ijms-logo

Journal Browser

Journal Browser

Host-Pathogen Interaction 4.0

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Microbiology".

Deadline for manuscript submissions: closed (31 December 2022) | Viewed by 28422

Special Issue Editor

Special Issue Information

Dear Colleagues,

This Special Issue is the continuation of our previous Special Issue "Host-Pathogen Interaction 3.0".

Microorganisms can interact with larger organisms in many different ways, e.g., beneficially as symbionts, indifferently as commensals, or harmfully as pathogens. Today, a wide variety of molecular and cell biology tools, including advanced microscopy and -omics techniques, allow us to study these interactions at a molecular level. This Special Issue will deal with all aspects of pathogenic microorganisms (e.g., bacteria, yeasts, and protozoa) and their host organisms. Reviews and research articles focusing on either pathogens or hosts are welcome.

Prof. Dr. Andreas Burkovski
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 6098 KiB  
Article
Wheat Susceptibility Genes TaCAMTA2 and TaCAMTA3 Negatively Regulate Post-Penetration Resistance against Blumeria graminis forma specialis tritici
by Mengmeng Li, Zige Yang, Jiao Liu and Cheng Chang
Int. J. Mol. Sci. 2023, 24(12), 10224; https://doi.org/10.3390/ijms241210224 - 16 Jun 2023
Cited by 2 | Viewed by 808
Abstract
Blumeria graminis forma specialis tritici (B.g. tritici) is the airborne fungal pathogen that causes powdery mildew disease on hexaploid bread wheat. Calmodulin-binding transcription activators (CAMTAs) regulate plant responses to environments, but their potential functions in the regulation of wheat–B.g. tritici [...] Read more.
Blumeria graminis forma specialis tritici (B.g. tritici) is the airborne fungal pathogen that causes powdery mildew disease on hexaploid bread wheat. Calmodulin-binding transcription activators (CAMTAs) regulate plant responses to environments, but their potential functions in the regulation of wheat–B.g. tritici interaction remain unknown. In this study, the wheat CAMTA transcription factors TaCAMTA2 and TaCAMTA3 were identified as suppressors of wheat post-penetration resistance against powdery mildew. Transient overexpression of TaCAMTA2 and TaCAMTA3 enhanced the post-penetration susceptibility of wheat to B.g. tritici, while knockdown of TaCAMTA2 and TaCAMTA3 expression using transient- or virus-induced gene silencing compromised wheat post-penetration susceptibility to B.g. tritici. In addition, TaSARD1 and TaEDS1 were characterized as positive regulators of wheat post-penetration resistance against powdery mildew. Overexpressing TaSARD1 and TaEDS1 confers wheat post-penetration resistance against B.g. tritici, while silencing TaSARD1 and TaEDS1 enhances wheat post-penetration susceptibility to B.g. tritici. Importantly, we showed that expressions of TaSARD1 and TaEDS1 were potentiated by silencing of TaCAMTA2 and TaCAMTA3. Collectively, these results implicated that the Susceptibility genes TaCAMTA2 and TaCAMTA3 contribute to the wheat–B.g. tritici compatibility might via negative regulation of TaSARD1 and TaEDS1 expression. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

20 pages, 4036 KiB  
Article
Salmonella Type III Secretion Effector SrfJ: A Glucosylceramidase Affecting the Lipidome and the Transcriptome of Mammalian Host Cells
by Julia Aguilera-Herce, Concepción Panadero-Medianero, María Antonia Sánchez-Romero, Roberto Balbontín, Joaquín Bernal-Bayard and Francisco Ramos-Morales
Int. J. Mol. Sci. 2023, 24(9), 8403; https://doi.org/10.3390/ijms24098403 - 07 May 2023
Viewed by 1395
Abstract
Type III secretion systems are found in many Gram-negative pathogens and symbionts of animals and plants. Salmonella enterica has two type III secretion systems associated with virulence, one involved in the invasion of host cells and another involved in maintaining an appropriate intracellular [...] Read more.
Type III secretion systems are found in many Gram-negative pathogens and symbionts of animals and plants. Salmonella enterica has two type III secretion systems associated with virulence, one involved in the invasion of host cells and another involved in maintaining an appropriate intracellular niche. SrfJ is an effector of the second type III secretion system. In this study, we explored the biochemical function of SrfJ and the consequences for mammalian host cells of the expression of this S. enterica effector. Our experiments suggest that SrfJ is a glucosylceramidase that alters the lipidome and the transcriptome of host cells, both when expressed alone in epithelial cells and when translocated into macrophages in the context of Salmonella infection. We were able to identify seventeen lipids with higher levels and six lipids with lower levels in the presence of SrfJ. Analysis of the forty-five genes, the expression of which is significantly altered by SrfJ with a fold-change threshold of two, suggests that this effector may be involved in protecting Salmonella from host immune defenses. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

