Functional Materials for Dental Restorations

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983). This special issue belongs to the section "Dental Biomaterials".

Deadline for manuscript submissions: closed (20 December 2023) | Viewed by 21858

Special Issue Editors

Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo‎, ‎Japan
Interests: carioligy; adhesive dentistry; bioglass; dental materials; fluoride; chlorhexidine; antibacterial effects; remineralization; derntin degradation; polyphenol
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Dental materials have undergone profound advances in recent years. In terms of prevention, restoration, and endodontics, functional materials play an important role in treatment planning and outcome.

Functional materials have recently been used for various applications in the biomedical field and are expected to be used in dentistry as well.

Since enamel and dentin do not have regenerative capabilities, decaying tissue must be restored with direct and indirect restorative materials such as resin composites, glass ionomers, ceramic-based materials, alloys, and ceramics. Some of these materials may have functional properties. In particular, functional materials can be expected to ensure the survivability and longevity of restorations due to their adaptation and interaction with dental tissues.

Their capabilities include the inhibition of biofilm formation, the promotion of remineralization, the inhibition of the enzymatic degradation of collagen, adaptability and biocompatibility without the side effects of toxic therapeutic agents, and the reinforcement of prosthetic materials.

This Special Issue of the Journal of Functional Biomaterials highlights the latest research on the development of novel functional materials and advanced applications of restorative dental materials.

Dr. Noriko Hiraishi
Dr. James Kit-Hon Tsoi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • adhesive materials
  • dental cement
  • prosthetic materials
  • bioactive materials
  • fluoride
  • remineralization
  • antimicrobial activity
  • biocompatibility

Related Special Issue

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 3778 KiB  
Article
The Effect of Femtosecond Laser Surface Patterns on the Effectiveness of Resin Composite to Zirconia Bonding
by Majed M. Alsarani, Omar Alsadon, Omar Alageel, Najm Alfrisany, Zeyad Almutairi, Mahmoud A. Al-Gawati and Mayyadah Almozainy
J. Funct. Biomater. 2023, 14(10), 508; https://doi.org/10.3390/jfb14100508 - 11 Oct 2023
Viewed by 1216
Abstract
This laboratory study aimed to evaluate the effect of different surface patterns using femtosecond laser treatment on the enclosed mold shear bond strength (EM-SBS) of resin composite to zirconia (ZrO2) surfaces and to contrast it with the widely used tribochemical silica [...] Read more.
This laboratory study aimed to evaluate the effect of different surface patterns using femtosecond laser treatment on the enclosed mold shear bond strength (EM-SBS) of resin composite to zirconia (ZrO2) surfaces and to contrast it with the widely used tribochemical silica coating (TBC) surface conditioning method. A set of fifteen rectangular ZrO2 blocks were randomly divided into five groups according to surface pretreatment: Control G0—no treatment; G1—TBC with silane application; G2—femtosecond laser irradiation with horizontal lines 30 µm apart; G3—femtosecond laser irradiation with horizontal lines 15 µm apart; and G4—femtosecond laser irradiation with cross lines 30 µm apart. The pretreated surfaces were characterized by a surface profilometer, tensiometer and scanning electron microscope. The EM-SBS of resin composite stubs to ZrO2 was measured followed by fractographic analysis. The surface roughness and water contact angle were observed to be statistically higher among the femtosecond laser groups compared to the TBC and control groups. The G4 group exhibited the highest EM-SBS among all the groups, irrespective of the ageing conditions used. At the end of 5000 thermocycles, G4 exhibited EM-SBS of 14.05 ± 4.21 MPa compared to 13.80 ± 3.01 MPa in G1 and 5.47 ± 0.97 MPa in G0. The two-way ANOVA revealed a significant effect of both study groups and ageing conditions on the EM-SBS (p < 0.001). Utilization of femtosecond laser technology holds promise as a potential and alternative mechanical retention approach for enhancing the bonding strength of the resin composite to ZrO2. Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations)
Show Figures

