Integrated Management of Public Health Pests

A special issue of Insects (ISSN 2075-4450). This special issue belongs to the section "Insect Pest and Vector Management".

Deadline for manuscript submissions: closed (31 August 2023) | Viewed by 13537

Special Issue Editors

Department of Crop Science, Agricultural University of Athens, 11855 Athens, Attica, Greece
Interests: stored-product insects; stored product protection; insect behavior; chemical control
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues, 

Contagious diseases transmitted by arthropods are of increasing concern around the globe. Numerous arthropod species play a major role as vectors of pathogens (e.g., malaria, dengue, Zika virus, lymphatic filariasis, Lyme disease, etc.). The lack of effective management tools against these organisms and the resistance they have developed against several active ingredients have caused their eruptive proliferation in urban, suburban and natural ecosystems. Therefore, the need for new control measures is both imperative and challenging. Deep knowledge of the biology, ecology and behavior of hazardous arthropod organisms of importance to public health may contribute towards their effective management. The current Special Issue includes international communications of the most recent research results on the management of arthropods related to public health, using synthetic insecticides, biological control agents, novel active ingredients, genetic control, botanical substances, essential oils (EOs), and EO-based nanoemulsions, which exhibit a low toxicity profile, alone or in combination.

Dr. Nickolas G. Kavallieratos
Dr. Maria Boukouvala
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • synthetic insecticides
  • biological control
  • novel active ingredients
  • botanical compounds
  • genetic control
  • essential oils
  • essential oil-based nanoemulsions

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 1766 KiB  
Article
Larvicidal Activity of Carbon Black against the Yellow Fever Mosquito Aedes aegypti
by Erick J. Martínez Rodríguez, Parker Evans, Megha Kalsi, Noah Rosenblatt, Morgan Stanley and Peter M. Piermarini
Insects 2022, 13(3), 307; https://doi.org/10.3390/insects13030307 - 20 Mar 2022
Cited by 4 | Viewed by 4896
Abstract
The yellow fever mosquito Aedes aegypti is one of the deadliest animals on the planet because it transmits several medically important arboviruses, including Zika, chikungunya, dengue, and yellow fever. Carbon-based nanoparticles (CNPs) derived from natural sources have previously been shown to have toxic [...] Read more.
The yellow fever mosquito Aedes aegypti is one of the deadliest animals on the planet because it transmits several medically important arboviruses, including Zika, chikungunya, dengue, and yellow fever. Carbon-based nanoparticles (CNPs) derived from natural sources have previously been shown to have toxic effects on mosquito larvae and offer a potential alternative to chemical insecticides such as pyrethroids, for which mosquitoes have evolved resistance. However, CNPs derived from industrial sources, such as carbon black, have not previously been evaluated as larvicides. Here, we evaluate the effects of a commercially-available carbon black, EMPEROR® 1800 (E1800), on mortality and development of pyrethroid-susceptible (PS) and pyrethroid-resistant (PR) strains of Ae. aegypti. We found that E1800 exhibited concentration-dependent mortality against 1st instar larvae of both strains within the first 120 h after exposure, but after this period, surviving larvae did not show delays in their development to adults. Physical characterization of E1800 suspensions suggests that they form primary particles of ~30 nm in diameter that fuse into fundamental aggregates of ~170 nm in diameter. Notably, larvae treated with E1800 showed internal accumulation of E1800 in the gut and external accumulation on the respiratory siphon, anal papillae, and setae, suggesting a physical mode of toxic action. Taken together, our results suggest that E1800 has potential use as a larvicide with a novel mode of action for controlling PS and PR mosquitoes. Full article
(This article belongs to the Special Issue Integrated Management of Public Health Pests)
Show Figures

