Mechanisms Underlying Transmission of Insect Pathogens

A special issue of Insects (ISSN 2075-4450).

Deadline for manuscript submissions: closed (30 April 2018) | Viewed by 71046

Special Issue Editors


E-Mail Website
Guest Editor
Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
Interests: insect viruses; virus-host interactions; baculovirus; virus evolution; virus taxonomy; antiviral defense; caterpillars; bees; dipteran insects
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
Interests: insect pathogenic fungi and bacteria: interaction with host, field prevalence, disease transmission

Special Issue Information

Dear Colleagues,

In this Special Issue, we will focus on transmission of pathogens of insects; infectious agents that are horizontally and/or vertically transmitted from one insect host to another. Infectious diseases of non-insect hosts that use insects as a vector for transmission are excluded.  We welcome papers dealing with pathogen host-interactions that aim at pathogen transmission or prevention thereof by the host. We welcome, for instance, papers describing how various insect pathogens (e.g., bacteria, viruses, microsporida, nematodes, and fungi) manipulate the physiology and/or immune system of their host to allow or maximize transmission. Molecular and ecological mechanism of horizontal or vertical transmission are clearly within the focus of this Special Issue. This does also include egress from or entry into the organism, its tissue and cells. In case of doubt as to whether your manuscript falls within the focus of this Special Issue, please send us an abstract.

Prof. Dr. Monique M. Van Oers
Prof. Dr. Jørgen Eilenberg
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hoizontal transmission
  • vertical transmission
  • insect pathogens
  • infectious agents
  • latency
  • host manipulation

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

4 pages, 166 KiB  
Editorial
Mechanisms Underlying the Transmission of Insect Pathogens
by Monique M. van Oers and Jørgen Eilenberg
Insects 2019, 10(7), 194; https://doi.org/10.3390/insects10070194 - 02 Jul 2019
Cited by 3 | Viewed by 2597
Abstract
In this special issue the focus is on the factors and (molecular) mechanisms that determine the transmission efficiency of a variety of insect pathogens in a number of insect hosts. In this editorial, we summarize the main findings of the twelve papers in [...] Read more.
In this special issue the focus is on the factors and (molecular) mechanisms that determine the transmission efficiency of a variety of insect pathogens in a number of insect hosts. In this editorial, we summarize the main findings of the twelve papers in this special issue and conclude that much more needs to be learned for an in-depth understanding of pathogen transmission in field and cultured insect populations. Analyses of mutual interactions between pathogens or between endosymbionts and pathogens, aspects rather under-represented in the scientific literature, are described in a number of contributions to this special issue. Full article
(This article belongs to the Special Issue Mechanisms Underlying Transmission of Insect Pathogens)

Research

Jump to: Editorial, Review

9 pages, 929 KiB  
Communication
Bacillus thuringiensis Spores and Vegetative Bacteria: Infection Capacity and Role of the Virulence Regulon PlcR Following Intrahaemocoel Injection of Galleria mellonella
by Christophe Buisson, Michel Gohar, Eugénie Huillet and Christina Nielsen-LeRoux
Insects 2019, 10(5), 129; https://doi.org/10.3390/insects10050129 - 05 May 2019
Cited by 9 | Viewed by 3022
Abstract
Bacillus thuringiensis is an invertebrate pathogen that produces insecticidal crystal toxins acting on the intestinal barrier. In the Galleria mellonella larvae infection model, toxins from the PlcR virulence regulon contribute to pathogenicity by the oral route. While B. thuringiensis is principally an oral [...] Read more.
Bacillus thuringiensis is an invertebrate pathogen that produces insecticidal crystal toxins acting on the intestinal barrier. In the Galleria mellonella larvae infection model, toxins from the PlcR virulence regulon contribute to pathogenicity by the oral route. While B. thuringiensis is principally an oral pathogen, bacteria may also reach the insect haemocoel following injury of the cuticle. Here, we address the question of spore virulence as compared to vegetative cells when the wild-type Bt407cry- strain and its isogenic ∆plcR mutant are inoculated directly into G. mellonella haemocoel. Mortality dose-response curves were constructed at 25 and 37 °C using spores or vegetative cell inocula, and the 50% lethal dose (LD50) in all infection conditions was determined after 48 h of infection. Our findings show that (i) the LD50 is lower for spores than for vegetative cells for both strains, while the temperature has no significant influence, and (ii) the ∆plcR mutant is four to six times less virulent than the wild-type strain in all infection conditions. Our results suggest that the environmental resistant spores are the most infecting form in haemocoel and that the PlcR virulence regulon plays an important role in toxicity when reaching the haemocoel from the cuticle and not only following ingestion. Full article
(This article belongs to the Special Issue Mechanisms Underlying Transmission of Insect Pathogens)
Show Figures