Figure 1

14 pages, 2249 KiB  
Article
Effect of an In-Office Bleaching Agent with Surface Pre-Reacted Glass-Ionomer Filler on the Enamel Surface: A In-Vitro Study
by Mika Shimojima, Noriko Hiraishi, Kodai Akabane, Mohannad Nassar, Masayuki Otsuki and Yasushi Shimada
J. Funct. Biomater. 2023, 14(7), 386; https://doi.org/10.3390/jfb14070386 - 21 Jul 2023
Viewed by 1093
Abstract
In-office bleaching with high concentrations of hydrogen peroxide (H2O2) agents causes undesirable alterations in the enamel. Surface pre-reacted glass-ionomer (S-PRG) filler is a functional material known for its acid-neutralizing and demineralization-inhibition properties. This study evaluates the effect of S-PRG [...] Read more.
In-office bleaching with high concentrations of hydrogen peroxide (H2O2) agents causes undesirable alterations in the enamel. Surface pre-reacted glass-ionomer (S-PRG) filler is a functional material known for its acid-neutralizing and demineralization-inhibition properties. This study evaluates the effect of S-PRG filler incorporation in H2O2-based bleaching on the enamel surface. Bovine enamel surfaces were bleached using a bleaching paste formulated with a liquid (35% H2O2) and a powder containing 5% or 10% S-PRG filler. The surface roughness and the Vickers microhardness of the treated enamel surfaces were evaluated. The enamel surfaces were observed under a scanning electron microscope (SEM) and analyzed using energy dispersive X-ray (EDX) technology. The surfaces were challenged by citric acid and observed by SEM. The specimens bleached with the paste containing the S-PRG filler showed lower enamel surface roughness and higher microhardness values than did those bleached with the plain paste (0% S-PRG filler); meanwhile, there were no significant differences between the 5% or 10% S-PRG filler groups. The S-PRG filler groups showed enamel surface morphologies similar to those of the non-bleached enamel, according to SEM observation, and EDX analysis detected the presence of fluoride and strontium ions. The S-PRG filler groups showed a higher resistance to erosion. The S-PRG filler mitigated the detrimental effects of bleaching agents on the enamel surface and provided resistance to erosion. Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations)
Show Figures

Figure 1

21 pages, 5160 KiB  
Article
Effect of Biosilicate® Addition on Physical–Mechanical and Biological Properties of Dental Glass Ionomer Cements
by Gabriela de Alencar Pinto Magalhães, Joshua J. Thomson, Cristine Smoczer, Laura Ann Young, Adaias O. Matos, Rafael Rocha Pacheco, Maria Trevelin Souza, Edgar Dutra Zanotto and Regina Maria Puppin Rontani
J. Funct. Biomater. 2023, 14(6), 302; https://doi.org/10.3390/jfb14060302 - 30 May 2023
Cited by 1 | Viewed by 1775
Abstract
This study investigated the influence of incorporating Biosilicate® on the physico-mechanical and biological properties of glass ionomer cement (GIC). This bioactive glass ceramic (23.75% Na2O, 23.75% CaO, 48.5% SiO2, and 4% P2O5) was incorporated [...] Read more.
This study investigated the influence of incorporating Biosilicate® on the physico-mechanical and biological properties of glass ionomer cement (GIC). This bioactive glass ceramic (23.75% Na2O, 23.75% CaO, 48.5% SiO2, and 4% P2O5) was incorporated by weight (5%, 10%, or 15%) into commercially available GICs (Maxxion R and Fuji IX GP). Surface characterization was made by SEM (n = 3), EDS (n = 3), and FTIR (n = 1). The setting and working (S/W time) times (n = 3) and compressive strength (CS) were analyzed (n = 10) according to ISO 9917-1:2007. The ion release (n = 6) was determined and quantified by ICP OES and by UV-Vis for Ca, Na, Al, Si, P, and F. To verify cell cytotoxicity, stem cells from the apical papilla (SCAP) were exposed to eluates (n = 3, at a ratio of 1.8 cm2/mL) and analyzed 24 h post-exposure. Antimicrobial activity against Streptococcus mutans (ATCC 25175, NCTC 10449) was analyzed by direct contact for 2 h (n = 5). The data were submitted for normality and lognormality testing. One-way ANOVA and Tukey’s test were applied for the working and setting time, compressive strength, and ion release data. Data from cytotoxicity and antimicrobial activity were submitted for Kruskal–Wallis’ testing and Dunn’s post hoc test (α = 0.05). Among all experimental groups, only those with 5% (wt) of Biosilicate® showed better surface quality. Only M5% showed a comparable W/S time to the original material (p = 0.7254 and p = 0.5912). CS was maintained for all Maxxion R groups (p > 0.0001) and declined for Fuji IX experimental groups (p < 0.0001). The Na, Si, P, and F ions released were significantly increased for all Maxxion R and Fuji IX groups (p < 0.0001). Cytotoxicity was increased only for Maxxion R with 5% and 10% of Biosilicate®. A higher inhibition of S. mutans growth was observed for Maxxion R with 5% of Biosilicate® (less than 100 CFU/mL), followed by Maxxion R with 10% of Biosilicate® (p = 0.0053) and Maxxion R without the glass ceramic (p = 0.0093). Maxxion R and Fuji IX presented different behaviors regarding Biosilicate® incorporation. The impacts on physico-mechanical and biological properties were different depending on the GIC, but therapeutic ion release was increased for both materials. Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations)
Show Figures

