Metal-Based Compounds: Relevance for the Biomedical Field

A special issue of Inorganics (ISSN 2304-6740). This special issue belongs to the section "Bioinorganic Chemistry".

Deadline for manuscript submissions: 30 April 2024 | Viewed by 5464

Special Issue Editors


E-Mail
Guest Editor
Department of Inorganic Chemistry, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
Interests: chemistry of transition metal complexes; nanoparticles as drug delivery systems; antitumor activity

E-Mail
Guest Editor
Department of Inorganic Chemistry, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
Interests: transition metal chemistry; biomolecules interactions; antitumor activity

E-Mail Website
Guest Editor
Department of Inorganic Chemistry, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
Interests: bioinorganic chemistry; nanotechnology; molecular imprinting

Special Issue Information

Dear Colleagues,

The exciting research fields of Bioinorganic chemistry and Inorganic medicinal chemistry are in full expansion, providing new perspectives regarding the interaction of inorganic compounds with biological matrixes and their potential as therapeutic and diagnosis agents. Metal complexes, especially those containing transition metal ions, are valuable platforms for drug design and have proven their biological properties many times over, with important progress being made in obtaining new compounds with antitumor, antibacterial, antiviral and antifungal activity.

This Inorganics Special issue wishes to provide an overview on the current topics of interest in Inorganic chemistry with a focus on bioactive compounds. Original research articles as well as reviews are welcome, with the aim to highlight recent advances concerning the following issues:

  • The role of metal ions in biological environments
  • Synthesis, phisico-chemical characterization of metal complexes and evaluation of their biological and therapeutic potential
  • The interaction of coordination and organometallic compounds with biological macromolecules, such as nucleic acids and proteins
  • Coordination compounds as metallo-enzymes mimics
  • Metallic and metal oxide nanoparticles as therapeutic and diagnosis agents

Dr. Tamara Topala
Prof. Dr. Luminita Simona Oprean
Dr. Andreea Elena Bodoki
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • transition metal complexes
  • biomolecules interactions
  • enzyme mimics
  • therapeutic platforms
  • diagnosis agents
  • biological activity

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 8466 KiB  
Article
‘Charge Reverse’ Halogen Bonding Contacts in Metal-Organic Multi-Component Compounds: Antiproliferative Evaluation and Theoretical Studies
by Subham Banik, Trishnajyoti Baishya, Rosa M. Gomila, Antonio Frontera, Miquel Barcelo-Oliver, Akalesh K. Verma, Jumi Das and Manjit K. Bhattacharyya
Inorganics 2024, 12(4), 111; https://doi.org/10.3390/inorganics12040111 - 09 Apr 2024
Viewed by 374
Abstract
Two new metal–organic multi-component compounds of Ni(II) and Co(II), viz. [Ni(3-CNpy)2(H2O)4]ADS·2.75H2O (1) and [Co(3-CNpy)2(H2O)4](4-ClbzSO3)2 (2) (3-CNpy = 3-cyanopyridine, ADS = anthraquinone-1,5-disulfonate, 4-ClbzSO [...] Read more.
Two new metal–organic multi-component compounds of Ni(II) and Co(II), viz. [Ni(3-CNpy)2(H2O)4]ADS·2.75H2O (1) and [Co(3-CNpy)2(H2O)4](4-ClbzSO3)2 (2) (3-CNpy = 3-cyanopyridine, ADS = anthraquinone-1,5-disulfonate, 4-ClbzSO3 = 4-chlorobenzenesulfonate), were synthesized and characterized using single crystal XRD, TGA, spectroscopic (IR, electronic) and elemental analyses. Both the compounds crystallize as multi-component compounds of Ni(II) and Co(II), with uncoordinated ADS and 4-ClbzSO3 moieties in the crystal lattice, respectively. Crystal structure analyses revealed the presence of antiparallel nitrile···nitrile and π-stacked assemblies involving alternate coordinated 3-CNpy and uncoordinated ADS and 4-ClbzSO3 moieties. Moreover, unconventional charge reverse Cl∙∙∙N halogen bonding contacts observed in compound 2 provide additional reinforcement to the crystal structure. Theoretical calculations confirm that the H-bonding interactions, along with anion–π(arene) and anion–π(CN) in 1 and π–π, antiparallel CN···CN and charge reverse Cl···N halogen bonds in 2, play crucial roles in the solid state stability of the compounds. In vitro anticancer activities observed through the trypan blue cell cytotoxicity assay reveal that the compounds induce significant concentration dependent cytotoxicity in Dalton’s lymphoma (DL) cancer cells, with nominal effects in normal healthy cells. Molecular docking studies reveal that the compounds can effectively bind with the active sites of anti-apoptotic proteins, which are actively involved in cancer progression. Full article
(This article belongs to the Special Issue Metal-Based Compounds: Relevance for the Biomedical Field)
Show Figures

