ijms-logo

Journal Browser

Journal Browser

Advances in Molecular Plant Sciences

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: closed (31 December 2023) | Viewed by 70384

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
Interests: redox balance; reactive oxygen species; hydrogen sulfide; protein persulfidation; plant drought tolerance; plant ABA signaling
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, our knowledge of plant molecular biology has been dramatically improved by the introduction of biochemical and biophysical breakthrough techniques and the updated knowledge of plant genomics and genetics. With the aim of stimulating broad interest in plant molecular biology, the collection of papers in this special issue of IJMS, therefore, will present an overview of the latest fundamental discoveries in the field. For this reason, we invite scientists active in the field to provide the community with their outstanding research contributions. We welcome all types of submissions, including original research, reviews, perspectives, and opinion articles in this field, including (but not limited to) research covering.

Prof. Dr. Yanjie Xie
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (46 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 4716 KiB  
Article
Leaf Senescence Regulation Mechanism Based on Comparative Transcriptome Analysis in Foxtail Millet
by Xiaoxi Zhen, Chao Liu, Yajun Guo, Zirui Yu, Yuanhuai Han, Bin Zhang and Yinpei Liang
Int. J. Mol. Sci. 2024, 25(7), 3905; https://doi.org/10.3390/ijms25073905 - 31 Mar 2024
Viewed by 471
Abstract
Leaf senescence, a pivotal process in plants, directly influences both crop yield and nutritional quality. Foxtail millet (Setaria italica) is a C4 model crop renowned for its exceptional nutritional value and stress tolerance characteristics. However, there is a lack of [...] Read more.
Leaf senescence, a pivotal process in plants, directly influences both crop yield and nutritional quality. Foxtail millet (Setaria italica) is a C4 model crop renowned for its exceptional nutritional value and stress tolerance characteristics. However, there is a lack of research on the identification of senescence-associated genes (SAGs) and the underlying molecular regulatory mechanisms governing this process. In this study, a dark-induced senescence (DIS) experimental system was applied to investigate the extensive physiological and transcriptomic changes in two foxtail millet varieties with different degrees of leaf senescence. The physiological and biochemical indices revealed that the light senescence (LS) variety exhibited a delayed senescence phenotype, whereas the severe senescence (SS) variety exhibited an accelerated senescence phenotype. The most evident differences in gene expression profiles between these two varieties during DIS included photosynthesis, chlorophyll, and lipid metabolism. Comparative transcriptome analysis further revealed a significant up-regulation of genes related to polysaccharide and calcium ion binding, nitrogen utilization, defense response, and malate metabolism in LS. In contrast, the expression of genes associated with redox homeostasis, carbohydrate metabolism, lipid homeostasis, and hormone signaling was significantly altered in SS. Through WGCNA and RT-qPCR analyses, we identified three SAGs that exhibit potential negative regulation towards dark-induced leaf senescence in foxtail millet. This study establishes the foundation for a further comprehensive examination of the regulatory network governing leaf senescence and provides potential genetic resources for manipulating senescence in foxtail millet. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 7566 KiB  
Article
DNA-Binding with One Finger (Dof) Transcription Factor Gene Family Study Reveals Differential Stress-Responsive Transcription Factors in Contrasting Drought Tolerance Potato Species
by Xin Jin, Zemin Wang, Qianyi Ai, Xuan Li, Jiangwei Yang, Ning Zhang and Huaijun Si
Int. J. Mol. Sci. 2024, 25(6), 3488; https://doi.org/10.3390/ijms25063488 - 20 Mar 2024
Viewed by 511
Abstract
DNA-binding with one finger (Dof) proteins comprise a large family that play central roles in stress tolerance by regulating the expression of stress-responsive genes via the DOFCORE element or by interacting with other regulatory proteins. Although the Dof TF has been identified in [...] Read more.
DNA-binding with one finger (Dof) proteins comprise a large family that play central roles in stress tolerance by regulating the expression of stress-responsive genes via the DOFCORE element or by interacting with other regulatory proteins. Although the Dof TF has been identified in a variety of species, its systemic analysis in potato (Solanum tuberosum L.) is lacking and its potential role in abiotic stress responses remains unclear. A total of 36 potential Dof genes in potato were examined at the genomic and transcriptomic levels in this work. Five phylogenetic groups can be formed from these 36 Dof proteins. An analysis of cis-acting elements revealed the potential roles of Dofs in potato development, including under numerous abiotic stress conditions. The cycling Dof factors (CDFs) might be the initial step in the abiotic stress response signaling cascade. In potato, five CDFs (StCDF1/StDof19, StCDF2/StDof4, StCDF3/StDof11, StCDF4/StDof24, and StCDF5/StDof15) were identified, which are homologs of Arabidopsis CDFs. The results revealed that these genes were engaged in a variety of abiotic reactions. Moreover, an expression analysis of StDof genes in two potato cultivars (‘Long10′ (drought tolerant) and ‘DXY’ (drought susceptible)) of contrasting tolerances under drought stress was carried out. Further, a regulatory network mediated by lncRNA and its target Dofs was established. The present study provides fundamental knowledge for further investigation of the roles of Dofs in the adaptation of potato to drought stress, aiming to provide insights into a viable strategy for crop improvement and stress-resistance breeding. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 2629 KiB  
Article
Identification of Gene–Allele System Conferring Alkali-Tolerance at Seedling Stage in Northeast China Soybean Germplasm
by Chunmei Zong, Jinming Zhao, Yanping Wang, Lei Wang, Zaoye Chen, Yuxin Qi, Yanfeng Bai, Wen Li, Wubin Wang, Haixiang Ren, Weiguang Du and Junyi Gai
Int. J. Mol. Sci. 2024, 25(5), 2963; https://doi.org/10.3390/ijms25052963 - 04 Mar 2024
Viewed by 544
Abstract
Salinization of cultivated soils may result in either high salt levels or alkaline conditions, both of which stress crops and reduce performance. We sampled genotypes included in the Northeast China soybean germplasm population (NECSGP) to identify possible genes that affect tolerance to alkaline [...] Read more.
