The Efficacy of Insecticides and Botanicals against Pests

A special issue of Insects (ISSN 2075-4450). This special issue belongs to the section "Insect Pest and Vector Management".

Deadline for manuscript submissions: closed (30 September 2023) | Viewed by 12573

Special Issue Editors


E-Mail Website
Guest Editor
Department of General Biology, Federal University of Viçosa, Viçosa 36570000, MG, Brazil
Interests: cell biology; biochemistry and insect physiology; toxicology on insects and ecological populations
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Entomology, Federal University of Viçosa, Viçosa 36570000, MG, Brazil
Interests: chemical control; ecotoxicology; secondary metabolites; plant-insect interactions

Special Issue Information

Dear Colleagues, 

In pest control, existing IPM practices must be continually optimized, as well as the development of innovative new IPM tools. For decades, many advances have been made in preventive and curative measures based on natural or synthetic molecules causing lethal and sublethal effects on insects. Thus, chemical control continues to be a fundamental part of agricultural, forestry, medical-veterinary, and urban pests. We are pleased to invite you to a Special Issue of Insects, titled “The Efficacy of Insecticides and Botanicals against Pests”. This Special Issue aims to publish advances in the use of natural/synthetic insecticides, showing their effectiveness in pest control and incorporation into IPM programs. In particular, the present Special Issue is dedicated to the efficacy of insecticide with synthetic and natural molecules (e.g., chemical insecticides, plant extracts, essential oils, bacterial and fungal metabolites). Research efforts shedding light on their field evaluation, modes of action, behavioral changes at sublethal amounts, and effects on non-targets are welcomed. Research items may include the following: natural products, studies modes of action, and insecticide toxicology and biochemistry. Original research articles and reviews are welcome.

We look forward to receiving your contributions.

Dr. Luis Carlos Martínez
Dr. Angélica Plata-Rueda
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • advances in insecticide modes of action
  • chemical insecticides
  • insecticidal action and pest control
  • laboratory and field insecticide evaluation
  • natural products
  • lethal and sublethal effects
  • plant extracts and essential oils

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 664 KiB  
Article
Toxicity Assessment of Four Formulated Pyrethroid-Containing Binary Insecticides in Two Resistant Adult Tarnished Plant Bug (Lygus lineolaris) Populations
by Yuzhe Du, Yucheng Zhu, Shane Scheibener and Maribel Portilla
Insects 2023, 14(9), 761; https://doi.org/10.3390/insects14090761 - 13 Sep 2023
Cited by 1 | Viewed by 862
Abstract
Over the past several decades, the extensive use of pyrethroids has led to the development of resistance in many insect populations, including the economically damaging pest tarnished plant bug (TPB), Lygus lineolaris, on cotton. To manage TPB resistance, several commercially formulated pyrethroid-containing binary [...] Read more.
Over the past several decades, the extensive use of pyrethroids has led to the development of resistance in many insect populations, including the economically damaging pest tarnished plant bug (TPB), Lygus lineolaris, on cotton. To manage TPB resistance, several commercially formulated pyrethroid-containing binary mixtures, in combination with neonicotinoids or avermectin are recommended for TPB control and resistance management in the mid-South USA. This study aimed to evaluate the toxicity and resistance risks of four formulated pyrethroid-containing binary mixtures (Endigo, Leverage, Athena, and Hero) on one susceptible and two resistant TPB populations, which were field-collected in July (Field-R1) and October (Field-R2), respectively. Based on LC50 values, both resistant TPB populations displayed variable tolerance to the four binary mixtures, with Hero showing the highest resistance and Athena the lowest. Notably, the Field-R2 exhibited 1.5–3-fold higher resistance compared to the Field-R1 for all four binary insecticides. Moreover, both resistant TPB populations demonstrated significantly higher resistance ratios towards Hero and Leverage compared to their corresponding individual pyrethroid, while Endigo and Athena showed similar or lower resistance. This study also utilized the calculated additive index (AI) and co-toxicity coefficient (CTC) analysis, which revealed that the two individual components in Leverage exhibited antagonist effects against the two resistant TPB populations. In contrast, the two individual components in Endigo, Hero, and Athena displayed synergistic interactions. Considering that Hero is a mixture of two pyrethroids that can enhance the development of TPB resistance, our findings suggest that Endigo and Athena are likely superior products for slowing down resistance development in TPB populations. This study provides valuable insight for selecting the most effective mixtures to achieve better TPB control through synergistic toxicity analysis, while simultaneously reducing economic and environmental risks associated with resistance development in the insect pest. Full article
(This article belongs to the Special Issue The Efficacy of Insecticides and Botanicals against Pests)
Show Figures

