Special Issue "Sustainable Biocomposites, Volume II"

A special issue of Journal of Composites Science (ISSN 2504-477X). This special issue belongs to the section "Biocomposites".

Deadline for manuscript submissions: 30 April 2024 | Viewed by 2172

Special Issue Editors

Laboratoire de Biomatériaux, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC J9X 5E4, Canada
Interests: biomaterials; biocomposites; bioenergy; materials characterization; wood processing and valorization
Special Issues, Collections and Topics in MDPI journals
Institut Polytechnique UniLaSalle, 3, Mont-Saint-Aignan, France
Interests: polymers; biopolymers; bio based polymer; composites; biocomposites and nanocomposites; processing and performances; polymer recycling and polymers application; material characterization; biomass; natural fibers and materials engineering
Special Issues, Collections and Topics in MDPI journals
1. IMT Nord Europe, Institut Mines-Télécom, Centre for Materials and Processes, F-59000 Lille, France
2. Univ. Lille, Institut Mines-Télécom, ULR 4515 – LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
Interests: materials mechanics; eco-materials; biomass and waste valorisation; biocomposites; hydrothermal treatment
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The global economy is shifting towards a bioeconomy, and there is continuous pressure to substitute petroleum-based materials with sustainable and renewable biomaterials, including biocomposites. Biocomposites are of increasing interest as a renewable, environmentally friendly alternative to non-renewable materials. They contribute to reaching environmental targets (reduction of greenhouse gas emissions (GHG) and the carbon footprint and attenuation of the impact of climate change). Thus, they contribute to building a foundation of sustainability and bioeconomy worldwide. The special issue aims to address the challenges and opportunities of the valorization of biomass for the production of biomass for biocomposites from the extraction of natural polymers, biopolymers, and biocomposites from macro to nanoscales.

The potential topics of interest include but are not limited to the following:

  • Processing of biocomposites and nano-biocomposites;
  • Mixtures rheology and processing;
  • Advanced characterization of biocomposites;
  • Matrix-fiber adhesion and interactions;
  • Properties, structure, and rupture mechanisms;
  • Properties modeling and optimization;
  • End-use and applications;
  • Sustainability, environmental impacts, and life cycle analysis of biocomposite;
  • Contribution of biocomposites in climate change and the reduction of GHG emission.

Prof. Dr. Ahmed Koubaa
Dr. Mohamed Ragoubi
Dr. Frédéric Becquart
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Composites Science is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biocomposites
  • processing
  • rheology
  • properties
  • end-use
  • sustainability
  • environmental impact

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 4265 KiB  
Article
How Do 3D Printing Parameters Affect the Dielectric and Mechanical Performance of Polylactic Acid–Cellulose Acetate Polymer Blends?
J. Compos. Sci. 2023, 7(12), 492; https://doi.org/10.3390/jcs7120492 - 28 Nov 2023
Viewed by 316
Abstract
Three-dimensional printing is a prototyping technique that is widely used in various fields, such as the electrical sector, to produce specific dielectric objects. Our study explores the mechanical and dielectric behavior of polylactic acid (PLA) and plasticized cellulose acetate (CA) blends manufactured via [...] Read more.
Three-dimensional printing is a prototyping technique that is widely used in various fields, such as the electrical sector, to produce specific dielectric objects. Our study explores the mechanical and dielectric behavior of polylactic acid (PLA) and plasticized cellulose acetate (CA) blends manufactured via Fused Filament Fabrication (FFF). A preliminary optimization of 3D printing parameters showed that a print speed of 30 mm·s−1 and a print temperature of 215 °C provided the best compromise between print quality and processing time. The dielectric properties were very sensitive to the three main parameters (CA content WCA, infill ratio, and layer thickness). A Taguchi L9 3^3 experimental design revealed that the infill ratio and WCA were the main parameters influencing dielectric properties. Increasing the infill ratio and WCA increased the dielectric constant ε′ and electrical conductivity σAC. It would, therefore, be possible to promote the integration of CA in the dielectric domain through 3D printing while counterbalancing its greater polarity by reducing the infill ratio. The dielectric findings are promising for an electrical insulation application. Furthermore, the mechanical findings obtained through dynamic mechanical analysis are discussed. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, Volume II)
Show Figures

Figure 1

14 pages, 10673 KiB  
Article
Mechanical Properties of α-Chitin and Chitosan Biocomposite: A Molecular Dynamic Study
J. Compos. Sci. 2023, 7(11), 464; https://doi.org/10.3390/jcs7110464 - 06 Nov 2023
Viewed by 572
Abstract
This study investigates the mechanical properties of α-chitin and chitosan biocomposites using molecular dynamics (MD) and stress–strain analyses under uniaxial tensile loading in an aqueous environment. Our models, validated against experimental data, show that α-chitin has a higher directional elastic modulus of 51.76 [...] Read more.
This study investigates the mechanical properties of α-chitin and chitosan biocomposites using molecular dynamics (MD) and stress–strain analyses under uniaxial tensile loading in an aqueous environment. Our models, validated against experimental data, show that α-chitin has a higher directional elastic modulus of 51.76 GPa in the x and 39.76 GPa in the y directions compared to its chitosan biocomposite, with 31.66 GPa and 26.00 GPa in the same directions, demonstrating distinct mechanical behaviors between α-chitin and the biocomposite. The greater mechanical stiffness of α-chitin can be attributed to its highly crystalline molecular structure, offering potential advantages for applications requiring load-bearing capabilities. These findings offer valuable insights for optimizing these materials for specialized applications. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, Volume II)
Show Figures

Figure 1

Review

Jump to: Research

14 pages, 1589 KiB  
Review
Bio-Oil-Based Epoxy Resins from Thermochemical Processing of Sustainable Resources: A Short Review
J. Compos. Sci. 2023, 7(9), 374; https://doi.org/10.3390/jcs7090374 - 06 Sep 2023
Cited by 1 | Viewed by 1023
Abstract
Epoxy is the most prevalent thermosetting resin in the field of polymer composite materials. There has been a growing interest in the development of bio-based epoxy resins as a sustainable alternative to conventional petrochemical epoxy resins. Advances in this field in recent years [...] Read more.
Epoxy is the most prevalent thermosetting resin in the field of polymer composite materials. There has been a growing interest in the development of bio-based epoxy resins as a sustainable alternative to conventional petrochemical epoxy resins. Advances in this field in recent years have included the use of various renewable resources, such as vegetable oils, lignin, and sugars, as direct precursors to produce bio-based epoxy resins. In the meantime, bio-oils have been produced via the decomposition of biomass through thermochemical conversion and mainly being used as renewable liquid fuels. It is noteworthy that bio-oils can be used as a sustainable resource to produce epoxy resins. This review addresses research progress in producing bio-oil-based epoxy resins from thermochemical processing techniques including organic solvent liquefaction, fast pyrolysis, and hydrothermal liquefaction. The production of bio-oil from thermochemical processing and its use to inject sustainability into epoxy resins are discussed. Herein, we intend to provide an overall picture of current attempts in the research area of bio-oil-based epoxy resins, reveal their potential for sustainable epoxy resins, and stimulate research interests in green/renewable materials. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, Volume II)
Show Figures

Graphical abstract

Back to TopTop