Salinization of cultivated soils may result in either high salt levels or alkaline conditions, both of which stress crops and reduce performance. We sampled genotypes included in the Northeast China soybean germplasm population (NECSGP) to identify possible genes that affect tolerance to alkaline soil conditions. In this study, 361 soybean accessions collected in Northeast China were tested under 220 mM NaHCO3:Na2CO3 = 9:1 (pH = 9.8) to evaluate the alkali-tolerance (ATI) at the seedling stage in Mudanjiang, Heilongjiang, China. The restricted two-stage multi-locus model genome-wide association study (RTM-GWAS) with gene–allele sequences as markers (6503 GASMs) based on simplified genome resequencing (RAD-sequencing) was accomplished. From this analysis, 132 main effect candidate genes with 359 alleles and 35 Gene × Environment genes with 103 alleles were identified, explaining 90.93% and 2.80% of the seedling alkali-tolerance phenotypic variation, respectively. Genetic variability of ATI in NECSGP was observed primarily within subpopulations, especially in ecoregion B, from which 80% of ATI-tolerant accessions were screened out. The biological functions of 132 candidate genes were classified into eight functional categories (defense response, substance transport, regulation, metabolism-related, substance synthesis, biological process, plant development, and unknown function). From the ATI gene–allele system, six key genes–alleles were identified as starting points for further study on understanding the ATI gene network. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

7 pages, 1371 KiB  
Communication
Identification of Key Ubiquitination Sites Involved in the Proteasomal Degradation of AtACS7 in Arabidopsis
by Xianglin Tang, Ran Liu, Yuanyuan Mei, Dan Wang, Kaixuan He and Ning Ning Wang
Int. J. Mol. Sci. 2024, 25(5), 2931; https://doi.org/10.3390/ijms25052931 - 02 Mar 2024
Viewed by 505
Abstract
The gaseous hormone ethylene plays pivotal roles in plant growth and development. The rate-limiting enzyme of ethylene biosynthesis in seed plants is 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). ACS proteins are encoded by a multigene family and the expression of ACS genes is highly [...] Read more.
The gaseous hormone ethylene plays pivotal roles in plant growth and development. The rate-limiting enzyme of ethylene biosynthesis in seed plants is 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). ACS proteins are encoded by a multigene family and the expression of ACS genes is highly regulated, especially at a post-translational level. AtACS7, the only type III ACS in Arabidopsis, is degraded in a 26S proteasome-dependent pathway. Here, by using liquid chromatography–mass spectrometry/mass spectrometry (LC-MS/MS) analysis, two lysine residues of AtACS7, lys285 (K285) and lys366 (K366), were revealed to be ubiquitin-modified in young, light-grown Arabidopsis seedlings but not in etiolated seedlings. Deubiquitylation-mimicking mutations of these residues significantly increased the stability of the AtACS7K285RK366R mutant protein in cell-free degradation assays. All results suggest that K285 and K366 are the major ubiquitination sites on AtACS7, providing deeper insights into the post-translational regulation of AtACS7 in Arabidopsis. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 6851 KiB  
Article
Transcriptomic and Metabolomic Analyses Reveal the Role of Phenylalanine Metabolism in the Maize Response to Stalk Rot Caused by Fusarium proliferatum
by Jianjun Sun, Yanzhao Wang, Xingrui Zhang, Zeqiang Cheng, Yinghui Song, Huimin Li, Na Wang, Shen Liu, Zijia Cao, Hongxia Li, Wanying Zheng, Canxing Duan and Yanyong Cao
Int. J. Mol. Sci. 2024, 25(3), 1492; https://doi.org/10.3390/ijms25031492 - 25 Jan 2024
Viewed by 701
Abstract
Stalk rot is a prevalent disease of maize (Zea mays L.) that severely affects maize yield and quality worldwide. The ascomycete fungus Fusarium spp. is the most common pathogen of maize stalk rot. At present, the molecular mechanism of Fusarium proliferation during [...] Read more.
Stalk rot is a prevalent disease of maize (Zea mays L.) that severely affects maize yield and quality worldwide. The ascomycete fungus Fusarium spp. is the most common pathogen of maize stalk rot. At present, the molecular mechanism of Fusarium proliferation during the maize stalk infection that causes maize stalk rot has rarely been reported. In this study, we investigated the response of maize to F. proliferatum infestation by analyzing the phenotypic, transcriptomic, and metabolomic data of inbred lines ZC17 (resistant) and CH72 (susceptible) with different levels of resistance to stalk rot. Physiological and phenotypic results showed that the infection CH72 was significantly more severe than ZC17 after inoculation. Transcriptome analysis showed that after inoculation, the number of differentially expressed genes (DEGs) was higher in CH72 than in ZC17. Nearly half of these DEGs showed the same expression trend in the two inbred lines. Functional annotation and enrichment analyses indicated that the major pathways enriched for DEGs and DEMs included the biosynthesis of plant secondary metabolites, phenylalanine metabolism, biosynthesis of plant hormones, and plant–pathogen interactions. The comprehensive analysis of transcriptome and metabolome data indicated that phenylalanine metabolism and the phenylalanine, tyrosine, and tryptophan biosynthesis pathways played a crucial role in maize resistance to F. proliferatum infection. In addition, a transcription factor (TF) analysis of the DEGs showed that several TF families, including MYB, bHLH, NAC, and WRKY, were significantly activated after inoculation, suggesting that these TFs play important roles in the molecular regulatory network of maize disease resistance. The findings of this study provide valuable insights into the molecular basis of the response of maize to Fusarium proliferatum infection and highlight the importance of combining multiple approaches, such as phenotyping, transcriptomics, and metabolomics, to gain a comprehensive understanding of plant–pathogen interactions. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 7558 KiB  
Article
Heterologous Expression of Two Brassica campestris CCCH Zinc-Finger Proteins in Arabidopsis Induces Cytoplasmic Foci and Causes Pollen Abortion
by Liai Xu, Xingpeng Xiong, Tingting Liu, Jiashu Cao and Youjian Yu
Int. J. Mol. Sci. 2023, 24(23), 16862; https://doi.org/10.3390/ijms242316862 - 28 Nov 2023
Viewed by 753
Abstract
The membrane-less organelles in cytoplasm that are presented as cytoplasmic foci were successively identified. Although multiple CCCH zinc-finger proteins have been found to be localized in cytoplasmic foci, the relationship between their specific localization and functions still needs further clarification. Here, we report [...] Read more.
The membrane-less organelles in cytoplasm that are presented as cytoplasmic foci were successively identified. Although multiple CCCH zinc-finger proteins have been found to be localized in cytoplasmic foci, the relationship between their specific localization and functions still needs further clarification. Here, we report that the heterologous expression of two Brassica campestris CCCH zinc-finger protein genes (BcMF30a and BcMF30c) in Arabidopsis thaliana can affect microgametogenesis by involving the formation of cytoplasmic foci. By monitoring the distribution of proteins and observing pollen phenotypes, we found that, when these two proteins were moderately expressed in pollen, they were mainly dispersed in the cytoplasm, and the pollen developed normally. However, high expression induced the assembly of cytoplasmic foci, leading to pollen abortion. These findings suggested that the continuous formation of BcMF30a/BcMF30c-associated cytoplasmic foci due to high expression was the inducement of male sterility. A co-localization analysis further showed that these two proteins can be recruited into two well-studied cytoplasmic foci, processing bodies (PBs), and stress granules (SGs), which were confirmed to function in mRNA metabolism. Together, our data suggested that BcMF30a and BcMF30c play component roles in the assembly of pollen cytoplasmic foci. Combined with our previous study on the homologous gene of BcMF30a/c in Arabidopsis, we concluded that the function of these homologous genes is conserved and that cytoplasmic foci containing BcMF30a/c may participate in the regulation of gene expression in pollen by regulating mRNA metabolism. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

26 pages, 4581 KiB  
Article
Multi-Omics Analysis Reveals Synergistic Enhancement of Nitrogen Assimilation Efficiency via Coordinated Regulation of Nitrogen and Carbon Metabolism by Co-Application of Brassinolide and Pyraclostrobin in Arabidopsis thaliana
by Ya-Qi An, De-Jun Ma and Zhen Xi
Int. J. Mol. Sci. 2023, 24(22), 16435; https://doi.org/10.3390/ijms242216435 - 17 Nov 2023
Viewed by 705
Abstract
Improving nitrogen (N) assimilation efficiency without yield penalties is important to sustainable food security. The chemical regulation approach of N assimilation efficiency is still less explored. We previously found that the co-application of brassinolide (BL) and pyraclostrobin (Pyr) synergistically boosted biomass and yield [...] Read more.
