Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Review
Fused Deposition Modelling of Fibre Reinforced Polymer Composites: A Parametric Review
J. Compos. Sci. 2021, 5(1), 29; https://doi.org/10.3390/jcs5010029 - 16 Jan 2021
Cited by 52 | Viewed by 6793
Abstract
Fused deposition modelling (FDM) is a widely used additive layer manufacturing process that deposits thermoplastic material layer-by-layer to produce complex geometries within a short time. Increasingly, fibres are being used to reinforce thermoplastic filaments to improve mechanical performance. This paper reviews the available [...] Read more.
Fused deposition modelling (FDM) is a widely used additive layer manufacturing process that deposits thermoplastic material layer-by-layer to produce complex geometries within a short time. Increasingly, fibres are being used to reinforce thermoplastic filaments to improve mechanical performance. This paper reviews the available literature on fibre reinforced FDM to investigate how the mechanical, physical, and thermal properties of 3D-printed fibre reinforced thermoplastic composite materials are affected by printing parameters (e.g., printing speed, temperature, building principle, etc.) and constitutive materials properties, i.e., polymeric matrices, reinforcements, and additional materials. In particular, the reinforcement fibres are categorized in this review considering the different available types (e.g., carbon, glass, aramid, and natural), and obtainable architectures divided accordingly to the fibre length (nano, short, and continuous). The review attempts to distil the optimum processing parameters that could be deduced from across different studies by presenting graphically the relationship between process parameters and properties. This publication benefits the material developer who is investigating the process parameters to optimize the printing parameters of novel materials or looking for a good constituent combination to produce composite FDM filaments, thus helping to reduce material wastage and experimental time. Full article
(This article belongs to the Special Issue Advanced Fiber Reinforced Polymer Composites)
Show Figures

Figure 1

Review
Composite Material Recycling Technology—State-of-the-Art and Sustainable Development for the 2020s
J. Compos. Sci. 2021, 5(1), 28; https://doi.org/10.3390/jcs5010028 - 15 Jan 2021
Cited by 119 | Viewed by 17369
Abstract
Recently, significant events took place that added immensely to the sociotechnical pressure for developing sustainable composite recycling solutions, namely (1) a ban on composite landfilling in Germany in 2009, (2) the first major wave of composite wind turbines reaching their End-of-Life (EoL) and [...] Read more.
Recently, significant events took place that added immensely to the sociotechnical pressure for developing sustainable composite recycling solutions, namely (1) a ban on composite landfilling in Germany in 2009, (2) the first major wave of composite wind turbines reaching their End-of-Life (EoL) and being decommissioned in 2019–2020, (3) the acceleration of aircraft decommissioning due to the COVID-19 pandemic, and (4) the increase of composites in mass production cars, thanks to the development of high volume technologies based on thermoplastic composites. Such sociotechnical pressure will only grow in the upcoming decade of 2020s as other countries are to follow Germany by limiting and banning landfill options, and by the ever-growing number of expired composites EoL waste. The recycling of fiber reinforced composite materials will therefore play an important role in the future, in particular for the wind energy, but also for aerospace, automotive, construction and marine sectors to reduce environmental impacts and to meet the demand. The scope of this manuscript is a clear and condensed yet full state-of-the-art overview of the available recycling technologies for fiber reinforced composites of both low and high Technology Readiness Levels (TRL). TRL is a framework that has been used in many variations across industries to provide a measurement of technology maturity from idea generation (basic principles) to commercialization. In other words, this work should be treated as a technology review providing guidelines for the sustainable development of the industry that will benefit the society. The authors propose that one of the key aspects for the development of sustainable recycling technology is to identify the optimal recycling methods for different types of fiber reinforced composites. Why is that the case can be answered with a simple price comparison of E-glass fibers (~2 $/kg) versus a typical carbon fiber on the market (~20 $/kg)—which of the two is more valuable to recover? However, the answer is more complicated than that—the glass fiber constitutes about 90% of the modern reinforcement market, and it is clear that different technologies are needed. Therefore, this work aims to provide clear guidelines for economically and environmentally sustainable End-of-Life (EoL) solutions and development of the fiber reinforced composite material recycling. Full article
(This article belongs to the Special Issue From Waste to Advance Composite Materials)
Show Figures