Figure 1

16 pages, 838 KiB  
Article
Acaricidal Toxicity of Four Essential Oils, Their Predominant Constituents, Their Mixtures against Varroa Mite, and Their Selectivity to Honey Bees (Apis cerana and A. mellifera)
by Tekalign Begna, Delgermaa Ulziibayar, Daniel Bisrat and Chuleui Jung
Insects 2023, 14(9), 735; https://doi.org/10.3390/insects14090735 - 30 Aug 2023
Cited by 2 | Viewed by 2098
Abstract
The honey bee (Apis mellifera) faces a significant threat from Varroa destructor, causing the losses of millions of colonies worldwide. While synthetic acaricides are widely used to control Varroa infestations, excessive application has led to resistant strains and poses side [...] Read more.
The honey bee (Apis mellifera) faces a significant threat from Varroa destructor, causing the losses of millions of colonies worldwide. While synthetic acaricides are widely used to control Varroa infestations, excessive application has led to resistant strains and poses side effects on the host. Consequently, there is an urgent need for a new acaricide that is both effective and affordable, yet safe to use on bees. One potential source of these acaricides is essential oils (EOs) and their constituents. This study evaluated the acaricidal properties of four essential oils (Eucalyptus globulus, Rosemary officinalis, Trachyspermum ammi (Ethiopian and Indian varieties), their constituents and mixture of constituents against V. destructor through the complete exposure method. Our finding showed that a 1:1 mixture of thymol and carvacrol (4 h-LC50 = 42 μg/mL), thymol (4 h-LC50 = 71 μg/mL), and T. ammi oil (4 h-LC50 = 81–98 μg/mL) were the most toxic test samples against V. destructor. Honey bee behavior and selectivity were also assessed with one additional EO Thymus schimperi, indicating that T. schimperi, T. ammi, and their components were selective and did not affect the learning and memory of bees. In conclusion, the thymol and carvacrol (1:1) mixture was shown to be a promising replacement for synthetic acaricides, being three times more toxic than a commercial acaricide, fluvalinate (4 h-LC50 = 143 μg/mL). Full article
(This article belongs to the Special Issue The Efficacy of Insecticides and Botanicals against Pests)
Show Figures

Figure 1

12 pages, 1153 KiB  
Article
Spent Coffee Grounds and Novaluron Are Toxic to Aedes aegypti (Diptera: Culicidae) Larvae
by Waralee Thanasoponkul, Tanasak Changbunjong, Rattanavadee Sukkurd and Tawee Saiwichai
Insects 2023, 14(6), 564; https://doi.org/10.3390/insects14060564 - 16 Jun 2023
Cited by 1 | Viewed by 1968
Abstract
Aedes aegypti (Diptera: Culicidae) is a vector for mosquito-borne diseases worldwide. Insecticide resistance is a major concern in controlling this mosquito. We investigated the chemical compounds in wet and dry spent coffee grounds (wSCGs and dSCGs) and evaluated the efficacy of dSCGs, wSCGs, [...] Read more.
Aedes aegypti (Diptera: Culicidae) is a vector for mosquito-borne diseases worldwide. Insecticide resistance is a major concern in controlling this mosquito. We investigated the chemical compounds in wet and dry spent coffee grounds (wSCGs and dSCGs) and evaluated the efficacy of dSCGs, wSCGs, and novaluron on the mortality and adult emergence inhibition of Ae. aegypti. We found higher concentrations of chemical compounds in wSCGs than in dSCGs. The wSCGs and dSCGs both contained total phenolic compounds, total flavonoid compounds, caffeic acid, coumaric acid, protocatechuic acid, and vanillic acid. Complete mortality was observed after 48 h of exposure to 50 g/L wSCGs, while similar mortality was found after 120 h of exposure to 10 µg/L of novaluron. The sublethal dose was a concentration of wSCGs (5 g/L) and novaluron (0.01, 0.1, and 1 µg/L) combined that resulted in a larval mortality lower than twenty percent (at 72 h) to determine their synergistic effects. The death rate of larvae exposed in sublethal combination of wSCGs and novaluron was significantly higher than that of its stand-alone. The findings indicate that the combination of wSCGs and novaluron at sublethal concentrations had synergistic effects on the mortality of Ae. aegypti larvae and could be applied as an alternative control measure. Full article
(This article belongs to the Special Issue The Efficacy of Insecticides and Botanicals against Pests)
Show Figures