Improving nitrogen (N) assimilation efficiency without yield penalties is important to sustainable food security. The chemical regulation approach of N assimilation efficiency is still less explored. We previously found that the co-application of brassinolide (BL) and pyraclostrobin (Pyr) synergistically boosted biomass and yield via regulating photosynthesis in Arabidopsis thaliana. However, the synergistic effect of BL and Pyr on N metabolism remains unclear. In this work, we examined the N and protein contents, key N assimilatory enzyme activities, and transcriptomic and metabolomic changes in the four treatments (untreated, BL, Pyr, and BL + Pyr). Our results showed that BL + Pyr treatment synergistically improved N and protein contents by 56.2% and 58.0%, exceeding the effects of individual BL (no increase) or Pyr treatment (36.4% and 36.1%). Besides synergistically increasing the activity of NR (354%), NiR (42%), GS (62%), and GOGAT (62%), the BL + Pyr treatment uniquely coordinated N metabolism, carbon utilization, and photosynthesis at the transcriptional and metabolic levels, outperforming the effects of individual BL or Pyr treatments. These results revealed that BL + Pyr treatments could synergistically improve N assimilation efficiency through improving N assimilatory enzyme activities and coordinated regulation of N and carbon metabolism. The identified genes and metabolites also informed potential targets and agrochemical combinations to enhance N assimilation efficiency. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 11130 KiB  
Article
Unlocking the Potential of Carbon Quantum Dots for Cell Imaging, Intracellular Localization, and Gene Expression Control in Arabidopsis thaliana (L.) Heynh.
by Zhimin Lin, Muhammad Moaaz Ali, Xiaoyan Yi, Lijuan Zhang, Shaojuan Wang and Faxing Chen
Int. J. Mol. Sci. 2023, 24(21), 15700; https://doi.org/10.3390/ijms242115700 - 28 Oct 2023
Viewed by 823
Abstract
Utilizing carbon quantum dots (CQDs) as biomaterials for delivering small substances has gained significant attention in recent research. However, the interactions and mechanisms of action of CQDs on plants have received relatively little focus. Herein, we investigated the transportation of CQDs into various [...] Read more.
Utilizing carbon quantum dots (CQDs) as biomaterials for delivering small substances has gained significant attention in recent research. However, the interactions and mechanisms of action of CQDs on plants have received relatively little focus. Herein, we investigated the transportation of CQDs into various organs of Arabidopsis thaliana (L.) Heynh. via the vessel system, leading to the epigenetic inheritance of Argonaute family genes. Our findings reveal that CQDs may interact with microRNAs (miRNAs), leading to the repression of post-transcriptional regulation of target genes in the cytoplasm. Transcriptome and quantitative PCR analyses demonstrated consistent gene expression levels in offspring. Moreover, microscopic observations illustrated rapid CQD localization on cell membranes and nuclei, with increased nuclear entry at higher concentrations. Notably, our study identified an alternative regulatory microRNA, microRNA172D, for the Argonaute family genes through methylation analysis, shedding light on the connection between CQDs and microRNAs. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 15780 KiB  
Article
Repression of GhTUBB1 Reduces Plant Height in Gossypium hirsutum
by Lihua Zhang, Caixia Ma, Lihua Wang, Xiaofeng Su, Jinling Huang, Hongmei Cheng and Huiming Guo
Int. J. Mol. Sci. 2023, 24(20), 15424; https://doi.org/10.3390/ijms242015424 - 21 Oct 2023
Cited by 2 | Viewed by 856
Abstract
The original ‘Green Revolution’ genes are associated with gibberellin deficiency. However, in some species, mutations in these genes cause pleiotropic phenotypes, preventing their application in dwarf breeding. The development of novel genotypes with reduced plant height will resolve this problem. In a previous [...] Read more.
The original ‘Green Revolution’ genes are associated with gibberellin deficiency. However, in some species, mutations in these genes cause pleiotropic phenotypes, preventing their application in dwarf breeding. The development of novel genotypes with reduced plant height will resolve this problem. In a previous study, we obtained two dwarf lines, L28 and L30, by introducing the Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f. C-repeat-binding factor 1 (AmCBF1) into the upland cotton variety R15. We found that Gossypium hirsutum Tubulin beta-1 (GhTUBB1) was downregulated in L28 and L30, which suggested that this gene may have contributed to the dwarf phenotype of L28 and L30. Here, we tested this hypothesis by silencing GhTUBB1 expression in R15 and found that decreased expression resulted in a dwarf phenotype. Interestingly, we found that repressing AmCBF1 expression in L28 and L30 partly recovered the expression of GhTUBB1. Thus, AmCBF1 expression presented a negative relationship with GhTUBB1 expression in L28 and L30. Moreover, yeast one-hybrid and dual-luciferase assays suggest that AmCBF1 negatively regulates GhTUBB1 expression by directly binding to C-repeat/dehydration-responsive (CRT/DRE) elements in the GhTUBB1 promoter, potentially explaining the dwarf phenotypes of L28 and L30. This study elucidates the regulation of GhTUBB1 expression by AmCBF1 and suggests that GhTUBB1 may be a new target gene for breeding dwarf and compact cultivars. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

11 pages, 2781 KiB  
Article
Fast and High-Efficiency Synthesis of Capsanthin in Pepper by Transient Expression of Geminivirus
by Zhimin Lin, Muhammad Moaaz Ali, Xiaoyan Yi, Lijuan Zhang and Shaojuan Wang
Int. J. Mol. Sci. 2023, 24(19), 15008; https://doi.org/10.3390/ijms241915008 - 09 Oct 2023
Viewed by 862
Abstract
The color of the chili fruit is an important factor that determines the quality of the chili, as red chilies are more popular among consumers. The accumulation of capsanthin is the main cause of reddening of the chili fruit. Capsanthin is an important [...] Read more.