Figure 1

12 pages, 1637 KiB  
Article
Synthesis, Structure, and Biological Activity of the Germanium Dioxide Complex Compound with 2-Amino-3-Hydroxybutanoic Acid
by Alena V. Kadomtseva, Georgy M. Mochalov, Maria A. Zasovskaya and Anatoly M. Ob’edkov
Inorganics 2024, 12(3), 83; https://doi.org/10.3390/inorganics12030083 - 07 Mar 2024
Viewed by 741
Abstract
Currently, a promising direction of study is the use of biologically active coordination compounds in the pharmacopoeia and the creation of effective bactericidal drugs, biomaterials, and enzyme modulators on that basis. The paper considers a coordination germanium compound with 2-amino-3-hydroxybutanoic acid. The prospects [...] Read more.
Currently, a promising direction of study is the use of biologically active coordination compounds in the pharmacopoeia and the creation of effective bactericidal drugs, biomaterials, and enzyme modulators on that basis. The paper considers a coordination germanium compound with 2-amino-3-hydroxybutanoic acid. The prospects for the use of the compound in medicine are outlined. This work is aimed at solving the problems regarding the synthesis of biologically active compounds with a wide spectrum of actions. The structure and composition of the coordination compound have been established through calculation and experimental methods. The biocidal (bactericidal and fungicidal) activity of germanium-containing compounds against a number of bacteria and microscopic fungi has been studied. Using the quantum-chemical method with density functional theory (DFT, B3LYP/6–311++G(2d,2p)), the theoretical IR spectrum of the compound was calculated. The structure of the coordination compound and the structure of the intermediates at all stages of the synthesis process were established by calculation. Full article
(This article belongs to the Special Issue Metal-Based Compounds: Relevance for the Biomedical Field)
Show Figures

Figure 1

21 pages, 5733 KiB  
Article
Comparative Solution Equilibrium Studies on Anticancer Estradiol-Based Conjugates and Their Copper Complexes
by Éva A. Enyedy, Anett Giricz, Tatsiana V. Petrasheuskaya, János P. Mészáros, Nóra V. May, Gabriella Spengler, Ferenc Kovács, Barnabás Molnár and Éva Frank
Inorganics 2024, 12(2), 49; https://doi.org/10.3390/inorganics12020049 - 01 Feb 2024
Viewed by 1270
Abstract
Steroids are often considered valuable molecular tools for the development of anticancer agents with improved pharmacological properties. Conjugation of metal chelating moieties with a lipophilic sterane backbone is a viable option to obtain novel anticancer compounds. In this work, two estradiol-based hybrid molecules [...] Read more.
Steroids are often considered valuable molecular tools for the development of anticancer agents with improved pharmacological properties. Conjugation of metal chelating moieties with a lipophilic sterane backbone is a viable option to obtain novel anticancer compounds. In this work, two estradiol-based hybrid molecules (PMA-E2 and DMA-E2) with an (N,N,O) binding motif and their Cu(II) complexes were developed. The lipophilicity, solubility, and acid-base properties of the novel ligands were determined by the combined use of UV-visible spectrophotometry, pH-potentiometry, and 1H NMR spectroscopy. The solution speciation and redox activity of the Cu(II) complexes were also investigated by means of UV-visible and electron paramagnetic resonance spectroscopy. Two structurally analogous ligands (PMAP and DMAP) were also included in the studies for better interpretation of the solution chemical data obtained. Three pKa values were determined for all ligands, revealing the order of the deprotonation steps: pyridinium-NH+ or NH(CH3)2+, secondary NH2+, and OH. The dimethylamine derivatives (DMA-E2, DMAP) are found in their H2L+ forms in solution at pH 7.4, whereas the fraction of the neutral HL species is significant (34–37%) in the case of the pyridine nitrogen-containing derivatives (PMA-E2, PMAP). Both estradiol derivatives were moderately cytotoxic in human breast (MCF-7) and colon adenocarcinoma (Colo-205) cells (IC50 = 30–63 μM). They form highly stable complexes with Cu(II) ions capable of oxidizing ascorbate and glutathione. These Cu(II) complexes are somewhat more cytotoxic (IC50 = 15–45 μM) than their corresponding ligands and show a better selectivity profile. Full article
(This article belongs to the Special Issue Metal-Based Compounds: Relevance for the Biomedical Field)
Show Figures