Figure 1

13 pages, 2919 KiB  
Article
Guided Bone Regeneration in a Periodontally Compromised Individual with Autogenous Tooth Bone Graft: A Radiomics Analysis
by Jingyu Li, Feifan Jin, Renfei Wang, Xiaodan Shang, Peiran Yang, Yuchi Zhu, James K. H. Tsoi, Ki Chan and Shuhua Wang
J. Funct. Biomater. 2023, 14(4), 220; https://doi.org/10.3390/jfb14040220 - 14 Apr 2023
Cited by 2 | Viewed by 2041
Abstract
Background: Autogenous tooth bone graft material (AutoBT) has been advocated as a bone substitute when conducting alveolar ridge preservation. This study is aimed at using a radiomics approach in order to evaluate and testify whether AutoBT can stimulate bone growth during socket preservation [...] Read more.
Background: Autogenous tooth bone graft material (AutoBT) has been advocated as a bone substitute when conducting alveolar ridge preservation. This study is aimed at using a radiomics approach in order to evaluate and testify whether AutoBT can stimulate bone growth during socket preservation in severe periodontal cases. Materials and Methods: For this study, 25 cases with severe periodontal diseases were selected. The patients’ AutoBTs were inserted into the extraction sockets and covered with Bio-Gide® collagen membranes. 3D CBCT scans and 2D X-rays were taken of the patients before surgery and after 6 months post-surgery. For the retrospective radiomics analysis, the maxillary and mandibular images were compared in different groups. Maxillary bone height was analyzed at the buccal, middle, and palatal crest sites, while the mandibular bone height was compared at the buccal, center, and lingual crest sites. Results: In the maxilla, the alveolar height was increased by −2.15 ± 2.90 mm at the buccal crest; −2.45 ± 2.36 mm at the center of the socket, and −1.62 ± 3.19 mm at the palatal crest, while the height of the buccal crest was increased by 0.19 ± 3.52 mm, and the height at the center of the socket was increased by −0.70 ± 2.71 mm in the mandible. The three-dimensional radiomics analysis demonstrated significant bone growth in the local alveolar height and high density. Conclusion: Based on clinical radiomics analysis, AutoBT could be used as an alternative bone material in socket preservation after tooth extraction in patients with severe periodontitis. Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations)
Show Figures