The color of the chili fruit is an important factor that determines the quality of the chili, as red chilies are more popular among consumers. The accumulation of capsanthin is the main cause of reddening of the chili fruit. Capsanthin is an important metabolite in carotenoid metabolism, and its production level is closely linked to the expression of the genes for capsanthin/capsorubin synthase (CCS) and carotenoid hydroxylase (CrtZ). We reported for the first time that the synthesis of capsanthin in chili was enhanced by using a geminivirus (Bean Yellow Dwarf Virus). By expressing heterologous β-carotenoid hydroxylase (CrtZ) and β-carotenoid ketolase (CrtW) using codon optimization, the transcription level of the CCS gene and endogenous CrtZ was directly increased. This leads to the accumulation of a huge amount of capsanthin in a very short period of time. Our results provide a platform for the rapid enhancement of endogenous CCS activity and capsanthin production using geminivirus in plants. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 5873 KiB  
Article
An Investigation of the JAZ Family and the CwMYC2-like Protein to Reveal Their Regulation Roles in the MeJA-Induced Biosynthesis of β-Elemene in Curcuma wenyujin
by Yuyang Liu, Shiyi Wu, Kaer Lan, Qian Wang, Tingyu Ye, Huanan Jin, Tianyuan Hu, Tian Xie, Qiuhui Wei and Xiaopu Yin
Int. J. Mol. Sci. 2023, 24(19), 15004; https://doi.org/10.3390/ijms241915004 - 09 Oct 2023
Viewed by 910
Abstract
β-Elemene (C15H24), a sesquiterpenoid compound isolated from the volatile oil of Curcuma wenyujin, has been proven to be effective for multiple cancers and is widely used in clinical treatment. Unfortunately, the β-elemene content in C. wenyujin is very [...] Read more.
β-Elemene (C15H24), a sesquiterpenoid compound isolated from the volatile oil of Curcuma wenyujin, has been proven to be effective for multiple cancers and is widely used in clinical treatment. Unfortunately, the β-elemene content in C. wenyujin is very low, which cannot meet market demands. Our previous research showed that methyl jasmonate (MeJA) induced the accumulation of β-elemene in C. wenyujin. However, the regulatory mechanism is unclear. In this study, 20 jasmonate ZIM-domain (JAZ) proteins in C. wenyujin were identified, which are the core regulatory factors of the JA signaling pathway. Then, the conservative domains, motifs composition, and evolutionary relationships of CwJAZs were analyzed comprehensively and systematically. The interaction analysis indicated that CwJAZs can form homodimers or heterodimers. Fifteen out of twenty CwJAZs were significantly induced via MeJA treatment. As the master switch of the JA signaling pathway, the CwMYC2-like protein has also been identified and demonstrated to interact with CwJAZ2/3/4/5/7/15/17/20. Further research found that the overexpression of the CwMYC2-like gene increased the accumulation of β-elemene in C. wenyujin leaves. Simultaneously, the expressions of HMGR, HMGS, DXS, DXR, MCT, HDS, HDR, and FPPS related to β-elemene biosynthesis were also up-regulated by the CwMYC2-like protein. These results indicate that CwJAZs and the CwMYC2-like protein respond to the JA signal to regulate the biosynthesis of β-elemene in C. wenyujin. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 6117 KiB  
Article
Physiological, Proteomic, and Resin Yield-Related Genes Expression Analysis Provides Insights into the Mechanisms Regulating Resin Yield in Masson Pine
by Zhengchun Li, Zijing Zhou, Qiandong Hou, Luonan Shen, Hong Zhao and Xiaopeng Wen
Int. J. Mol. Sci. 2023, 24(18), 13813; https://doi.org/10.3390/ijms241813813 - 07 Sep 2023
Viewed by 889
Abstract
Masson pine (Pinus massoniana Lamb.) is an important resin-producing conifer species in China. Resin yield is a highly heritable trait and varies greatly among different genotypes. However, the mechanisms regulating the resin yield of masson pine remain largely unknown. In this study, [...] Read more.
Masson pine (Pinus massoniana Lamb.) is an important resin-producing conifer species in China. Resin yield is a highly heritable trait and varies greatly among different genotypes. However, the mechanisms regulating the resin yield of masson pine remain largely unknown. In this study, physiological, proteomic, and gene expression analysis was performed on xylem tissues of masson pine with high and low resin yield. Physiological investigation showed that the activity of terpene synthase, as well as the contents of soluble sugar, jasmonic acid (JA), methyl jasmonate (MeJA), gibberellins (GA1, GA4, GA9, GA19, and GA20), indole-3-acetic acid (IAA), and abscisic acid (ABA) were significantly increased in the high yielder, whereas sucrose and salicylic acid (SA) were significantly decreased compared with the low one. A total of 2984 differentially expressed proteins (DEPs) were identified in four groups, which were mainly enriched in the biosynthesis of secondary metabolites, protein processing in the endoplasmic reticulum, carbohydrate metabolism, phytohormone biosynthesis, glutathione metabolism, and plant-pathogen interaction. Integrated physiological and proteomic analysis revealed that carbohydrate metabolism, terpenoid biosynthesis, resistance to stress, as well as JA and GA biosynthesis and signaling, play key roles in regulating resin yield. A series of proteins associated with resin yield, e.g., terpene synthase proteins (TPSs), ATP-binding cassette transporters (ABCs), glutathione S-transferase proteins (GSTs), and heat shock proteins (HSPs), were identified. Resin yield-related gene expression was also associated with resin yield. Our study unveils the implicated molecular mechanisms regulating resin yield and is of pivotal significance to breeding strategies of high resin-yielding masson pine cultivars. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 3246 KiB  
Article
Comparative Transcriptome Profiling Reveals Two WRKY Transcription Factors Positively Regulating Polysaccharide Biosynthesis in Polygonatum cyrtonema
by Wu Jiang, Jiadong Chen, Xiaojing Duan, Yaping Li and Zhengming Tao
Int. J. Mol. Sci. 2023, 24(16), 12943; https://doi.org/10.3390/ijms241612943 - 18 Aug 2023
Viewed by 922
Abstract
Polygonatum cyrtonema (P. cyrtonema) is a valuable rhizome-propagating traditional Chinese medical herb. Polysaccharides (PCPs) are the major bioactive constituents in P. cyrtonema. However, the molecular basis of PCP biosynthesis in P. cyrtonema remains unknown. In this study, we measured the [...] Read more.