Figure 1

7 pages, 2038 KiB  
Communication
“Sleepers” and “Creepers”: A Theoretical Study of Colony Polymorphisms in the Fungus Metarhizium Related to Insect Pathogenicity and Plant Rhizosphere Colonization
by Steven Angelone, Iván Horacio Piña-Torres, Israel Enrique Padilla-Guerrero and Michael J. Bidochka
Insects 2018, 9(3), 104; https://doi.org/10.3390/insects9030104 - 17 Aug 2018
Cited by 7 | Viewed by 5401
Abstract
Different strains of Metarhizium exhibit a range of polymorphisms in colony phenotypes. These phenotypes range from highly conidiating colonies to colonies that produce relatively more mycelia and few conidia. These different phenotypes are exhibited in infected insects in the soil. In this paper, [...] Read more.
Different strains of Metarhizium exhibit a range of polymorphisms in colony phenotypes. These phenotypes range from highly conidiating colonies to colonies that produce relatively more mycelia and few conidia. These different phenotypes are exhibited in infected insects in the soil. In this paper, we provide a theoretical consideration of colony polymorphisms and suggest that these phenotypes represent a range of strategies in the soil that Metarhizium exhibits. We call these different strategies “sleepers” and “creepers”. The “sleeper” phenotype produces relatively greater amounts of conidia. We use the term “sleeper” to identify this phenotype since this strategy is to remain in the soil as conidia in a relatively metabolically inactive state until a host insect or plant encounter these conidia. The “creeper” phenotype is predominantly a mycelial phenotype. In this strategy, hyphae move through the soil until a host insect or plant is encountered. We theoretically model the costs and benefits of these phenotypic polymorphisms and suggest how evolution could possibly select for these different strategies. Full article
(This article belongs to the Special Issue Mechanisms Underlying Transmission of Insect Pathogens)
Show Figures

Graphical abstract

15 pages, 2233 KiB  
Article
Cannibalism as a Possible Entry Route for Opportunistic Pathogenic Bacteria to Insect Hosts, Exemplified by Pseudomonas aeruginosa, a Pathogen of the Giant Mealworm Zophobas morio
by Gabriela Maciel-Vergara, Annette Bruun Jensen and Jørgen Eilenberg
Insects 2018, 9(3), 88; https://doi.org/10.3390/insects9030088 - 24 Jul 2018
Cited by 32 | Viewed by 6375
Abstract
Opportunistic bacteria are often ubiquitous and do not trigger disease in insects unless the conditions are specifically favorable for bacterial development in a suitable host. In this paper, we isolated and identified a bacterium, Pseudomonas aeruginosa, from the larvae of the giant [...] Read more.
Opportunistic bacteria are often ubiquitous and do not trigger disease in insects unless the conditions are specifically favorable for bacterial development in a suitable host. In this paper, we isolated and identified a bacterium, Pseudomonas aeruginosa, from the larvae of the giant mealworm Zophobas morio and we studied the possible entry routes by challenging larvae with per os injection and subdermal injection. We also evaluated the effect of exposing groups of larvae to P. aeruginosa inoculated in their feed and the effect of exposing wounded larvae to P. aeruginosa. We concluded that the mortality rate of Z. morio larvae is higher when P. aeruginosa gets in direct contact with the hemolymph via intracoelomic injection compared to a situation where the bacterium is force-fed. Larvae with an open wound exposed to P. aeruginosa presented higher mortality rate compared to larvae with a wound that was not exposed to the bacterium. We documented too, that cannibalism and scavenging were more prevalent among larvae in a group, when P. aeruginosa is present compared to when it is absent. We discuss hereby different aspects related with the pathogen’s entry routes to insects the complexity of pathogen´s transmission in high population densities and different ways to prevent and/or control P. aeruginosa in mass rearing systems. Full article
(This article belongs to the Special Issue Mechanisms Underlying Transmission of Insect Pathogens)
Show Figures