Figure 1

12 pages, 2849 KiB  
Article
Topographical and Optical Characteristics of Thermoplastic Dental Appliances Materials Related to Water Sorption
by Liliana Porojan, Flavia Roxana Toma, Mihaela Ionela Bîrdeanu, Roxana Diana Vasiliu and Anamaria Matichescu
J. Funct. Biomater. 2023, 14(4), 190; https://doi.org/10.3390/jfb14040190 - 28 Mar 2023
Cited by 1 | Viewed by 1024
Abstract
Clear thermoplastic materials have increased in popularity in the dental field due to their various applications, combination of excellent aesthetics, and good biomechanical behavior, but they may be influenced by different environmental conditions. The purpose of the present study was to assess the [...] Read more.
Clear thermoplastic materials have increased in popularity in the dental field due to their various applications, combination of excellent aesthetics, and good biomechanical behavior, but they may be influenced by different environmental conditions. The purpose of the present study was to assess the topographical and optical characteristics of thermoplastic dental appliances materials relative to water sorption. PET-G polyester thermoplastic materials were evaluated in this study. Related to water uptake and desiccation stages, surface roughness was analyzed, and three-dimensional AFM profiles were generated for nano-roughness measurements. Optical CIE L*a*b* coordinates were recorded and parameters like translucency (TP), contrast ratio for the opacity (CR), and opalescence (OP) were derived. Levels of color changes were achieved. Statistical analyses were performed. Water uptake significantly increases the specific weight of the materials, and after desiccation, the mass decreases. Roughness increased after water immersion as well. Regression coefficients indicated a positive correlation between TP and a* and between OP and b*. Studied PET-G materials have a different behavior to water exposure, but for all their specific weight, they increased significantly within the first 12 h. It is accompanied by an increase in the roughness values, even if they continue to be kept below the critical mean surface roughness. On nano-level, 3D images show an increase in inhomogeneity in the network structure of particles. Slight color changes were registered. Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations)
Show Figures

Figure 1

12 pages, 9324 KiB  
Article
Crystallographic and Physicochemical Analysis of Bovine and Human Teeth Using X-ray Diffraction and Solid-State Nuclear Magnetic Resonance
by Noriko Hiraishi, Tadamu Gondo, Yasushi Shimada, Robert Hill and Fumiaki Hayashi
J. Funct. Biomater. 2022, 13(4), 254; https://doi.org/10.3390/jfb13040254 - 19 Nov 2022
Cited by 1 | Viewed by 1371
Abstract
Dental research often uses bovine teeth as a substitute for human teeth. The aim of this study was to evaluate differences in the crystalline nanostructures of enamel and dentin between bovine and human teeth, using X-ray diffraction (XRD) and solid-state nuclear magnetic resonance [...] Read more.
Dental research often uses bovine teeth as a substitute for human teeth. The aim of this study was to evaluate differences in the crystalline nanostructures of enamel and dentin between bovine and human teeth, using X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (NMR). The crystallite size (crystallinity) and microstrains were analyzed using XRD with the Rietveld refinement technique and the Halder–Wagner method. The 31P and 1H NMR chemical environments were analyzed by two-dimensional (2D) 1H-31P heteronuclear-correlation (HETCOR) magic-angle spinning (MAS) NMR spectroscopy. Enamel had a greater crystallite size and fewer microstrains than dentin for both bovine and human teeth. When compared between the species, the bovine apatite had a smaller crystallite size with more microstrains than the human apatite for both dentin and enamel. The 2D HETCOR spectra demonstrated that a water-rich layer and inorganic HPO42− ions were abundant in dentin; meanwhile, the hydroxyl group in the lattice site was more dominant in enamel. A greater intensity of the hydroxyl group was detected in human than in bovine for both dentin and enamel. For 31P projections, bovine dentin and bovine enamel have wider linewidths than human dentin and human enamel, respectively. There are differences in the crystallite profile between human and bovine. The results of dental research should be interpreted with caution when bovine teeth are substituted for human teeth. Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations)
Show Figures

Figure 1

12 pages, 4166 KiB  
Article
Raman Analyses of Laser Irradiation-Induced Microstructural Variations in Synthetic Hydroxyapatite and Human Teeth
by Hayata Imamura, Wenliang Zhu, Tetsuya Adachi, Noriko Hiraishi, Elia Marin, Nao Miyamoto, Toshiro Yamamoto, Narisato Kanamura and Giuseppe Pezzotti
J. Funct. Biomater. 2022, 13(4), 200; https://doi.org/10.3390/jfb13040200 - 25 Oct 2022
Cited by 2 | Viewed by 1239
Abstract
The microstructural and molecular-scale variations induced by laser irradiation treatment on human teeth enamel in comparison with synthetic hydroxyapatite (HAp) were examined through Raman microprobe spectroscopy as a function of irradiation power. The results demonstrated that laser irradiation could modify stoichiometry, microstructure, and [...] Read more.
The microstructural and molecular-scale variations induced by laser irradiation treatment on human teeth enamel in comparison with synthetic hydroxyapatite (HAp) were examined through Raman microprobe spectroscopy as a function of irradiation power. The results demonstrated that laser irradiation could modify stoichiometry, microstructure, and the population of crystallographic defects, as well as the hardness of the materials. These modifications showed strong dependences on both laser power and initial nonstoichiometric structure (defective content of HPO4), because of the occurrence of distinct reactions and structural reconstruction. The reported observations can redirect future trends in tooth whitening by laser treatment and the production of HAp coatings because of the important role of stoichiometric defects. Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations)
Show Figures