22 pages, 6434 KiB  
Article
Dynamic Association of ESCRT-II Proteins with ESCRT-I and ESCRT-III Complexes during Phagocytosis of Entamoeba histolytica
by Mitzi Díaz-Hernández, Rosario Javier-Reyna, Diana Martínez-Valencia, Sarita Montaño and Esther Orozco
Int. J. Mol. Sci. 2023, 24(6), 5267; https://doi.org/10.3390/ijms24065267 - 09 Mar 2023
Viewed by 1548
Abstract
By their active movement and voraux phagocytosis, the trophozoites of Entamoeba histolytica constitute an excellent system to investigate the dynamics of the Endosomal Sorting Complex Required for Transport (ESCRT) protein interactions through phagocytosis. Here, we studied the proteins forming the E. histolytica ESCRT-II [...] Read more.
By their active movement and voraux phagocytosis, the trophozoites of Entamoeba histolytica constitute an excellent system to investigate the dynamics of the Endosomal Sorting Complex Required for Transport (ESCRT) protein interactions through phagocytosis. Here, we studied the proteins forming the E. histolytica ESCRT-II complex and their relationship with other phagocytosis-involved molecules. Bioinformatics analysis predicted that EhVps22, EhVps25, and EhVps36 are E. histolytica bona fide orthologues of the ESCRT-II protein families. Recombinant proteins and specific antibodies revealed that ESCRT-II proteins interact with each other, with other ESCRT proteins, and phagocytosis-involved molecules, such as the adhesin (EhADH). Laser confocal microscopy, pull-down assays, and mass spectrometry analysis disclosed that during phagocytosis, ESCRT-II accompanies the red blood cells (RBCs) from their attachment to the trophozoites until their arrival to multivesicular bodies (MVBs), changing their interactive patterns according to the time and place of the process. Knocked-down trophozoites in the Ehvps25 gene presented a 50% lower rate of phagocytosis than the controls and lower efficiency to adhere RBCs. In conclusion, ESCRT-II interacts with other molecules during prey contact and conduction throughout the phagocytic channel and trophozoites membranous system. ESCRT-II proteins are members of the protein chain during vesicle trafficking and are fundamental for the continuity and efficiency of phagocytosis. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