Figure 1

Review
Cyanobacterial Extracellular Polymeric Substances for Heavy Metal Removal: A Mini Review
J. Compos. Sci. 2021, 5(1), 1; https://doi.org/10.3390/jcs5010001 - 23 Dec 2020
Cited by 64 | Viewed by 3270
Abstract
Heavy metals from various natural and anthropogenic sources are becoming a chief threat to the aquatic system owing to their toxic and lethal effect. The treatment of such contaminated wastewater is one of the prime concerns in this field. For decades, a huge [...] Read more.
Heavy metals from various natural and anthropogenic sources are becoming a chief threat to the aquatic system owing to their toxic and lethal effect. The treatment of such contaminated wastewater is one of the prime concerns in this field. For decades, a huge array of innovative biosorbents is used for heavy metal removal. Though extensive microbes and their biomolecules have been experimented and have showed great potential but most of them have failed to have the substantial breakthrough for the practical application. The present review emphasis on the potential utilization of the cyanobacteria for the heavy metal removal along with the toxic effect imposed by the pollutant. Furthermore, the effect of significant parameters, plausible mechanistic insights of the heavy metal toxicity imposed onto the cyanobacteria is also discussed in detail. The role of extrapolymeric substances and metallothionein secreted by the microbes are also elaborated. The review was evident that the cyanobacterial species have a huge potential towards the heavy metal removal from the aqueous system ranging from very low to very high concentrations. Full article
(This article belongs to the Special Issue Composite Nanostructures for Energy and Environment Applications)
Show Figures

Figure 1

Review
Recent Advances in Preparation, Mechanisms, and Applications of Thermally Conductive Polymer Composites: A Review
J. Compos. Sci. 2020, 4(4), 180; https://doi.org/10.3390/jcs4040180 - 29 Nov 2020
Cited by 49 | Viewed by 6129
Abstract
At present, the rapid accumulation of heat and the heat dissipation of electronic equipment and related components are important reasons that restrict the miniaturization, high integration, and high power of electronic equipment. It seriously affects the performance and life of electronic devices. Hence, [...] Read more.
At present, the rapid accumulation of heat and the heat dissipation of electronic equipment and related components are important reasons that restrict the miniaturization, high integration, and high power of electronic equipment. It seriously affects the performance and life of electronic devices. Hence, improving the thermal conductivity of polymer composites (TCPCs) is the key to solving this problem. Compared with manufacturing intrinsic thermally conductive polymer composites, the method of filling the polymer matrix with thermally conductive fillers can better-enhance the thermal conductivity (λ) of the composites. This review starts from the thermal conduction mechanism and describes the factors affecting the λ of polymer composites, including filler type, filler morphology and distribution, and the functional surface treatment of fillers. Next, we introduce the preparation methods of filled thermally conductive polymer composites with different filler types. In addition, some commonly used thermal-conductivity theoretical models have been introduced to better-analyze the thermophysical properties of polymer composites. We discuss the simulation of λ and the thermal conduction process of polymer composites based on molecular dynamics and finite element analysis methods. Meanwhile, we briefly introduce the application of polymer composites in thermal management. Finally, we outline the challenges and prospects of TCPCs. Full article
(This article belongs to the Special Issue Polymer Composites: Fabrication and Applications)
Show Figures

Figure 1

Review
Carbon Nanotubes (CNTs): A Potential Nanomaterial for Water Purification
J. Compos. Sci. 2020, 4(3), 135; https://doi.org/10.3390/jcs4030135 - 10 Sep 2020
Cited by 58 | Viewed by 11554
Abstract
Nanomaterials such as carbon nanotubes (CNTs) have been used as an excellent material for catalysis, separation, adsorption and disinfection processes. CNTs have grabbed the attention of the scientific community and they have the potential to adsorb most of the organic compounds from water. [...] Read more.
Nanomaterials such as carbon nanotubes (CNTs) have been used as an excellent material for catalysis, separation, adsorption and disinfection processes. CNTs have grabbed the attention of the scientific community and they have the potential to adsorb most of the organic compounds from water. Unlike, reverse osmosis (RO), nanofiltration (NF) and ultrafiltration (UF) membranes aligned CNT membranes can act as high-flow desalination membranes. CNTs provide a relatively safer electrode solution for biosensors. The article is of the utmost importance for the scientists and technologists working in water purification technologies to eliminate the water crisis in the future. This review summarizes about the application of CNTs in water purification. Full article
(This article belongs to the Special Issue Composite Materials for Water Purification)
Show Figures