Figure 1

11 pages, 5324 KiB  
Article
Effect of Surface Pre-Reacted Glass Ionomer Containing Dental Sealant on the Inhibition of Enamel Demineralization
by Yuko Ogawa, Mahmoud Sayed, Noriko Hiraishi, Nadin Al-Haj Husain, Junji Tagami, Mutlu Özcan and Yasushi Shimada
J. Funct. Biomater. 2022, 13(4), 189; https://doi.org/10.3390/jfb13040189 - 14 Oct 2022
Cited by 5 | Viewed by 2038
Abstract
The effect of a surface pre-reacted glass ionomer (S-PRG)-containing sealant on the demineralization inhibition and remineralization of intact enamel adjacent to the sealant material was investigated. BeautiSealant (BTS, S-PRG sealant, Shofu), Teeth Mate F-12.0 (TMF, fluoride-releasing sealant, Kuraray Noritake Dental), and an experimental [...] Read more.
The effect of a surface pre-reacted glass ionomer (S-PRG)-containing sealant on the demineralization inhibition and remineralization of intact enamel adjacent to the sealant material was investigated. BeautiSealant (BTS, S-PRG sealant, Shofu), Teeth Mate F-12.0 (TMF, fluoride-releasing sealant, Kuraray Noritake Dental), and an experimental silica-filler sealant were investigated. After pH cycling for 10 days, the enamel surface adjacent to the sealant material was observed using confocal laser microscopy and scanning electron microscopy. The polymerized sealant disks were immersed in a demineralized solution (pH: 4.3) to measure pH change. The enamel specimens with polymerized sealant disks were additionally immersed in demineralized solution, followed by energy-dispersive X-ray spectroscopy. The demineralized area of BTS was significantly smaller than that of TMF and SS (p < 0.05). The surfaces adjacent to the sealant of TMF and SS were demineralized, while the surface of BTS was comparatively intact. An increase in pH values were observed in the BTS and TMF groups. Enamel surfaces presented an inhibition of demineralization for BTS and TMF, but not for SS. Fluoride uptake from the polymerized sealant was greater for BTS than for TMF. The S-PRG-containing sealant showed a buffering ability, demineralization inhibition, promotion of remineralization, and it can be advised for clinical applications. Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations)
Show Figures

Graphical abstract

Review

Jump to: Research

19 pages, 1940 KiB  
Review
Biomimetic Coatings in Implant Dentistry: A Quick Update
by Mohammed Aso Abdulghafor, Mohammed Khalid Mahmood, Herve Tassery, Delphine Tardivo, Arthur Falguiere and Romain Lan
J. Funct. Biomater. 2024, 15(1), 15; https://doi.org/10.3390/jfb15010015 - 30 Dec 2023
Cited by 2 | Viewed by 2128
Abstract
Biomimetic dental implants are regarded as one of the recent clinical advancements in implant surface modification. Coatings with varying thicknesses and roughness may affect the dental implant surface’s chemical inertness, cell adhesion, and antibacterial characteristics. Different surface coatings and mechanical surface changes have [...] Read more.
Biomimetic dental implants are regarded as one of the recent clinical advancements in implant surface modification. Coatings with varying thicknesses and roughness may affect the dental implant surface’s chemical inertness, cell adhesion, and antibacterial characteristics. Different surface coatings and mechanical surface changes have been studied to improve osseointegration and decrease peri-implantitis. The surface medication increases surface energy, leading to enhanced cell proliferation and growth factors, and, consequently, to a rise in the osseointegration process. This review provides a comprehensive update on the numerous biomimetic coatings used to improve the surface characteristics of dental implants and their applications in two main categories: coating to improve osseointegration, including the hydroxyapatite layer and nanocomposites, growth factors (BMPs, PDGF, FGF), and extracellular matrix (collagen, elastin, fibronectin, chondroitin sulfate, hyaluronan, and other proteoglycans), and coatings for anti-bacterial performance, covering drug-coated dental implants (antibiotic, statin, and bisphosphonate), antimicrobial peptide coating (GL13K and human beta defensins), polysaccharide antibacterial coatings (natural chitosan and its coupling agents) and metal elements (silver, zinc, and copper). Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations)
Show Figures