19 pages, 4369 KiB  
Article
The Alpha-1 Subunit of the Na+/K+-ATPase (ATP1A1) Is a Host Factor Involved in the Attachment of Porcine Epidemic Diarrhea Virus
by Moukang Xiong, Xianhui Liu, Tairun Liang, Yanfang Ban, Yanling Liu, Leyi Zhang, Zheng Xu and Changxu Song
Int. J. Mol. Sci. 2023, 24(4), 4000; https://doi.org/10.3390/ijms24044000 - 16 Feb 2023
Cited by 1 | Viewed by 2039
Abstract
Porcine epidemic diarrhea (PED) is an acute and severe atrophic enteritis caused by porcine epidemic diarrhea virus (PEDV) that infects pigs and makes huge economic losses to the global swine industry. Previously, researchers have believed that porcine aminopeptidase-N (pAPN) was the primary receptor [...] Read more.
Porcine epidemic diarrhea (PED) is an acute and severe atrophic enteritis caused by porcine epidemic diarrhea virus (PEDV) that infects pigs and makes huge economic losses to the global swine industry. Previously, researchers have believed that porcine aminopeptidase-N (pAPN) was the primary receptor for PEDV, but it has been found that PEDV can infect pAPN knockout pigs. Currently, the functional receptor for PEDV remains unspecified. In the present study, we performed virus overlay protein binding assay (VOPBA), found that ATP1A1 was the highest scoring protein in the mass spectrometry results, and confirmed that the CT structural domain of ATP1A1 interacts with PEDV S1. First, we investigated the effect of ATP1A1 on PEDV replication. Inhibition of hosts ATP1A1 protein expression using small interfering RNA (siRNAs) significantly reduced the cells susceptibility to PEDV. The ATP1A1-specific inhibitors Ouabain (a cardiac steroid) and PST2238 (a digitalis toxin derivative), which specifically bind ATP1A1, could block the ATP1A1 protein internalization and degradation, and consequently reduce the infection rate of host cells by PEDV significantly. Additionally, as expected, overexpression of ATP1A1 notably enhanced PEDV infection. Next, we observed that PEDV infection of target cells resulted in upregulation of ATP1A1 at the mRNA and protein levels. Furthermore, we found that the host protein ATP1A1 was involved in PEDV attachment and co-localized with PEDV S1 protein in the early stage of infection. In addition, pretreatment of IPEC-J2 and Vero-E6 cells with ATP1A1 mAb significantly reduced PEDV attachment. Our observations provided a perspective on identifying key factors in PEDV infection, and may provide valuable targets for PEDV infection, PEDV functional receptor, related pathogenesis, and the development of new antiviral drugs. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

12 pages, 1649 KiB  
Article
Localized Infections with P. aeruginosa Strains Defective in Zinc Uptake Reveal That Zebrafish Embryos Recapitulate Nutritional Immunity Responses of Higher Eukaryotes
by Valerio Secli, Claudia Di Biagio, Arianna Martini, Emma Michetti, Francesca Pacello, Serena Ammendola and Andrea Battistoni
Int. J. Mol. Sci. 2023, 24(2), 944; https://doi.org/10.3390/ijms24020944 - 04 Jan 2023
Cited by 1 | Viewed by 1196
Abstract
The innate immune responses of mammals to microbial infections include strategies based on manipulating the local concentration of metals such as iron (Fe) and zinc (Zn), commonly described as nutritional immunity. To evaluate whether these strategies are also present in zebrafish embryos, we [...] Read more.
The innate immune responses of mammals to microbial infections include strategies based on manipulating the local concentration of metals such as iron (Fe) and zinc (Zn), commonly described as nutritional immunity. To evaluate whether these strategies are also present in zebrafish embryos, we have conducted a series of heart cavity-localized infection experiments with Pseudomonas aeruginosa strains characterized by a different ability to acquire Zn. We have found that, 48 h after infection, the bacterial strains lacking critical components of the Zn importers ZnuABC and ZrmABCD have a reduced colonization capacity compared to the wild-type strain. This observation, together with the finding of a high level of expression of Zur-regulated genes, suggests the existence of antimicrobial mechanisms based on Zn sequestration. However, we have observed that strains lacking such Zn importers have a selective advantage over the wild-type strain in the early stages of infection. Analysis of the expression of the gene that encodes for a Zn efflux pump has revealed that at short times after infection, P. aeruginosa is exposed to high concentrations of Zn. At the same time, zebrafish respond to the infection by activating the expression of the Zn transporters Slc30a1 and Slc30a4, whose mammalian homologs mediate a redistribution of Zn in phagocytes aimed at intoxicating bacteria with a metal excess. These observations indicate that teleosts share similar nutritional immunity mechanisms with higher vertebrates, and confirm the usefulness of the zebrafish model for studying host–pathogen interactions. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