Polygonatum cyrtonema (P. cyrtonema) is a valuable rhizome-propagating traditional Chinese medical herb. Polysaccharides (PCPs) are the major bioactive constituents in P. cyrtonema. However, the molecular basis of PCP biosynthesis in P. cyrtonema remains unknown. In this study, we measured the PCP contents of 11 wild P. cyrtonema germplasms. The results showed that PCP content was the highest in Lishui Qingyuan (LSQY, 11.84%) and the lowest in Hangzhou Lin’an (HZLA, 7.18%). We next analyzed the transcriptome profiles of LSQY and HZLA. Through a qRT-PCR analysis of five differential expression genes from the PCP biosynthesis pathway, phosphomannomutase, UDP-glucose 4-epimerase (galE), and GDP-mannose 4,6-dehydratase were determined as the key enzymes. A protein of a key gene, galE1, was localized in the chloroplast. The PCP content in the transiently overexpressed galE1 tobacco leaves was higher than in the wild type. Moreover, luciferase and Y1H assays indicated that PcWRKY31 and PcWRKY34 could activate galE1 by binding to its promoter. Our research uncovers the novel regulatory mechanism of PCP biosynthesis in P. cyrtonema and is critical to molecular-assisted breeding. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 4414 KiB  
Article
Integrated Metabolome and Transcriptome Analysis Provides New Insights into the Glossy Graft Cucumber Fruit (Cucumis sativus L.)
by Jie Ren, Lu Yang, Ruifang Cao, Yidan Wang, Can Zhang, Xuejing Yu, Wendi Meng and Xueling Ye
Int. J. Mol. Sci. 2023, 24(15), 12147; https://doi.org/10.3390/ijms241512147 - 29 Jul 2023
Viewed by 863
Abstract
Cucumber is an important vegetable crop, and grafts often affect the quality and wax loss in cucumber fruit and affect its value. However, their metabolites and molecular mechanisms of action remain unclear. Metabolome and transcriptome analyses were conducted on the fruit peels of [...] Read more.
Cucumber is an important vegetable crop, and grafts often affect the quality and wax loss in cucumber fruit and affect its value. However, their metabolites and molecular mechanisms of action remain unclear. Metabolome and transcriptome analyses were conducted on the fruit peels of self-rooted plants (SR) grafted with white seed pumpkin (WG). The results showed that there were 352 differential metabolites in the fruit peels of the SR and WG. The transcriptome analysis showed 1371 differentially expressed genes (DEGs) between the WG and SR. These differentially expressed genes were significantly enriched in plant hormone signal transduction, cutin, suberin, wax biosynthesis, phenylpropanoid biosynthesis, and zeatin biosynthesis. By analyzing the correlation between differential metabolites and differentially expressed genes, six candidate genes related to the synthesis of glycitein, kaempferol, and homoeriodictyol were identified as being potentially important. Key transcription factors belonging to the TCP and WRKY families may be the main drivers of transcriptional changes in the peel between the SR and WG. The results of this study have provided a basis for the biosynthesis and regulation of wax loss and quality in grafted cucumbers and represents an important step toward identifying the molecular mechanisms of grafting onto cucumber fruit. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 5059 KiB  
Article
The Modulation of Sucrose Nonfermenting 1-Related Protein Kinase 2.6 State by Persulfidation and Phosphorylation: Insights from Molecular Dynamics Simulations
by Miaomiao Li, Ting Wu, Shuhan Wang, Tianqi Duan, Siqi Huang and Yanjie Xie
Int. J. Mol. Sci. 2023, 24(14), 11512; https://doi.org/10.3390/ijms241411512 - 15 Jul 2023
Cited by 1 | Viewed by 952
Abstract
SnRK2.6 (SUCROSE NONFERMENTING 1-RELATED PROTEIN KINASE2.6) has been characterized as a molecular switch for the intracellular abscisic acid (ABA) signal-transduction pathway. Normally, SnRK2.6 is kept in an “off” state, forming a binary complex with protein phosphatase type 2Cs (PP2Cs). Upon stressful conditions, SnRK2.6 [...] Read more.
SnRK2.6 (SUCROSE NONFERMENTING 1-RELATED PROTEIN KINASE2.6) has been characterized as a molecular switch for the intracellular abscisic acid (ABA) signal-transduction pathway. Normally, SnRK2.6 is kept in an “off” state, forming a binary complex with protein phosphatase type 2Cs (PP2Cs). Upon stressful conditions, SnRK2.6 turns into an “on” state by its release from PP2Cs and then phosphorylation at Ser175. However, how the ”on” and “off” states for SnRK2.6 are fine-tuned, thereby controlling the initiation and braking processes of ABA signaling, is still largely unclear. SnRK2.6 activity was tightly regulated through protein post-translational modifications (PTM), such as persulfidation and phosphorylation. Taking advantage of molecular dynamics simulations, our results showed that Cys131/137 persulfidation on SnRK2.6 induces destabilized binding and weakened interactions between SnRK2.6 and HAB1 (HYPERSENSITIVE TO ABA1), an important PP2C family protein. This unfavorable effect on the association of the SnRK2.6–HAB1 complex suggests that persulfidation functions are a positive regulator of ABA signaling initiation. In addition, Ser267 phosphorylation in persulfidated SnRK2.6 renders a stable physical association between SnRK2.6 and HAB1, a key characterization for SnRK2.6 inhibition. Rather than Ser175, HAB1 cannot dephosphorylate Ser267 in SnRK2.6, which implies that the retained phosphorylation status of Ser267 could ensure that the activated SnRK2.6 reforms the binary complex to cease ABA signaling. Taken together, our findings expand current knowledge concerning the regulation of persulfidation and phosphorylation on the state transition of SnRK2.6 and provide insights into the fine-tuned mechanism of ABA signaling. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 2768 KiB  
Article
Improving Rice Leaf Shape Using CRISPR/Cas9-Mediated Genome Editing of SRL1 and Characterizing Its Regulatory Network Involved in Leaf Rolling through Transcriptome Analysis
by Yue Han, Jinlian Yang, Hu Wu, Fang Liu, Baoxiang Qin and Rongbai Li
Int. J. Mol. Sci. 2023, 24(13), 11087; https://doi.org/10.3390/ijms241311087 - 04 Jul 2023
Viewed by 1877
Abstract
Leaf rolling is a crucial agronomic trait to consider in rice (Oryza sativa L.) breeding as it keeps the leaves upright, reducing interleaf shading and improving photosynthetic efficiency. The SEMI-ROLLED LEAF 1 (SRL1) gene plays a key role in regulating leaf [...] Read more.