Figure 1

18 pages, 8973 KiB  
Review
Multiple-Ion Releasing Bioactive Surface Pre-Reacted Glass-Ionomer (S-PRG) Filler: Innovative Technology for Dental Treatment and Care
by Satoshi Imazato, Toshiyuki Nakatsuka, Haruaki Kitagawa, Jun-Ichi Sasaki, Satoshi Yamaguchi, Shuichi Ito, Hiroki Takeuchi, Ryota Nomura and Kazuhiko Nakano
J. Funct. Biomater. 2023, 14(4), 236; https://doi.org/10.3390/jfb14040236 - 21 Apr 2023
Cited by 4 | Viewed by 3122
Abstract
Surface Pre-Reacted Glass-ionomer (S-PRG) filler, which releases strontium (Sr2+), borate (BO33−), fluoride (F), sodium (Na+), silicate (SiO32−), and aluminum (Al3+) ions at high concentrations, is a unique glass filler [...] Read more.
Surface Pre-Reacted Glass-ionomer (S-PRG) filler, which releases strontium (Sr2+), borate (BO33−), fluoride (F), sodium (Na+), silicate (SiO32−), and aluminum (Al3+) ions at high concentrations, is a unique glass filler that are utilized in dentistry. Because of its multiple-ion releasing characteristics, S-PRG filler exhibits several bioactivities such as tooth strengthening, acid neutralization, promotion of mineralization, inhibition of bacteria and fungi, inhibition of matrix metalloproteinases, and enhancement of cell activity. Therefore, S-PRG filler per se and S-PRG filler-containing materials have the potential to be beneficial for various dental treatments and care. Those include restorative treatment, caries prevention/management, vital pulp therapy, endodontic treatment, prevention/treatment of periodontal disease, prevention of denture stomatitis, and perforation repair/root end filling. This review summarizes bioactive functions exhibited by S-PRG filler and its possible contribution to oral health. Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations)
Show Figures

Figure 1

24 pages, 1639 KiB  
Review
A Narrative Review of Bioactive Glass-Loaded Dental Resin Composites
by Jiaojiao Yun, Michael Francis Burrow, Jukka Pekka Matinlinna, Yan Wang and James Kit Hon Tsoi
J. Funct. Biomater. 2022, 13(4), 208; https://doi.org/10.3390/jfb13040208 - 28 Oct 2022
Cited by 8 | Viewed by 2668
Abstract
This review aims to provide a comprehensive analysis of the characterizations of bioactive glass (BAG)-loaded dental resin-based composite materials. Online databases (Web of Science, PubMed, and Science Direct) were used to collect data published from January 2011 to January 2022. Only BAG-containing resin [...] Read more.
This review aims to provide a comprehensive analysis of the characterizations of bioactive glass (BAG)-loaded dental resin-based composite materials. Online databases (Web of Science, PubMed, and Science Direct) were used to collect data published from January 2011 to January 2022. Only BAG-containing resin adhesive and resin restorative composites are discussed in this narrative review. BAG-loaded resin composites exhibit excellent mineralization ability reflecting enhanced ion release, pH elevation, and apatite formation, especially regarding high BAG loading. This aids the anti-demineralization and remineralization of teeth. Furthermore, BAG-loaded resin composites demonstrated in vitro biocompatibility and antibacterial performance. It has been suggested that BAG fillers with small particle sizes and no more than 20 wt% in terms of loading amount should be used to guarantee the appropriate mechanical properties of resin composites. However, most of these studies focused on one or some aspects using different resin systems, BAG types, and BAG amounts. As such, this makes the comparison difficult, and it is essential to find an optimal balance between different properties. BAG-loaded resin composites can be regarded as bioactive materials, which present major benefits in dentistry, especially their capability in the bacterial inhibition, cell biocompatibility, anti-demineralization, and remineralization of teeth. Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations)
Show Figures

Figure 1

Back to TopTop