17 pages, 4124 KiB  
Article
Host Cell Binding Mediated by Leptospira interrogans Adhesins
by Maria Beatriz Takahashi, Aline Florencio Teixeira and Ana Lucia Tabet Oller Nascimento
Int. J. Mol. Sci. 2022, 23(24), 15550; https://doi.org/10.3390/ijms232415550 - 08 Dec 2022
Cited by 3 | Viewed by 1244
Abstract
Leptospirosis is a neglected infectious disease with global impact on both humans and animals. The increase in urban development without sanitation planning is one of the main reasons for the disease spreading. The symptoms are similar to those of flu-like diseases, such as [...] Read more.
Leptospirosis is a neglected infectious disease with global impact on both humans and animals. The increase in urban development without sanitation planning is one of the main reasons for the disease spreading. The symptoms are similar to those of flu-like diseases, such as dengue, yellow fever, and malaria, which can result in a misleading clinical diagnosis. The characterization of host–pathogen interactions is important in the development of new vaccines, treatments, and diagnostics. However, the pathogenesis of leptospirosis is not well understood, and many gaps remain to be addressed. Here, we aimed to determine if Leptospira strains, virulent, culture-attenuated, and saprophytic, and the major outer membrane proteins OmpL37, OmpL1, LipL21, LipL41, and LipL46 are able to adhere to different endothelial, epithelial and fibroblast cell lines in vitro. We showed that virulent leptospires robustly bind to all cells compared to the culture-attenuated and saprophytic lines. The recombinant proteins exhibited certain adhesion, but only OmpL1 and LipL41 were able to bind to several cell lines, either in monolayer or in cell suspension. Blocking OmpL1 with polyclonal antibodies caused a decrease in bacterial binding to cells, contrasting with an increase observed when anti-LipL41 antibodies were used. The adhesion of OmpL1 to HMEC-1 and EA.hy926 was inhibited when cells were pre-incubated with collagen IV, suggesting that both compete for the same cell receptor. We present here for the first time the interaction of five leptospiral outer membrane proteins with several cell lines, and we conclude that LipL41 and OmpL1 may have an impact on leptospiral adhesion to mammalian cells and may mediate the colonization process in leptospiral pathogenesis. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

15 pages, 3745 KiB  
Article
Computational Analysis of Short Linear Motifs in the Spike Protein of SARS-CoV-2 Variants Provides Possible Clues into the Immune Hijack and Evasion Mechanisms of Omicron Variant
by Anjana Soorajkumar, Ebrahim Alakraf, Mohammed Uddin, Stefan S. Du Plessis, Alawi Alsheikh-Ali and Richard K. Kandasamy
Int. J. Mol. Sci. 2022, 23(15), 8822; https://doi.org/10.3390/ijms23158822 - 08 Aug 2022
Cited by 1 | Viewed by 2098
Abstract
Short linear motifs (SLiMs) are short linear sequences that can mediate protein–protein interaction. Mimicking eukaryotic SLiMs to compete with extra- or intracellular binding partners, or to sequester host proteins is the crucial strategy of viruses to pervert the host system. Evolved proteins in [...] Read more.
Short linear motifs (SLiMs) are short linear sequences that can mediate protein–protein interaction. Mimicking eukaryotic SLiMs to compete with extra- or intracellular binding partners, or to sequester host proteins is the crucial strategy of viruses to pervert the host system. Evolved proteins in viruses facilitate minimal protein–protein interactions that significantly affect intracellular signaling networks. Unfortunately, very little information about SARS-CoV-2 SLiMs is known, especially across SARS-CoV-2 variants. Through the ELM database-based sequence analysis of spike proteins from all the major SARS-CoV-2 variants, we identified four overriding SLiMs in the SARS-CoV-2 Omicron variant, namely, LIG_TRFH_1, LIG_REV1ctd_RIR_1, LIG_CaM_NSCaTE_8, and MOD_LATS_1. These SLiMs are highly likely to interfere with various immune functions, interact with host intracellular proteins, regulate cellular pathways, and lubricate viral infection and transmission. These cellular interactions possibly serve as potential therapeutic targets for these variants, and this approach can be further exploited to combat emerging SARS-CoV-2 variants. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