Figure 1

Review
Mechanisms of Origin and Classification of Out-of-Plane Fiber Waviness in Composite Materials—A Review
J. Compos. Sci. 2020, 4(3), 130; https://doi.org/10.3390/jcs4030130 - 04 Sep 2020
Cited by 53 | Viewed by 9161
Abstract
Out-of-plane fiber waviness, also referred to as wrinkling, is considered one of the most significant effects that occur in composite materials. It significantly affects mechanical properties, such as stiffness, strength and fatigue and; therefore, dramatically reduces the load-carrying capacity of the material. Fiber [...] Read more.
Out-of-plane fiber waviness, also referred to as wrinkling, is considered one of the most significant effects that occur in composite materials. It significantly affects mechanical properties, such as stiffness, strength and fatigue and; therefore, dramatically reduces the load-carrying capacity of the material. Fiber waviness is inherent to various manufacturing processes of fiber-reinforced composite parts. They cannot be completely avoided and thus have to be tolerated and considered as an integral part of the structure. Because of this influenceable but in many cases unavoidable nature of fiber waviness, it might be more appropriate to consider fiber waviness as effects or features rather than defects. Hence, it is important to understand the impact of different process parameters on the formation of fiber waviness in order to reduce or, in the best case, completely avoid them as early as possible in the product and process development phases. Mostly depending on the chosen geometry of the part and the specific manufacturing process used, different types of fiber waviness result. In this study, various types of waviness are investigated and a classification scheme is developed for categorization purposes. Numerous mechanisms of wrinkling were analyzed, leading to several recommendations to prevent wrinkle formation, not only during composite processing, but also at an earlier design stage, where generally several influence factors are defined. Full article
Show Figures

Figure 1

Review
Mechanical Properties of Short Polymer Fiber-Reinforced Geopolymer Composites
J. Compos. Sci. 2020, 4(3), 128; https://doi.org/10.3390/jcs4030128 - 01 Sep 2020
Cited by 40 | Viewed by 3044
Abstract
The article describes the state of the art in reinforced geopolymers, taking into consideration various types of polymer fiber reinforcements, such as polypropylene, polyethylene, or polylactic acid. The description is focused on the usage of polymer short fibers and the mechanical properties of [...] Read more.
The article describes the state of the art in reinforced geopolymers, taking into consideration various types of polymer fiber reinforcements, such as polypropylene, polyethylene, or polylactic acid. The description is focused on the usage of polymer short fibers and the mechanical properties of the geopolymer composites. However, to show a wider research background, numerous references are discussed concerning the selected studies on reinforcing geopolymer composites with long fibers and fabrics. The research method applied in the article is the critical analysis of literature sources, including a comparison of new material with other materials used in similar applications. The results of the research are discussed in a comparative context and the properties of the composites are juxtaposed with the properties of the standard materials used in the construction industry. Potential applications in the construction industry are presented. Moreover, the contemporary research challenges for geopolymer materials reinforced with fibers are presented. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2020)
Show Figures