Figure 1

12 pages, 2228 KiB  
Article
Prediction of Sporulation and Germination by the Spider Mite Pathogenic Fungus Neozygites floridana (Neozygitomycetes: Neozygitales: Neozygitaceae) Based on Temperature, Humidity and Time
by Thiago Castro, Rafael De Andrade Moral, Clarice Garcia Borges Demétrio, Italo Delalibera and Ingeborg Klingen
Insects 2018, 9(2), 69; https://doi.org/10.3390/insects9020069 - 19 Jun 2018
Cited by 2 | Viewed by 4481
Abstract
Neozygites floridana is a pathogenic fungus and natural enemy of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), which is an important polyphagous plant pest. The aim of this study was to reveal and predict what combination of temperature, relative humidity (RH), and [...] Read more.
Neozygites floridana is a pathogenic fungus and natural enemy of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), which is an important polyphagous plant pest. The aim of this study was to reveal and predict what combination of temperature, relative humidity (RH), and time that enables and promotes primary conidia production and capilliconidia formation in N. floridana (Brazilian isolate ESALQ 1420), in both a detached leaf assay mimicking climatic conditions in the leaf boundary layer and in a semi-field experiment. In the detached leaf assay, a significant number of conidia were produced at 90% RH but the highest total number of primary conidia and proportion of capilliconidia was found at 95 and 100% RH at 25 °C. Positive temperature and RH effects were observed and conidia production was highest in the 8 to 12 h interval. The semi-field experiment showed that for a >90% probability of N. floridana sporulation, a minimum of 6 h with RH >90% and 10 h with temperatures >21 °C, or 6 h with temperatures >21 °C and 15 h with RH >90% was needed. Our study identified suitable conditions for primary- and capilliconidia production in this Brazilian N. floridana isolate. This information provides an important base for building models of a Decision Support System (DSS) where this natural enemy may be used as a tool in Integrated Pest Management (IPM) and a base for developing in vivo production systems of N. floridana. Full article
(This article belongs to the Special Issue Mechanisms Underlying Transmission of Insect Pathogens)
Show Figures

Figure 1

9 pages, 688 KiB  
Article
Influence of Elytral Color Pattern, Size, and Sex of Harmonia axyridis (Coleoptera, Coccinellidae) on Parasite Prevalence and Intensity of Hesperomyces virescens (Ascomycota, Laboulbeniales)
by Danny Haelewaters, Thomas Hiller, Michał Gorczak and Donald H. Pfister
Insects 2018, 9(2), 67; https://doi.org/10.3390/insects9020067 - 15 Jun 2018
Cited by 6 | Viewed by 4579
Abstract
Harmonia axyridis is an invasive ladybird (Coleoptera, Coccinellidae) with the potential to outcompete native ladybird species in its invasive distribution area. It was introduced as a biological control agent in many countries but has also spread unintentionally in many others. Hesperomyces virescens (Ascomycota, [...] Read more.
Harmonia axyridis is an invasive ladybird (Coleoptera, Coccinellidae) with the potential to outcompete native ladybird species in its invasive distribution area. It was introduced as a biological control agent in many countries but has also spread unintentionally in many others. Hesperomyces virescens (Ascomycota, Laboulbeniales) is a minute (200–400 µm in size) biotrophic fungus that infects over 30 species of ladybirds. The aim of this study was to evaluate whether the elytral color pattern, size, and sex of Ha. axyridis affect infection by H. virescens. Coloration in Ha. axyridis has been linked to the presence of an antimicrobial alkaloid (harmonine). In fall 2016, we collected 763 Ha. axyridis individuals in Cambridge, Massaschusetts, of which 119 (16%) bore H. virescens fruiting bodies. We analyzed 160 individuals (80 infected, 80 uninfected) concerning the intensity of infection by H. virescens. Elytral sizes and coloration patterns were quantified using digital photography and analytical methods. Smaller ladybirds had a higher prevalence and higher intensity of parasitism. Additionally, male ladybirds bore more thalli compared to female ladybirds. Elytral color patterns had an effect on neither prevalence nor intensity of infection by Laboulbeniales in our dataset, although we found a slight trend to higher intensity of parasitism in more melanic males. This suggests that the development of Laboulbeniales might be affected by certain insect alkaloids. Full article
(This article belongs to the Special Issue Mechanisms Underlying Transmission of Insect Pathogens)
Show Figures