17 pages, 6368 KiB  
Article
In Peripheral Blood Mononuclear Cells Helicobacter pylori Induces the Secretion of Soluble and Exosomal Cytokines Related to Carcinogenesis
by Josefina Atrisco-Morales, Mónica Ramírez, Carlos Alberto Castañón-Sánchez, Adolfo Román-Román, Ilce Valeria Román-Fernández, Dinorah Nashely Martínez-Carrillo, Samuel García-Arellano, José Francisco Muñoz-Valle, Hugo Alberto Rodríguez-Ruiz and Gloria Fernández-Tilapa
Int. J. Mol. Sci. 2022, 23(15), 8801; https://doi.org/10.3390/ijms23158801 - 08 Aug 2022
Cited by 3 | Viewed by 2013
Abstract
Helicobacter pylori promotes the secretion of cytokines that regulate inflammation and carcinogenesis. Immune cells secrete cytokines into the extracellular medium or packaged in exosomes. The objective of this study was to analyze the profile of soluble and exosomal cytokines that were secreted by [...] Read more.
Helicobacter pylori promotes the secretion of cytokines that regulate inflammation and carcinogenesis. Immune cells secrete cytokines into the extracellular medium or packaged in exosomes. The objective of this study was to analyze the profile of soluble and exosomal cytokines that were secreted by human peripheral blood mononuclear cells (PBMCs) that were infected with H. pylori and to build a network of interaction between cytokines and cellular proteins. PBMCs were obtained by density gradient centrifugation and infected with H. pylori for 24 h. The infection was verified by immunofluorescence and Western blot for CagA. The exosomes were obtained from culture supernatant by ultracentrifugation and characterized by transmission electron microscopy, particle size analysis, and Western blot for CD9 and CD81. Cytokines were quantified using a multiplex immunoassay in the culture supernatant, intact exosomes, and lysed exosomes. H. pylori adheres to lymphocytes and translocates CagA. In PBMCs, H. pylori induces an increase in the soluble and exosomal IL-1β, IL-6, TNF-α, IL-10, IL-17A, IL-21, and IL-22. The protein–protein interaction (PPI) network shows that soluble and exosomal cytokines interact with proteins that participate in signaling pathways such as NF-κB, MAPK, PI3K-Akt, Jak-STAT, FoxO, and mTOR, that are related to carcinogenesis; moreover, TNF-α had the highest number of interactions. Cytokine-loaded exosomes represent another means of intercellular communication that is activated by H. pylori to stimulate inflammation, carcinogenesis, or cancer progression. Cytokine-loaded exosomes are likely to be associated with extragastrointestinal diseases of inflammatory origin. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

14 pages, 2761 KiB  
Article
Naegleria fowleri Cathepsin B Induces a Pro-Inflammatory Immune Response in BV-2 Microglial Cells via NF-κB and AP-1 Dependent-MAPK Signaling Pathway
by Hương Giang Lê, Jung-Mi Kang, Tuấn Cường Võ and Byoung-Kuk Na
Int. J. Mol. Sci. 2022, 23(15), 8388; https://doi.org/10.3390/ijms23158388 - 29 Jul 2022
Cited by 6 | Viewed by 2031
Abstract
Naegleria fowleri is a ubiquitous protozoa parasite that can cause primary amoebic meningoencephalitis (PAM), a fatal brain infection in humans. Cathepsin Bs of N. fowleri (NfCBs) are multifamily enzymes. Although their pathogenic mechanism in PAM is not clearly understood yet, NfCBs have been [...] Read more.
Naegleria fowleri is a ubiquitous protozoa parasite that can cause primary amoebic meningoencephalitis (PAM), a fatal brain infection in humans. Cathepsin Bs of N. fowleri (NfCBs) are multifamily enzymes. Although their pathogenic mechanism in PAM is not clearly understood yet, NfCBs have been proposed as pathogenic factors involved in the pathogenicity of amoeba. In this study, the immune response of BV-2 microglial cells induced by NfCB was analyzed. Recombinant NfCB (rNfCB) evoked enhanced expressions of TLR-2, TLR-4, and MyD88 in BV-2 microglial cells. This enzyme also induced an elevated production of several pro-inflammatory cytokines such as TNF-α, IL-1α, IL-1β, and IL-6 and iNOS in cells. The inhibition of mitogen-activated protein kinases (MAPKs), including JNK, p38, and ERK, effectively reduced the production of these pro-inflammatory cytokines. The rNfCB-induced production of pro-inflammatory cytokines in BV-2 microglial cells was suppressed by inhibiting NF-kB and AP-1. Phosphorylation and nuclear translocation of p65 in cells were also enhanced by rNfCB. These results suggest that NfCB can induce a pro-inflammatory immune response in BV-2 microglial cells via the NF-κB- and AP-1-dependent MAPK signaling pathways. Such a NfCB-induced pro-inflammatory immune response in BV-2 microglial cells might contribute to the pathogenesis of PAM caused by amoeba, by exacerbating deleterious immune responses and tissue damages in N. fowleri-infected foci of the brain. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