Figure 1

Review
Recycling Waste Tires into Ground Tire Rubber (GTR)/Rubber Compounds: A Review
J. Compos. Sci. 2020, 4(3), 103; https://doi.org/10.3390/jcs4030103 - 31 Jul 2020
Cited by 83 | Viewed by 15381
Abstract
Recycling and recovery of waste tires is a serious environmental problem since vulcanized rubbers require several years to degrade naturally and remain for long periods of time in the environment. This is associated to a complex three dimensional (3D) crosslinked structure and the [...] Read more.
Recycling and recovery of waste tires is a serious environmental problem since vulcanized rubbers require several years to degrade naturally and remain for long periods of time in the environment. This is associated to a complex three dimensional (3D) crosslinked structure and the presence of a high number of different additives inside a tire formulation. Most end-of-life tires are discarded as waste in landfills taking space or incinerated for energy recovery, especially for highly degraded rubber wastes. All these options are no longer acceptable for the environment and circular economy. However, a great deal of progress has been made on the sustainability of waste tires via recycling as this material has high potential being a source of valuable raw materials. Extensive researches were performed on using these end-of-life tires as fillers in civil engineering applications (concrete and asphalt), as well as blending with polymeric matrices (thermoplastics, thermosets or virgin rubber). Several grinding technologies, such as ambient, wet or cryogenic processes, are widely used for downsizing waste tires and converting them into ground tire rubber (GTR) with a larger specific surface area. Here, a focus is made on the use of GTR as a partial replacement in virgin rubber compounds. The paper also presents a review of the possible physical and chemical surface treatments to improve the GTR adhesion and interaction with different matrices, including rubber regeneration processes such as thermomechanical, microwave, ultrasonic and thermochemical producing regenerated tire rubber (RTR). This review also includes a detailed discussion on the effect of GTR/RTR particle size, concentration and crosslinking level on the curing, rheological, mechanical, aging, thermal, dynamic mechanical and swelling properties of rubber compounds. Finally, a conclusion on the current situation is provided with openings for future works. Full article
(This article belongs to the Special Issue Progress in Rubber Blends and Composites Technology)
Show Figures

Figure 1

Review
3D-Printed Carbon Fiber Reinforced Polymer Composites: A Systematic Review
J. Compos. Sci. 2020, 4(3), 98; https://doi.org/10.3390/jcs4030098 - 24 Jul 2020
Cited by 95 | Viewed by 9201
Abstract
Fiber reinforced composites offer exceptional directional mechanical properties, and combining their advantages with the capability of 3D printing has resulted in many innovative research fronts. This review aims to summarize the methods and findings of research conducted on 3D-printed carbon fiber reinforced composites. [...] Read more.
Fiber reinforced composites offer exceptional directional mechanical properties, and combining their advantages with the capability of 3D printing has resulted in many innovative research fronts. This review aims to summarize the methods and findings of research conducted on 3D-printed carbon fiber reinforced composites. The review is focused on commercially available printers and filaments, as their results are reproducible and the findings can be applied to functional parts. As the process parameters can be readily changed in preparation of a 3D-printed part, it has been the focus of many studies. In addition to typical composite driving factors such as fiber orientation, fiber volume fraction and stacking sequence, printing parameters such as infill density, infill pattern, nozzle speed, layer thickness, built orientation, nozzle and bed temperatures have shown to influence mechanical properties. Due to the unique advantages of 3D printing, in addition to conventional unidirectional fiber orientation, concentric fiber rings have been used to optimize the mechanical performance of a part. This review surveys the literature in 3D printing of chopped and continuous carbon fiber composites to provide a reference for the state-of-the-art efforts, existing limitations and new research frontiers. Full article
(This article belongs to the Special Issue Carbon-Based Polymer Nanocomposites)
Show Figures

Figure 1

Review
Progress of Bio-Calcium Carbonate Waste Eggshell and Seashell Fillers in Polymer Composites: A Review
J. Compos. Sci. 2020, 4(2), 70; https://doi.org/10.3390/jcs4020070 - 09 Jun 2020
Cited by 85 | Viewed by 11562
Abstract
Disposal of massive amounts of eggshells and seashells from processing industries is a challenge. In recent years, there has been a focus to reuse these waste resources in the production of new thermoplastic and thermoset polymer materials. This paper reviews eggshell and seashell [...] Read more.
Disposal of massive amounts of eggshells and seashells from processing industries is a challenge. In recent years, there has been a focus to reuse these waste resources in the production of new thermoplastic and thermoset polymer materials. This paper reviews eggshell and seashell production by country and provides a perspective on the quantity of bio-calcium carbonate that could be produced annually from these wastes. The achievements obtained from the addition of recycled bio-calcium carbonate fillers (uncoated/unmodified) in polymer composites with a focus on tensile strength, flexural strength and impact toughness are discussed. To improve compatibility between calcium carbonate (mineral and bio-based) fillers and polymers, studies on surface modifiers are reviewed. Knowledge gaps and future research and development thoughts are outlined. Developing novel and innovative composites for this waste material could bring additional revenue to egg and seafood processors and at the same time reduce any environmental impact. Full article
(This article belongs to the Special Issue Progress in Polymer Composites)
Show Figures