Leaf rolling is a crucial agronomic trait to consider in rice (Oryza sativa L.) breeding as it keeps the leaves upright, reducing interleaf shading and improving photosynthetic efficiency. The SEMI-ROLLED LEAF 1 (SRL1) gene plays a key role in regulating leaf rolling, as it encodes a glycosylphosphatidylinositol-anchored protein located on the plasma membrane. In this study, we used CRISPR/Cas9 to target the second and third exons of the SRL1 gene in the indica rice line GXU103, which resulted in the generation of 14 T0 transgenic plants with a double-target mutation rate of 21.4%. After screening 120 T1 generation plants, we identified 26 T-DNA-free homozygous double-target mutation plants. We designated the resulting SRL1 homozygous double-target knockout as srl1-103. This line exhibited defects in leaf development, leaf rolling in the mature upright leaves, and a compact nature of the fully grown plants. Compared with the wild type (WT), the T2 generation of srl1-103 varied in two key aspects: the width of flag leaf (12.6% reduction compared with WT) and the leaf rolling index (48.77% increase compared with WT). In order to gain a deeper understanding of the involvement of SRL1 in the regulatory network associated with rice leaf development, we performed a transcriptome analysis for the T2 generation of srl1-103. A comparison of srl1-103 with WT revealed 459 differentially expressed genes (DEGs), including 388 upregulated genes and 71 downregulated genes. In terms of the function of the DEGs, there seemed to be a significant enrichment of genes associated with cell wall synthesis (LOC_Os08g01670, LOC_Os05g46510, LOC_Os04g51450, LOC_Os10g28080, LOC_Os04g39814, LOC_Os01g71474, LOC_Os01g71350, and LOC_Os11g47600) and vacuole-related genes (LOC_Os09g23300), which may partially explain the increased leaf rolling in srl1-103. Furthermore, the significant downregulation of BAHD acyltransferase-like protein gene (LOC_Os08g44840) could be the main reason for the decreased leaf angle and the compact nature of the mutant plants. In summary, this study successfully elucidated the gene regulatory network in which SRL1 participates, providing theoretical support for targeting this gene in rice breeding programs to promote variety improvement. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 5150 KiB  
Article
Transcriptome-Wide Identification of the GRAS Transcription Factor Family in Pinus massoniana and Its Role in Regulating Development and Stress Response
by Ye Yang, Romaric Hippolyte Agassin and Kongshu Ji
Int. J. Mol. Sci. 2023, 24(13), 10690; https://doi.org/10.3390/ijms241310690 - 27 Jun 2023
Cited by 1 | Viewed by 1690
Abstract
Pinus massoniana is a species used in afforestation and has high economic, ecological, and therapeutic significance. P. massoniana experiences a variety of biotic and abiotic stresses, and thus presents a suitable model for studying how woody plants respond to such stress. Numerous families [...] Read more.
Pinus massoniana is a species used in afforestation and has high economic, ecological, and therapeutic significance. P. massoniana experiences a variety of biotic and abiotic stresses, and thus presents a suitable model for studying how woody plants respond to such stress. Numerous families of transcription factors are involved in the research of stress resistance, with the GRAS family playing a significant role in plant development and stress response. Though GRASs have been well explored in various plant species, much research remains to be undertaken on the GRAS family in P. massoniana. In this study, 21 PmGRASs were identified in the P. massoniana transcriptome. P. massoniana and Arabidopsis thaliana phylogenetic analyses revealed that the PmGRAS family can be separated into nine subfamilies. The results of qRT-PCR and transcriptome analyses under various stress and hormone treatments reveal that PmGRASs, particularly PmGRAS9, PmGRAS10 and PmGRAS17, may be crucial for stress resistance. The majority of PmGRASs were significantly expressed in needles and may function at multiple locales and developmental stages, according to tissue-specific expression analyses. Furthermore, the DELLA subfamily members PmGRAS9 and PmGRAS17 were nuclear localization proteins, while PmGRAS9 demonstrated transcriptional activation activity in yeast. The results of this study will help explore the relevant factors regulating the development of P. massoniana, improve stress resistance and lay the foundation for further identification of the biological functions of PmGRASs. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 6829 KiB  
Article
Transcription Factor VvDREB2A from Vitis vinifera Improves Cold Tolerance
by Lixia Hou, Qiqi Wu, Xiaomin Zhu, Xiangyu Li, Xinxin Fan, Mengling Hui, Qing Ye, Guangchao Liu and Xin Liu
Int. J. Mol. Sci. 2023, 24(11), 9381; https://doi.org/10.3390/ijms24119381 - 27 May 2023
Viewed by 1361
Abstract
Low temperatures restrict the growth of the grapevine industry. The DREB transcription factors are involved in the abiotic stress response. Here, we isolated the VvDREB2A gene from Vitis vinifera cultivar ‘Zuoyouhong’ tissue culture seedlings. The full-length VvDREB2A cDNA was 1068 bp, encoding 355 [...] Read more.
Low temperatures restrict the growth of the grapevine industry. The DREB transcription factors are involved in the abiotic stress response. Here, we isolated the VvDREB2A gene from Vitis vinifera cultivar ‘Zuoyouhong’ tissue culture seedlings. The full-length VvDREB2A cDNA was 1068 bp, encoding 355 amino acids, which contained an AP2 conserved domain belonging to the AP2 family. Using transient expression in leaves of tobacco, VvDREB2A was localized to the nucleus, and it potentiated transcriptional activity in yeasts. Expression analysis revealed that VvDREB2A was expressed in various grapevine tissues, with the highest expression in leaves. VvDREB2A was induced by cold and the stress-signaling molecules H2S, nitric oxide, and abscisic acid. Furthermore, VvDREB2A-overexpressing Arabidopsis was generated to analyze its function. Under cold stress, the Arabidopsis overexpressing lines exhibited better growth and higher survival rates than the wild type. The content of oxygen free radicals, hydrogen peroxide, and malondialdehyde decreased, and antioxidant enzyme activities were enhanced. The content of raffinose family oligosaccharides (RFO) also increased in the VvDREB2A-overexpressing lines. Moreover, the expression of cold stress-related genes (COR15A, COR27, COR6.6, and RD29A) was also enhanced. Taken together, as a transcription factor, VvDREB2A improves plants resistance to cold stress by scavenging reactive oxygen species, increasing the RFO amount, and inducing cold stress-related gene expression levels. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 8240 KiB  
Article
The RING-Finger Protein NbRFP1 Contributes to Regulating the Host Hypersensitive Response Induced by Oat Dwarf Virus RepA
by Yanqing Liang, Zhanqi Wang, Qian Wang, Xueping Zhou and Yajuan Qian
Int. J. Mol. Sci. 2023, 24(9), 7697; https://doi.org/10.3390/ijms24097697 - 22 Apr 2023
Viewed by 1115
Abstract
Our previous study identified that the RepA protein encoded by the oat dwarf virus (ODV) was responsible for inducing a strong hypersensitive response (HR) during the virus infection in non-host tobacco plants. However, little was known about the molecular mechanism of the RepA-elicited [...] Read more.