Figure 1

11 pages, 483 KiB  
Article
Within-Host Competition between Two Entomopathogenic Fungi and a Granulovirus in Diatraea saccharalis (Lepidoptera: Crambidae)
by Giuliano Pauli, Gabriel Moura Mascarin, Jørgen Eilenberg and Italo Delalibera Júnior
Insects 2018, 9(2), 64; https://doi.org/10.3390/insects9020064 - 13 Jun 2018
Cited by 14 | Viewed by 4373
Abstract
We provide insights into how the interactions of two entomopathogenic fungi and a virus play a role in virulence, disease development, and pathogen reproduction for an economically important insect crop pest, the sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae). In our model system, [...] Read more.
We provide insights into how the interactions of two entomopathogenic fungi and a virus play a role in virulence, disease development, and pathogen reproduction for an economically important insect crop pest, the sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae). In our model system, we highlight the antagonistic effects of the co-inoculation of Beauveria bassiana and granulovirus (DisaGV) on virulence, compared to their single counterparts. By contrast, combinations of Metarhizium anisopliae and B. bassiana, or M. anisopliae and DisaGV, have resulted in additive effects against the insect. Intriguingly, most cadavers that were derived from dual or triple infections, produced signs/symptoms of only one species after the death of the infected host. In the combination of fungi and DisaGV, there was a trend where a higher proportion of viral infection bearing conspicuous symptoms occurred, except when the larvae were inoculated with M. anisopliae and DisaGV at the two highest inoculum rates. Co-infections with B. bassiana and M. anisopliae did not affect pathogen reproduction, since the sporulation from co-inoculated larvae did not differ from their single counterparts. Full article
(This article belongs to the Special Issue Mechanisms Underlying Transmission of Insect Pathogens)
Show Figures

Graphical abstract

10 pages, 1314 KiB  
Article
Host-Specific Activation of Entomopathogenic Nematode Infective Juveniles
by Valentina Alonso, Shyon Nasrolahi and Adler R. Dillman
Insects 2018, 9(2), 59; https://doi.org/10.3390/insects9020059 - 02 Jun 2018
Cited by 20 | Viewed by 5013
Abstract
Entomopathogenic nematodes (EPNs) are potent insect parasites and have been used for pest control in agriculture. Despite the complexity of the EPN infection process, hosts are typically killed within 5 days of initial infection. When free-living infective juveniles (IJs) infect a host, they [...] Read more.
Entomopathogenic nematodes (EPNs) are potent insect parasites and have been used for pest control in agriculture. Despite the complexity of the EPN infection process, hosts are typically killed within 5 days of initial infection. When free-living infective juveniles (IJs) infect a host, they release their bacterial symbiont, secrete toxic products, and undergo notable morphological changes. Collectively, this process is referred to as “activation” and represents the point in a nematode’s life cycle when it becomes actively parasitic. The effect of different host tissues and IJ age on activation, and how activation itself is related to virulence, are not well understood. Here, we employed a recently developed bioassay, which quantifies IJ activation, as a tool to address these matters. Appreciating that activation is a key part of the EPN infection process, we hypothesized that activation would positively correlate to virulence. Using the EPNs Steinernema carpocapsae and S. feltiae we found that EPN activation is host-specific and influenced by infective juvenile age. Additionally, our data suggest that activation has a context-dependent influence on virulence and could be predictive of virulence in some cases such as when IJ activation is especially low. Full article
(This article belongs to the Special Issue Mechanisms Underlying Transmission of Insect Pathogens)
Show Figures