Figure 1

18 pages, 3179 KiB  
Article
Benzimidazol-2-ylidene Silver Complexes: Synthesis, Characterization, Antimicrobial and Antibiofilm Activities, Molecular Docking and Theoretical Investigations
by Uğur Tutar, Cem Çelik, Elvan Üstün, Namık Özdemir, Neslihan Şahin, David Sémeril, Nevin Gürbüz and İsmail Özdemir
Inorganics 2023, 11(10), 385; https://doi.org/10.3390/inorganics11100385 - 27 Sep 2023
Cited by 1 | Viewed by 1197
Abstract
Five silver(I) complexes, namely chloro[1-methallyl-3-benzyl)benzimidazol-2-ylidene] silver (6), chloro[1-methallyl-3-(2,3,5,6-tetramethylbenzyl)benzimidazol-2-ylidene]silver (7), chloro[1-methallyl-3-(3,4,5-trimethoxylbenzyl)benzimidazol-2-ylidene]silver (8), chloro[1-methallyl- 3-(naphthylmethyl)benzimidazol-2-ylidene]silver (9), and chloro [1-methallyl-3-(anthracen-9-yl- methyl)benzimidazol-2-ylidene]silver (10), were prepared starting from their corresponding benzimidazolium salts and silver oxide in 71–81% yields. [...] Read more.
Five silver(I) complexes, namely chloro[1-methallyl-3-benzyl)benzimidazol-2-ylidene] silver (6), chloro[1-methallyl-3-(2,3,5,6-tetramethylbenzyl)benzimidazol-2-ylidene]silver (7), chloro[1-methallyl-3-(3,4,5-trimethoxylbenzyl)benzimidazol-2-ylidene]silver (8), chloro[1-methallyl- 3-(naphthylmethyl)benzimidazol-2-ylidene]silver (9), and chloro [1-methallyl-3-(anthracen-9-yl- methyl)benzimidazol-2-ylidene]silver (10), were prepared starting from their corresponding benzimidazolium salts and silver oxide in 71–81% yields. A single-crystal X-ray structure of 7 was determined. These five Ag-NHC complexes were evaluated for their antimicrobial and biofilm formation inhibition properties. Complex 10 exhibited high antimicrobial activities comparable to those obtained with standard drugs such as Fluconazole in contact with Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Acinetobacter baumannii, and Candida albicans. The latter complex has been shown to be very efficient in antibiofilm activity, with 92.9% biofilm inhibition at 1.9 μg/mL on Escherichia coli. Additionally, the molecules were optimized with DFT-based computational methods for obtaining insight into the structure/reactivity relations through the relative energies of the frontier orbitals. The optimized molecules were also analyzed by molecular docking method against DNA gyrase of Escherichia coli and CYP51 from Candida albicans. Full article
(This article belongs to the Special Issue Metal-Based Compounds: Relevance for the Biomedical Field)
Show Figures

Graphical abstract

11 pages, 3302 KiB  
Article
Neutral W(V) Complexes Featuring the W2O2(µ-O)2 Core and Amino Acids or EDTA Derivatives as Ligands: Synthesis and Structural Characterization
by Hristo P. Varbanov, Ferdinand Belaj, Toma Glasnov, Simon Herbert, Thomas Brumby and Nadia C. Mösch-Zanetti
Inorganics 2023, 11(3), 114; https://doi.org/10.3390/inorganics11030114 - 09 Mar 2023
Viewed by 1294
Abstract
Multinuclear complexes of heavy metals, such as tungsten, have demonstrated considerable potential as candidates for advanced radiocontrast agents. Of particular interest is the development of stable non-ionic compounds with high metal content and reasonably low osmolality in solution. Accordingly, we have synthesized a [...] Read more.
Multinuclear complexes of heavy metals, such as tungsten, have demonstrated considerable potential as candidates for advanced radiocontrast agents. Of particular interest is the development of stable non-ionic compounds with high metal content and reasonably low osmolality in solution. Accordingly, we have synthesized a series of neutral W(V) complexes that contain the W2O2(µ-O)2 core and amino acids or disubstituted EDTA derivatives as ligands. The compounds were prepared from the oxalatotungstate(V) complex via a convenient procedure utilizing microwave heating. Their detailed characterization was accomplished by electrospray ionization high-resolution mass spectrometry (ESI-HRMS), 1H and 13C NMR spectroscopy, elemental analysis, and X-ray crystallography. Further experiments to evaluate the utility of the complexes as radiocontrast media were precluded by their poor aqueous solubility. Full article
(This article belongs to the Special Issue Metal-Based Compounds: Relevance for the Biomedical Field)
Show Figures

Graphical abstract

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Green-Synthesized Zinc Oxide/Silver Nanoparticles from Sophora pachycarpa for Anticancer Activity, Gene Expression Analysis, and Antibacterial Applications
Authors: Sobhan Mortazavi-Derazkola
Affiliation: Birjand University of Medical Sciences

Title: Coordination compounds of nickel(II) with 3,5–dibromo–salicylaldehyde: Structure and interaction with biomolecules
Authors: Georgios I Psarras; Ariadni Zianna; Antonios G Hatzidimitriou; George Psomas
Affiliation: Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, Greece
Abstract: Three neutral nickel(II) complexes of 3,5–dibromo–salicylaldehyde (3,5–diBr–saloH) were synthesized in the presence or absence of 1,10–phenanthroline (phen) or its derivative 2,9–dimethyl–1,10–phenanthroline (neoc) as co–ligands, namely [Ni(3,5–diBr–salo)2(neoc)] (complex 1), [Ni(3,5–diBr–salo)2(phen)] (complex 2) and [Ni(3,5–diBr–salo)2(H2O)2] (complex 3), and were characterized by various techniques. The crystal structure of complex 1 was determined by single–crystal X–ray crystallography. According to employed studying techniques, the complexes interact tightly with calf–thymus DNA by an intercalative manner. Furthermore, the compounds bind tightly and reversibly to human and bovine serum albumin.

Back to TopTop