Figure 1

Review
The Use of Composite Materials in 3D Printing
J. Compos. Sci. 2020, 4(2), 42; https://doi.org/10.3390/jcs4020042 - 22 Apr 2020
Cited by 73 | Viewed by 9025
Abstract
Nowadays, all production, from the smallest ones to large companies, and research activities are affected by the use of 3D printing technology. The major limitation, in order to cover as many fields of application as possible, is represented by the set of 3D [...] Read more.
Nowadays, all production, from the smallest ones to large companies, and research activities are affected by the use of 3D printing technology. The major limitation, in order to cover as many fields of application as possible, is represented by the set of 3D printable materials and their limited spectrum of physico-chemical properties. To expand this spectrum and employ the 3D-printed objects in areas such as biomedical, mechanical, electronical and so on, the introduction of fibers or particles in a polymer matrix has been widely studied and applied. In this review, all those studies that proposed modified polymer presenting advantages associated with rapid prototyping are reported. Full article
Show Figures

Figure 1

Article
The Synergic Effects of FDM 3D Printing Parameters on Mechanical Behaviors of Bronze Poly Lactic Acid Composites
J. Compos. Sci. 2020, 4(1), 17; https://doi.org/10.3390/jcs4010017 - 03 Feb 2020
Cited by 36 | Viewed by 4631
Abstract
In this paper, the influence of layer thickness (LT), infill percentage (IP), and extruder temperature (ET) on the maximum failure load, thickness, and build time of bronze polylactic acid (Br-PLA) composites 3D printed by the fused deposition modeling (FDM) was investigated via an [...] Read more.
In this paper, the influence of layer thickness (LT), infill percentage (IP), and extruder temperature (ET) on the maximum failure load, thickness, and build time of bronze polylactic acid (Br-PLA) composites 3D printed by the fused deposition modeling (FDM) was investigated via an optimization method. PLA is a thermoplastic aliphatic polyester obtained from renewable sources, such as fermented plant starch, especially made by corn starch. The design of experiment (DOE) approach was used for optimization parameters, and 3D printings were optimized according to the applied statistical analyses to reach the best features. The maximum value of failure load and minimum value of the build time were considered as optimization criteria. Analysis of variance results identified the layer thickness as the main controlled variable for all responses. Optimum solutions were examined by experimental preparation to assess the efficiency of the optimization method. There was a superb compromise among experimental outcomes and predictions of the response surface method, confirming the reliability of predictive models. The optimum setting for fulfilling the first criterion could result in a sample with more than 1021 N maximum failure load. Finally, a comparison of maximum failure from PLA with Br-PLA was studied. Full article
(This article belongs to the Special Issue Multifunctional Composites)
Show Figures