Figure 1

14 pages, 1050 KiB  
Communication
Camponotus floridanus Ants Incur a Trade-Off between Phenotypic Development and Pathogen Susceptibility from Their Mutualistic Endosymbiont Blochmannia
by Veronica M. Sinotte, Samantha N. Freedman, Line V. Ugelvig and Marc A. Seid
Insects 2018, 9(2), 58; https://doi.org/10.3390/insects9020058 - 01 Jun 2018
Cited by 18 | Viewed by 6254
Abstract
Various insects engage in microbial mutualisms in which the reciprocal benefits exceed the costs. Ants of the genus Camponotus benefit from nutrient supplementation by their mutualistic endosymbiotic bacteria, Blochmannia, but suffer a cost in tolerating and regulating the symbiont. This cost suggests [...] Read more.
Various insects engage in microbial mutualisms in which the reciprocal benefits exceed the costs. Ants of the genus Camponotus benefit from nutrient supplementation by their mutualistic endosymbiotic bacteria, Blochmannia, but suffer a cost in tolerating and regulating the symbiont. This cost suggests that the ants face secondary consequences such as susceptibility to pathogenic infection and transmission. In order to elucidate the symbiont’s effects on development and disease defence, Blochmannia floridanus was reduced in colonies of Camponotus floridanus using antibiotics. Colonies with reduced symbiont levels exhibited workers of smaller body size, smaller colony size, and a lower major-to-minor worker caste ratio, indicating the symbiont’s crucial role in development. Moreover, these ants had decreased cuticular melanisation, yet higher resistance to the entomopathogen Metarhizium brunneum, suggesting that the symbiont reduces the ants’ ability to fight infection, despite the availability of melanin to aid in mounting an immune response. While the benefits of improved growth and development likely drive the mutualism, the symbiont imposes a critical trade-off. The ants’ increased susceptibility to infection exacerbates the danger of pathogen transmission, a significant risk given ants’ social lifestyle. Thus, the results warrant research into potential adaptations of the ants and pathogens that remedy and exploit the described disease vulnerability. Full article
(This article belongs to the Special Issue Mechanisms Underlying Transmission of Insect Pathogens)
Show Figures

Graphical abstract

Review

Jump to: Editorial, Research

23 pages, 14103 KiB  
Review
Sleeping Beauties: Horizontal Transmission via Resting Spores of Species in the Entomophthoromycotina
by Ann E. Hajek, Donald C. Steinkraus and Louela A. Castrillo
Insects 2018, 9(3), 102; https://doi.org/10.3390/insects9030102 - 14 Aug 2018
Cited by 15 | Viewed by 6468
Abstract
Many of the almost 300 species of arthropod-pathogenic fungi in the Entomophthoromycotina (Zoopagomycota) are known for being quite host-specific and are able to cause epizootics. Most species produce two main types of spores, conidia and resting spores. Here, we present a review of [...] Read more.
Many of the almost 300 species of arthropod-pathogenic fungi in the Entomophthoromycotina (Zoopagomycota) are known for being quite host-specific and are able to cause epizootics. Most species produce two main types of spores, conidia and resting spores. Here, we present a review of the epizootiology of species of Entomophthoromycotina, focusing on their resting spores, and how this stage leads to horizontal transmission and persistence. Cadavers in which resting spores are produced can often be found in different locations than cadavers of the same host producing conidia. Resting spores generally are dormant directly after production and require specific conditions for germination. Fungal reproduction resulting from infections initiated by Entomophaga maimaiga resting spores can differ from reproduction resulting from conidial infections, although we do not know how commonly this occurs. Reservoirs of resting spores can germinate for variable lengths of time, including up to several months, providing primary infections to initiate secondary cycling based on conidial infections, and not all resting spores germinate every year. Molecular methods have been developed to improve environmental quantification of resting spores, which can exist at high titers after epizootics. Ecological studies of biological communities have demonstrated that this source of these spores providing primary inoculum in the environment can decrease not only because of germination, but also because of the activity of mycopathogens. Full article
(This article belongs to the Special Issue Mechanisms Underlying Transmission of Insect Pathogens)
Show Figures