Our previous study identified that the RepA protein encoded by the oat dwarf virus (ODV) was responsible for inducing a strong hypersensitive response (HR) during the virus infection in non-host tobacco plants. However, little was known about the molecular mechanism of the RepA-elicited HR. Here, a RING-finger protein, which is described as NbRFP1 and is mainly located in the cytoplasm and nucleus in Nicotiana benthamiana cells, was confirmed to interact with RepA. In addition, the accumulation level of NbRFP1 in N. benthamiana leaves was enhanced by either ODV infection or by only RepA expression. The knockdown of NbRFP1 by a TRV-mediated virus-induced gene silencing markedly delayed the ODV or RepA-elicited HR. By contrast, the overexpression of NbRFP1 in N. benthamiana conferred enhanced resistance to ODV infection and promoted RepA-induced HR. Further mutation analysis showed that a RING-finger domain located in NbRFP1 plays important roles in modulating RepA-induced HR, as well as in mediating the interaction between NbRFP1 and RepA. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 7334 KiB  
Article
Comparative Physiological and Transcriptomic Mechanisms of Defoliation in Cotton in Response to Thidiazuron versus Ethephon
by Baopeng Liao, Fangjun Li, Fei Yi, Mingwei Du, Xiaoli Tian and Zhaohu Li
Int. J. Mol. Sci. 2023, 24(8), 7590; https://doi.org/10.3390/ijms24087590 - 20 Apr 2023
Cited by 1 | Viewed by 1431
Abstract
Thidiazuron (TDZ) is a widely used chemical defoliant in cotton and can stimulate the production of ethylene in leaves, which is believed to be the key factor in inducing leaf abscission. Ethephon (Eth) can also stimulate ethylene production in leaves, but it is [...] Read more.
Thidiazuron (TDZ) is a widely used chemical defoliant in cotton and can stimulate the production of ethylene in leaves, which is believed to be the key factor in inducing leaf abscission. Ethephon (Eth) can also stimulate ethylene production in leaves, but it is less effective in promoting leaf shedding. In this study, the enzyme-linked immunosorbent assays (ELISA) and RNA-seq were used to determine specific changes at hormonal levels as well as transcriptomic mechanisms induced by TDZ compared with Eth. The TDZ significantly reduced the levels of auxin and cytokinin in cotton leaves, but no considerable changes were observed for Eth. In addition, TDZ specifically increased the levels of brassinosteroids and jasmonic acid in the leaves. A total of 13 764 differentially expressed genes that specifically responded to TDZ were identified by RNA-seq. The analysis of KEGG functional categories suggested that the synthesis, metabolism, and signal transduction of auxin, cytokinin, and brassinosteroid were all involved in the TDZ-induced abscission of cotton leaves. Eight auxin transport genes (GhPIN1-c_D, GhPIN3_D, GhPIN8_A, GhABCB19-b_A, GhABCB19-b_D, GhABCB2-b_D, GhLAX6_A, and GhLAX7_D) specifically responded to TDZ. The pro35S::GhPIN3a::YFP transgenic plants showed lower defoliation than the wild type treated with TDZ, and YFP fluorescence in leaves was almost extinguished after treatment with TDZ rather than Eth. This provides direct evidence that GhPIN3a is involved in the leaf abscission induced by TDZ. We found that 959 transcription factors (TFs) specifically responded to TDZ, and a co-expression network analysis (WGCNA) showed five hub TFs (GhNAC72, GhWRKY51, GhWRKY70, GhWRKY50, and GhHSF24) during chemical defoliation with TDZ. Our work sheds light on the molecular basis of TDZ-induced leaf abscission in cotton. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

11 pages, 3087 KiB  
Article
Germination and Growth of Plasma-Treated Maize Seeds Planted in Fields and Exposed to Realistic Environmental Conditions
by Nina Recek, Rok Zaplotnik, Alenka Vesel, Gregor Primc, Peter Gselman, Miran Mozetič and Matej Holc
Int. J. Mol. Sci. 2023, 24(7), 6868; https://doi.org/10.3390/ijms24076868 - 06 Apr 2023
Viewed by 1190
Abstract
In this study, we applied an inductively coupled, radio frequency oxygen plasma to maize seeds and investigated its effects on seedling emergence, plant number at tasseling, and crop yield of maize in realistic field conditions. Maize seeds of seven different hybrids were treated [...] Read more.
In this study, we applied an inductively coupled, radio frequency oxygen plasma to maize seeds and investigated its effects on seedling emergence, plant number at tasseling, and crop yield of maize in realistic field conditions. Maize seeds of seven different hybrids were treated over two harvest years. In addition to plasma-treated seeds, a control sample, fungicide-treated seeds, an eco-layer, and a plasma and eco-layer combination, were planted. Seedling emergence, plant number at tasseling (plants/m2), and yield (kg/ha), were recorded. In the first harvest year, results were negatively affected by the presence of an insect pest. In the second harvest year, plant number and yield results were more uniform. In both years, for two and three hybrids, respectively, the highest yield arose from plants from plasma-treated seeds, but the differences were only partially significant. Considering our results, plasma treatment of maize seeds appears to have a positive effect on the yield of the plant. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 2844 KiB  
Article
WAX INDUCER 1 Regulates β-Diketone Biosynthesis by Mediating Expression of the Cer-cqu Gene Cluster in Barley
by Sophia V. Gerasimova, Ekaterina V. Kolosovskaya, Alexander V. Vikhorev, Anna M. Korotkova, Christian W. Hertig, Mikhail A. Genaev, Dmitry V. Domrachev, Sergey V. Morozov, Elena I. Chernyak, Nikolay A. Shmakov, Gennady V. Vasiliev, Alex V. Kochetov, Jochen Kumlehn and Elena K. Khlestkina
Int. J. Mol. Sci. 2023, 24(7), 6762; https://doi.org/10.3390/ijms24076762 - 05 Apr 2023
Cited by 1 | Viewed by 2132
Abstract
Plant surface properties are crucial determinants of resilience to abiotic and biotic stresses. The outer layer of the plant cuticle consists of chemically diverse epicuticular waxes. The WAX INDUCER1/SHINE subfamily of APETALA2/ETHYLENE RESPONSIVE FACTORS regulates cuticle properties in plants. In this study, four [...] Read more.
Plant surface properties are crucial determinants of resilience to abiotic and biotic stresses. The outer layer of the plant cuticle consists of chemically diverse epicuticular waxes. The WAX INDUCER1/SHINE subfamily of APETALA2/ETHYLENE RESPONSIVE FACTORS regulates cuticle properties in plants. In this study, four barley genes homologous to the Arabidopsis thaliana AtWIN1 gene were mutated using RNA-guided Cas9 endonuclease. Mutations in one of them, the HvWIN1 gene, caused a recessive glossy sheath phenotype associated with β-diketone deficiency. A complementation test for win1 knockout (KO) and cer-x mutants showed that Cer-X and WIN1 are allelic variants of the same genomic locus. A comparison of the transcriptome from leaf sheaths of win1 KO and wild-type plants revealed a specific and strong downregulation of a large gene cluster residing at the previously known Cer-cqu locus. Our findings allowed us to postulate that the WIN1 transcription factor in barley is a master mediator of the β-diketone biosynthesis pathway acting through developmental stage- and organ-specific transactivation of the Cer-cqu gene cluster. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 5289 KiB  
Article
The Role and Mechanism of Hydrogen-Rich Water in the Cucumis sativus Response to Chilling Stress
by Xue Wang, Zhonghui An, Jiameng Liao, Nana Ran, Yimeng Zhu, Shufeng Ren, Xiangnan Meng, Na Cui, Yang Yu and Haiyan Fan
Int. J. Mol. Sci. 2023, 24(7), 6702; https://doi.org/10.3390/ijms24076702 - 04 Apr 2023
Cited by 3 | Viewed by 1437
Abstract
Cucumber is a warm climate vegetable that is sensitive to chilling reactions. Chilling can occur at any period of cucumber growth and development and seriously affects the yield and quality of cucumber. Hydrogen (H2) is a type of antioxidant that plays [...] Read more.