Figure 1

Communication
Application of Chitosan-Clay Biocomposite Beads for Removal of Heavy Metal and Dye from Industrial Effluent
J. Compos. Sci. 2020, 4(1), 16; https://doi.org/10.3390/jcs4010016 - 01 Feb 2020
Cited by 47 | Viewed by 7026
Abstract
In recent years, there has been increasing interest in developing green biocomposite for industrial wastewater treatment. In this study, prawn-shell-derived chitosan (CHT) and kaolinite rich modified clay (MC) were used to fabricate biocomposite beads with different compositions. Prepared composite beads were characterized by [...] Read more.
In recent years, there has been increasing interest in developing green biocomposite for industrial wastewater treatment. In this study, prawn-shell-derived chitosan (CHT) and kaolinite rich modified clay (MC) were used to fabricate biocomposite beads with different compositions. Prepared composite beads were characterized by FTIR, and XRD, and SEM. The possible application of the beads was evaluated primarily by measuring the adsorption efficiency in standard models of lead (II) and methylene blue (MB) dye solution, and the results show a promising removal efficiency. In addition, the composites were used to remove Cr (VI), Pb (II), and MB from real industrial effluents. From tannery effluent, 50.90% of chromium and 39.50% of lead ions were removed by composites rich in chitosan and 31.50% of MB was removed from textile effluent by a composite rich in clay. Moreover, the composite beads were found to be activated in both acidic and basic media depending on their composition, which gives a scope to their universal application in dye and heavy metal removal from wastewater from various industries. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2019)
Show Figures

Graphical abstract

Review
Structural Health Monitoring for Advanced Composite Structures: A Review
J. Compos. Sci. 2020, 4(1), 13; https://doi.org/10.3390/jcs4010013 - 27 Jan 2020
Cited by 110 | Viewed by 9097
Abstract
Condition-based maintenance refers to the installation of permanent sensors on a structure/system. By means of early fault detection, severe damage can be avoided, allowing efficient timing of maintenance works and avoiding unnecessary inspections at the same time. These are the goals for structural [...] Read more.
Condition-based maintenance refers to the installation of permanent sensors on a structure/system. By means of early fault detection, severe damage can be avoided, allowing efficient timing of maintenance works and avoiding unnecessary inspections at the same time. These are the goals for structural health monitoring (SHM). The changes caused by incipient damage on raw data collected by sensors are quite small, and are usually contaminated by noise and varying environmental factors, so the algorithms used to extract information from sensor data need to focus on sensitive damage features. The developments of SHM techniques over the last 20 years have been more related to algorithm improvements than to sensor progress, which essentially have been maintained without major conceptual changes (with regards to accelerometers, piezoelectric wafers, and fiber optic sensors). The main different SHM systems (vibration methods, strain-based fiber optics methods, guided waves, acoustic emission, and nanoparticle-doped resins) are reviewed, and the main issues to be solved are identified. Reliability is the key question, and can only be demonstrated through a probability of detection (POD) analysis. Attention has only been paid to this issue over the last ten years, but now it is a growing trend. Simulation of the SHM system is needed in order to reduce the number of experiments. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2019)
Show Figures

Figure 1

Review
Composite Reinforcement Architectures: A Review of Field-Assisted Additive Manufacturing for Polymers
J. Compos. Sci. 2020, 4(1), 1; https://doi.org/10.3390/jcs4010001 - 18 Dec 2019
Cited by 28 | Viewed by 6180
Abstract
The demand for additively manufactured polymer composites with increased specific properties and functional microstructure has drastically increased over the past decade. The ability to manufacture complex designs that can maximize strength while reducing weight in an automated fashion has made 3D-printed composites a [...] Read more.
The demand for additively manufactured polymer composites with increased specific properties and functional microstructure has drastically increased over the past decade. The ability to manufacture complex designs that can maximize strength while reducing weight in an automated fashion has made 3D-printed composites a popular research target in the field of engineering. However, a significant amount of understanding and basic research is still necessary to decode the fundamental process mechanisms of combining enhanced functionality and additively manufactured composites. In this review, external field-assisted additive manufacturing techniques for polymer composites are discussed with respect to (1) self-assembly into complex microstructures, (2) control of fiber orientation for improved interlayer mechanical properties, and (3) incorporation of multi-functionalities such as electrical conductivity, self-healing, sensing, and other functional capabilities. A comparison between reinforcement shapes and the type of external field used to achieve mechanical property improvements in printed composites is addressed. Research has shown the use of such materials in the production of parts exhibiting high strength-to-weight ratio for use in aerospace and automotive fields, sensors for monitoring stress and conducting electricity, and the production of flexible batteries. Full article
(This article belongs to the Special Issue Additive Manufacturing of Polymeric and Ceramic Composites)
Show Figures

Figure 1

Back to TopTop