onset or intensity of postoperative pain, need for analgesic and extrusion of the sealer. The heterogeneity assessed using Q test between the included studies was 97% (I2). Conclusions: Within the limitations of this review, the paper shows that calcium silicate-based sealers exhibited optimal performance with similar results to resin-based sealers in terms of average level of post-obturation pain, risk of onset and pain intensity at 24 and 48 h. The observations from the included studies are informative in the clinical evaluation of calcium silicate-based sealers and provide evidence for the conduction of well-designed, controlled randomised clinical trials for a period of at least four years in the future. Full article
(This article belongs to the Special Issue Endodontic Biomaterials)
Show Figures

Graphical abstract

Back to TopTop