Graphical abstract

16 pages, 2421 KiB  
Review
An Advanced View on Baculovirus per Os Infectivity Factors
by Bob Boogaard, Monique M. Van Oers and Jan W. M. Van Lent
Insects 2018, 9(3), 84; https://doi.org/10.3390/insects9030084 - 17 Jul 2018
Cited by 37 | Viewed by 5486
Abstract
Baculoviruses are arthropod-specific large DNA viruses that orally infect the larvae of lepidopteran, hymenopteran and dipteran insect species. These larvae become infected when they eat a food source that is contaminated with viral occlusion bodies (OBs). These OBs contain occlusion-derived viruses (ODVs), which [...] Read more.
Baculoviruses are arthropod-specific large DNA viruses that orally infect the larvae of lepidopteran, hymenopteran and dipteran insect species. These larvae become infected when they eat a food source that is contaminated with viral occlusion bodies (OBs). These OBs contain occlusion-derived viruses (ODVs), which are released upon ingestion of the OBs and infect the endothelial midgut cells. At least nine different ODV envelope proteins are essential for this oral infectivity and these are denoted per os infectivity factors (PIFs). Seven of these PIFs form a complex, consisting of PIF1, 2, 3 and 4 that form a stable core complex and PIF0 (P74), PIF6 and PIF8 (P95) that associate with this complex with lower affinity than the core components. The existence of a PIF complex and the fact that the pif genes are conserved in baculovirus genomes suggests that PIF-proteins cooperatively mediate oral infectivity rather than as individual functional entities. This review therefore discusses the knowledge obtained for individual PIFs in light of their relationship with other members of the PIF complex. Full article
(This article belongs to the Special Issue Mechanisms Underlying Transmission of Insect Pathogens)
Show Figures

Figure 1

20 pages, 2769 KiB  
Review
Transmission Success of Entomopathogenic Nematodes Used in Pest Control
by Sophie Labaude and Christine T. Griffin
Insects 2018, 9(2), 72; https://doi.org/10.3390/insects9020072 - 20 Jun 2018
Cited by 86 | Viewed by 10105
Abstract
Entomopathogenic nematodes from the two genera Steinernema and Heterorhabditis are widely used as biological agents against various insect pests and represent a promising alternative to replace pesticides. Efficacy and biocontrol success can be enhanced through improved understanding of their biology and ecology. Many [...] Read more.
Entomopathogenic nematodes from the two genera Steinernema and Heterorhabditis are widely used as biological agents against various insect pests and represent a promising alternative to replace pesticides. Efficacy and biocontrol success can be enhanced through improved understanding of their biology and ecology. Many endogenous and environmental factors influence the survival of nematodes following application, as well as their transmission success to the target species. The aim of this paper is to give an overview of the major topics currently considered to affect transmission success of these biological control agents, including interactions with insects, plants and other members of the soil biota including conspecifics. Full article
(This article belongs to the Special Issue Mechanisms Underlying Transmission of Insect Pathogens)
Show Figures

Figure 1

16 pages, 232 KiB  
Review
Secretion Systems and Secreted Proteins in Gram-Negative Entomopathogenic Bacteria: Their Roles in Insect Virulence and Beyond
by Rebecca McQuade and S. Patricia Stock
Insects 2018, 9(2), 68; https://doi.org/10.3390/insects9020068 - 19 Jun 2018
Cited by 22 | Viewed by 5433
Abstract
Many Gram-negative bacteria have evolved insect pathogenic lifestyles. In all cases, the ability to cause disease in insects involves specific bacterial proteins exported either to the surface, the extracellular environment, or the cytoplasm of the host cell. They also have several distinct mechanisms [...] Read more.
Many Gram-negative bacteria have evolved insect pathogenic lifestyles. In all cases, the ability to cause disease in insects involves specific bacterial proteins exported either to the surface, the extracellular environment, or the cytoplasm of the host cell. They also have several distinct mechanisms for secreting such proteins. In this review, we summarize the major protein secretion systems and discuss examples of secreted proteins that contribute to the virulence of a variety of Gram-negative entomopathogenic bacteria, including Photorhabdus, Xenorhabdus, Serratia, Yersinia, and Pseudomonas species. We also briefly summarize two classes of exported protein complexes, the PVC-like elements, and the Tc toxin complexes that were first described in entomopathogenic bacteria. Full article
(This article belongs to the Special Issue Mechanisms Underlying Transmission of Insect Pathogens)
Back to TopTop