Figure 1

18 pages, 1979 KiB  
Article
Mosquito Larvicidal Activity and Cytotoxicity of the Extracts of Aromatic Plants from Malaysia
by Huimei Lim, Sook Yee Lee, Lai Yee Ho and Nam Weng Sit
Insects 2023, 14(6), 512; https://doi.org/10.3390/insects14060512 - 1 Jun 2023
Cited by 5 | Viewed by 4097
Abstract
Despite ongoing control efforts, the mosquito population and diseases vectored by them continue to thrive worldwide, causing major health concerns. There has been growing interest in the use of botanicals as alternatives to insecticides due to their widespread insecticidal properties, biodegradability, and adaptability [...] Read more.
Despite ongoing control efforts, the mosquito population and diseases vectored by them continue to thrive worldwide, causing major health concerns. There has been growing interest in the use of botanicals as alternatives to insecticides due to their widespread insecticidal properties, biodegradability, and adaptability to ecological conditions. In this study, we investigated the larvicidal activity and cytotoxicity effects of solvent extracts from three aromatic plants—Curcuma longa (turmeric), Ocimum americanum (hoary basil), and Petroselinum crispum (parsley)—against Aedes albopictus. Subsequently, we examined the phytochemical composition of the extracts through gas chromatography–mass spectrometry (GC–MS) analysis. Results revealed that the hexane extracts of O. americanum and P. crispum exhibited the greatest larvicidal activity with the lowest median lethal concentration (LC50) values (<30 µg/mL) at 24 h post-treatment, with the former found to be significantly less toxic towards African monkey kidney (Vero) cells. The GC–MS analysis of the said extract indicated the presence of different classes of metabolites, including phenylpropanoids, very long-chain alkanes, fatty acids and their derivatives, and terpenes, with the most abundant component being methyl eugenol (55.28%), most of which, have been documented for their larvicidal activities. These findings provide valuable insights into the potential use and development of bioinsecticides, particularly from O. americanum. Full article
(This article belongs to the Special Issue The Efficacy of Insecticides and Botanicals against Pests)
Show Figures

Figure 1

13 pages, 1219 KiB  
Article
Management of Panonychus ulmi with Various Miticides and Insecticides and Their Toxicity to Predatory Mites Conserved for Biological Mite Control in Eastern U.S. Apple Orchards
by Neelendra K. Joshi, Ngoc T. Phan and David J. Biddinger
Insects 2023, 14(3), 228; https://doi.org/10.3390/insects14030228 - 24 Feb 2023
Cited by 3 | Viewed by 2318
Abstract
Panonychus ulmi (Koch) (Acari: Tetranychidae), commonly known as European red mite, is a polyphagous pest of various tree and small fruit crops, including apples. A field study was conducted to evaluate different pesticide options available for the management of P. ulmi, and [...] Read more.
Panonychus ulmi (Koch) (Acari: Tetranychidae), commonly known as European red mite, is a polyphagous pest of various tree and small fruit crops, including apples. A field study was conducted to evaluate different pesticide options available for the management of P. ulmi, and their impact on the population of non-target predatory mite species complex consisting of Neoseiulus fallacis, Typhlodromus pyri, and Zetzellia mali in apple orchards. Pesticides were applied using a commercial airblast sprayer at the 3–5 mite/leaf recommended economic Integrated Pest Management (IPM) threshold or prophylactically in the spring ignoring IPM practices such as monitoring, reliance on biological control and economic thresholds. Effects on the motile and egg stages of P. ulmi were evaluated as were effects on the populations of predatory mites through frequent leaf counts during the season. We also recorded the subsequent overwintering eggs of P. ulmi from each pesticide treatment. The two prophylactic treatments containing a mixture of zeta-cypermethrin + avermectin B1 + 1% horticultural oil and abamectin + 1% horticultural oil provided effective control of P. ulmi population throughout the season without reducing predatory mite populations. In contrast, eight treatments applied at the recommended economic threshold of 3–5 mites/leaf were not effective in suppressing P. ulmi populations and most reduced predatory mites. Etoxazole had significantly higher number of overwintering P. ulmi eggs compared to all other treatments. Full article
(This article belongs to the Special Issue The Efficacy of Insecticides and Botanicals against Pests)
Show Figures

Figure 1

Back to TopTop