Review

Jump to: Research

14 pages, 1776 KiB  
Review
Developing Anti-Babesia bovis Blood Stage Vaccines: A New Perspective Regarding Synthetic Vaccines
by Laura Cuy-Chaparro, César Reyes, Eliana Vanessa Díaz-Guiot, Darwin Andrés Moreno-Pérez and Manuel Alfonso Patarroyo
Int. J. Mol. Sci. 2023, 24(6), 5219; https://doi.org/10.3390/ijms24065219 - 09 Mar 2023
Cited by 1 | Viewed by 1725
Abstract
Bovine babesiosis is caused by the Apicomplexa parasites from the genus Babesia. It is one of the most important tick-borne veterinary diseases worldwide; Babesia bovis being the species associated with the most severe clinical signs of the disease and causing the greatest [...] Read more.
Bovine babesiosis is caused by the Apicomplexa parasites from the genus Babesia. It is one of the most important tick-borne veterinary diseases worldwide; Babesia bovis being the species associated with the most severe clinical signs of the disease and causing the greatest economic losses. Many limitations related to chemoprophylaxis and the acaricides control of transmitting vectors have led to the adoption of live attenuated vaccine immunisation against B. bovis as an alternative control strategy. However, whilst this strategy has been effective, several drawbacks related to its production have prompted research into alternative methodologies for producing vaccines. Classical approaches for developing anti-B. bovis vaccines are thus discussed in this review and are compared to a recent functional approach to highlight the latter’s advantages when designing an effective synthetic vaccine targeting this parasite. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

20 pages, 781 KiB  
Review
Salmonella-Based Biorodenticides: Past Applications and Current Contradictions
by Anton E. Shikov, Maria E. Belousova, Mikhail V. Belousov, Anton A. Nizhnikov and Kirill S. Antonets
Int. J. Mol. Sci. 2022, 23(23), 14595; https://doi.org/10.3390/ijms232314595 - 23 Nov 2022
Cited by 2 | Viewed by 2028
Abstract
The idea of using pathogens to control pests has existed since the end of the 19th century. Enterobacteria from the genus Salmonella, discovered at that time, are the causative agents of many serious diseases in mammals often leading to death. Mostly, the [...] Read more.
The idea of using pathogens to control pests has existed since the end of the 19th century. Enterobacteria from the genus Salmonella, discovered at that time, are the causative agents of many serious diseases in mammals often leading to death. Mostly, the strains of Salmonella are able to infect a wide spectrum of hosts belonging to vertebrates, but some of them show host restriction. Several strains of these bacteria have been used as biorodenticides due to the host restriction until they were banned in many countries in the second part of the 20th century. The main reason for the ban was their potential pathogenicity for some domestic animals and poultry and the outbreaks of gastroenteritis in humans. Since that time, a lot of data regarding the host specificity and host restriction of different strains of Salmonella have been accumulated, and the complexity of the molecular mechanisms affecting it has been uncovered. In this review, we summarize the data regarding the history of studying and application of Salmonella-based rodenticides, discuss molecular systems controlling the specificity of Salmonella interactions within its multicellular hosts at different stages of infection, and attempt to reconstruct the network of genes and their allelic variants which might affect the host-restriction mechanisms. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