Figure 1

14 pages, 23264 KiB  
Article
Insecticidal Activity of Plectranthus amboinicus Essential Oil against the Stable Fly Stomoxys calcitrans (Diptera: Muscidae) and the Horse Fly Tabanus megalops (Diptera: Tabanidae)
by Arpron Leesombun, Sivapong Sungpradit, Sookruetai Boonmasawai, Thekhawet Weluwanarak, Suriyo Klinsrithong, Jiraporn Ruangsittichai, Sumate Ampawong, Roungthip Masmeatathip and Tanasak Changbunjong
Insects 2022, 13(3), 255; https://doi.org/10.3390/insects13030255 - 03 Mar 2022
Cited by 5 | Viewed by 4507
Abstract
The stable fly, Stomoxys calcitrans (Diptera: Muscidae), and the horse fly, Tabanus megalops (Diptera: Tabanidae), are important ectoparasites of livestock in Thailand. These species affect animal health and cause economic losses. This study investigated the insecticidal activity of Plectranthus amboinicus essential oil against [...] Read more.
The stable fly, Stomoxys calcitrans (Diptera: Muscidae), and the horse fly, Tabanus megalops (Diptera: Tabanidae), are important ectoparasites of livestock in Thailand. These species affect animal health and cause economic losses. This study investigated the insecticidal activity of Plectranthus amboinicus essential oil against S. calcitrans and T. megalops through contact and fumigant toxicity tests and evaluated the effects of the essential oil on these flies through histopathological and scanning electron microscopic (SEM) studies. The results of the contact toxicity test indicated that the median lethal dose against S. calcitrans and T. megalops was 12.05 and 131.41 µg/fly, and the 90% lethal dose was 45.53 and 200.62 µg/fly, respectively. The results of the fumigant toxicity test showed that the median lethal concentration against S. calcitrans and T. megalops was 1.34 and 7.12 mg/L air, and the 90% lethal concentration was 4.39 and 30.37 mg/L air, respectively. Histopathology revealed neuronal degeneration in the brain of S. calcitrans and interstitial neuronal edema of the brain and ovarian necrosis in T. megalops. No external morphological changes were observed via SEM. Given its insecticidal properties against S. calcitrans and T. megalops, P. amboinicus essential oil could be developed into a natural insecticide to control these fly species. Full article
(This article belongs to the Special Issue Integrated Management of Public Health Pests)
Show Figures

Figure 1

Review

Jump to: Research

43 pages, 731 KiB  
Review
Integrative Alternative Tactics for Ixodid Control
by Allan T. Showler and Perot Saelao
Insects 2022, 13(3), 302; https://doi.org/10.3390/insects13030302 - 18 Mar 2022
Cited by 5 | Viewed by 3193
Abstract
Ixodids (hard ticks), ectoparasitic arthropods that vector the causal agents of many serious diseases of humans, domestic animals, and wildlife, have become increasingly difficult to control because of the development of resistance against commonly applied synthetic chemical-based acaricides. Resistance has prompted searches for [...] Read more.
Ixodids (hard ticks), ectoparasitic arthropods that vector the causal agents of many serious diseases of humans, domestic animals, and wildlife, have become increasingly difficult to control because of the development of resistance against commonly applied synthetic chemical-based acaricides. Resistance has prompted searches for alternative, nonconventional control tactics that can be used as part of integrated ixodid management strategies and for mitigating resistance to conventional acaricides. The quest for alternative control tactics has involved research on various techniques, each influenced by many factors, that have achieved different degrees of success. Alternative approaches include cultural practices, ingested and injected medications, biological control, animal- and plant-based substances, growth regulators, and inert desiccant dusts. Research on biological control of ixodids has mainly focused on predators, parasitoid wasps, infective nematodes, and pathogenic bacteria and fungi. Studies on animal-based substances have been relatively limited, but research on botanicals has been extensive, including whole plant, extract, and essential oil effects on ixodid mortality, behavior, and reproduction. The inert dusts kaolin, silica gel, perlite, and diatomaceous earth are lethal to ixodids, and they are impervious to environmental degradation, unlike chemical-based toxins, remaining effective until physically removed. Full article
(This article belongs to the Special Issue Integrated Management of Public Health Pests)
Back to TopTop