14 pages, 1807 KiB  
Review
The Black Box of Cellular and Molecular Events of Plasmodium vivax Merozoite Invasion into Reticulocytes
by Jessica Molina-Franky, César Reyes, Yelson Alejandro Picón Jaimes, Markus Kalkum and Manuel Alfonso Patarroyo
Int. J. Mol. Sci. 2022, 23(23), 14528; https://doi.org/10.3390/ijms232314528 - 22 Nov 2022
Cited by 4 | Viewed by 3628
Abstract
Plasmodium vivax is the most widely distributed malaria parasite affecting humans worldwide, causing ~5 million cases yearly. Despite the disease’s extensive burden, there are gaps in the knowledge of the pathophysiological mechanisms by which P. vivax invades reticulocytes. In contrast, this crucial step [...] Read more.
Plasmodium vivax is the most widely distributed malaria parasite affecting humans worldwide, causing ~5 million cases yearly. Despite the disease’s extensive burden, there are gaps in the knowledge of the pathophysiological mechanisms by which P. vivax invades reticulocytes. In contrast, this crucial step is better understood for P. falciparum, the less widely distributed but more often fatal malaria parasite. This discrepancy is due to the difficulty of studying P. vivax’s exclusive invasion of reticulocytes, which represent 1–2% of circulating cells. Its accurate targeting mechanism has not yet been clarified, hindering the establishment of long-term continuous in vitro culture systems. So far, only three reticulocyte invasion pathways have been characterised based on parasite interactions with DARC, TfR1 and CD98 host proteins. However, exposing the parasite’s alternative invasion mechanisms is currently being considered, opening up a large field for exploring the entry receptors used by P. vivax for invading host cells. New methods must be developed to ensure better understanding of the parasite to control malarial transmission and to eradicate the disease. Here, we review the current state of knowledge on cellular and molecular mechanisms of P. vivax’s merozoite invasion to contribute to a better understanding of the parasite’s biology, pathogenesis and epidemiology. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

18 pages, 1599 KiB  
Review
Lipid Droplets and Their Participation in Zika Virus Infection
by Zhao-Ling Qin, Qiu-Feng Yao, Hao Ren, Ping Zhao and Zhong-Tian Qi
Int. J. Mol. Sci. 2022, 23(20), 12584; https://doi.org/10.3390/ijms232012584 - 20 Oct 2022
Cited by 4 | Viewed by 2337
Abstract
Lipid droplets (LDs) are highly conserved and dynamic intracellular organelles. Their functions are not limited to serving as neutral lipid reservoirs; they also participate in non-energy storage functions, such as cell lipid metabolism, protection from cell stresses, maintaining protein homeostasis, and regulating nuclear [...] Read more.
Lipid droplets (LDs) are highly conserved and dynamic intracellular organelles. Their functions are not limited to serving as neutral lipid reservoirs; they also participate in non-energy storage functions, such as cell lipid metabolism, protection from cell stresses, maintaining protein homeostasis, and regulating nuclear function. During a Zika virus (ZIKV) infection, the viruses hijack the LDs to provide energy and lipid sources for viral replication. The co-localization of ZIKV capsid (C) protein with LDs supports its role as a virus replication platform and a key compartment for promoting the generation of progeny virus particles. However, in view of the multiple functions of LDs, their role in ZIKV infection needs further elucidation. Here, we review the basic mechanism of LD biogenesis and biological functions and discuss how ZIKV infection utilizes these effects of LDs to facilitate virus replication, along with the future application strategy of developing new antiviral drugs based on the interaction of ZIKV with LDs. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

29 pages, 2341 KiB  
Review
The NEL Family of Bacterial E3 Ubiquitin Ligases
by Andrea Bullones-Bolaños, Joaquín Bernal-Bayard and Francisco Ramos-Morales
Int. J. Mol. Sci. 2022, 23(14), 7725; https://doi.org/10.3390/ijms23147725 - 13 Jul 2022
Cited by 11 | Viewed by 2670
Abstract
Some pathogenic or symbiotic Gram-negative bacteria can manipulate the ubiquitination system of the eukaryotic host cell using a variety of strategies. Members of the genera Salmonella, Shigella, Sinorhizobium, and Ralstonia, among others, express E3 ubiquitin ligases that belong to [...] Read more.
Some pathogenic or symbiotic Gram-negative bacteria can manipulate the ubiquitination system of the eukaryotic host cell using a variety of strategies. Members of the genera Salmonella, Shigella, Sinorhizobium, and Ralstonia, among others, express E3 ubiquitin ligases that belong to the NEL family. These bacteria use type III secretion systems to translocate these proteins into host cells, where they will find their targets. In this review, we first introduce type III secretion systems and the ubiquitination process and consider the various ways bacteria use to alter the ubiquitin ligation machinery. We then focus on the members of the NEL family, their expression, translocation, and subcellular localization in the host cell, and we review what is known about the structure of these proteins, their function in virulence or symbiosis, and their specific targets. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

Back to TopTop