Cucumber is a warm climate vegetable that is sensitive to chilling reactions. Chilling can occur at any period of cucumber growth and development and seriously affects the yield and quality of cucumber. Hydrogen (H2) is a type of antioxidant that plays a critical role in plant development and the response to stress. Hydrogen-rich water (HRW) is the main way to use exogenous hydrogen. This study explored the role and mechanism of HRW in the cucumber defense response to chilling stress. The research results showed that applying 50% saturated HRW to the roots of cucumber seedlings relieved the damage caused by chilling stress. The growth and development indicators, such as plant height, stem diameter, leaf area, dry weight, fresh weight, and root length, increased under the HRW treatment. Photosynthetic efficiency, chlorophyll content, and Fv/Fm also improved and reduced energy dissipation. In addition, after HRW treatment, the REC and MDA content were decreased, and membrane lipid damage was reduced. NBT and DAB staining results showed that the color was lighter, and the area was smaller under HRW treatment. Additionally, the contents of O2 and H2O2 also decreased. Under chilling stress, the application of HRW increased the activity of the antioxidases SOD, CAT, POD, GR, and APX and improved the expression of the SOD, CAT, POD, GR, and APX antioxidase genes. The GSSG content was reduced, and the GSH content was increased. In addition, the ASA content also increased. Therefore, exogenous HRW is an effective measure for cucumber to respond to chilling stress. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 2516 KiB  
Article
Identification and Functional Characterization of CsMYCs in Cucumber Glandular Trichome Development
by Zhongxuan Feng, Lei Sun, Mingming Dong, Shanshan Fan, Kexin Shi, Yixin Qu, Liyan Zhu, Jinfeng Shi, Wujun Wang, Yihan Liu, Xiaofeng Chen, Yiqun Weng, Xingwang Liu and Huazhong Ren
Int. J. Mol. Sci. 2023, 24(7), 6435; https://doi.org/10.3390/ijms24076435 - 29 Mar 2023
Cited by 2 | Viewed by 1600
Abstract
Glandular trichomes (GTs), specialized structures formed by the differentiation of plant epidermal cells, are known to play important roles in the resistance of plants to external biotic and abiotic stresses. These structures are capable of storing and secreting secondary metabolites, which often have [...] Read more.
Glandular trichomes (GTs), specialized structures formed by the differentiation of plant epidermal cells, are known to play important roles in the resistance of plants to external biotic and abiotic stresses. These structures are capable of storing and secreting secondary metabolites, which often have important agricultural and medicinal values. In order to better understand the molecular developmental mechanisms of GTs, studies have been conducted in a variety of crops, including tomato (Solanum lycopersicum), sweetworm (Artemisia annua), and cotton (Gossypium hirsutum). The MYC transcription factor of the basic helix-loop-helix (bHLH) transcription factor family has been found to play an important role in GT development. In this study, a total of 13 cucumber MYC transcription factors were identified in the cucumber (Cucumis sativus L.) genome. After performing phylogenetic analyses and conserved motifs on the 13 CsMYCs in comparison to previously reported MYC transcription factors that regulate trichome development, seven candidate MYC transcription factors were selected. Through virus-induced gene silencing (VIGS), CsMYC2 is found to negatively regulate GT formation while CsMYC4, CsMYC5, CsMYC6, CsMYC7, and CsMYC8 are found to positively regulate GT formation. Furthermore, the two master effector genes, CsMYC2 and CsMYC7, are observed to have similar expression patterns indicating that they co-regulate the balance of GT development in an antagonistic way. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 2989 KiB  
Article
Identification of a Rice Leaf Width Gene Narrow Leaf 22 (NAL22) through Genome-Wide Association Study and Gene Editing Technology
by Yuchen Xu, Shuangyong Yan, Su Jiang, Lu Bai, Yanchen Liu, Shasha Peng, Rubin Chen, Qi Liu, Yinghui Xiao and Houxiang Kang
Int. J. Mol. Sci. 2023, 24(4), 4073; https://doi.org/10.3390/ijms24044073 - 17 Feb 2023
Cited by 5 | Viewed by 1732
Abstract
Rice leaf width (RLW) is a crucial determinant of photosynthetic area. Despite the discovery of several genes controlling RLW, the underlying genetic architecture remains unclear. In order to better understand RLW, this study conducted a genome-wide association study (GWAS) on 351 accessions from [...] Read more.
Rice leaf width (RLW) is a crucial determinant of photosynthetic area. Despite the discovery of several genes controlling RLW, the underlying genetic architecture remains unclear. In order to better understand RLW, this study conducted a genome-wide association study (GWAS) on 351 accessions from the rice diversity population II (RDP-II). The results revealed 12 loci associated with leaf width (LALW). In LALW4, we identified one gene, Narrow Leaf 22 (NAL22), whose polymorphisms and expression levels were associated with RLW variation. Knocking out this gene in Zhonghua11, using CRISPR/Cas9 gene editing technology, resulted in a short and narrow leaf phenotype. However, seed width remained unchanged. Additionally, we discovered that the vein width and expression levels of genes associated with cell division were suppressed in nal22 mutants. Gibberellin (GA) was also found to negatively regulate NAL22 expression and impact RLW. In summary, we dissected the genetic architecture of RLW and identified a gene, NAL22, which provides new loci for further RLW studies and a target gene for leaf shape design in modern rice breeding. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 5927 KiB  
Article
Gene Structural Specificity and Expression of MADS-Box Gene Family in Camellia chekiangoleosa
by Pengyan Zhou, Yanshu Qu, Zhongwei Wang, Bin Huang, Qiang Wen, Yue Xin, Zhouxian Ni and Li’an Xu
Int. J. Mol. Sci. 2023, 24(4), 3434; https://doi.org/10.3390/ijms24043434 - 08 Feb 2023
Cited by 6 | Viewed by 2344
Abstract
MADS-box genes encode transcription factors that affect plant growth and development. Camellia chekiangoleosa is an oil tree species with ornamental value, but there have been few molecular biological studies on the developmental regulation of this species. To explore their possible role in C. chekiangoleosa [...] Read more.
MADS-box genes encode transcription factors that affect plant growth and development. Camellia chekiangoleosa is an oil tree species with ornamental value, but there have been few molecular biological studies on the developmental regulation of this species. To explore their possible role in C. chekiangoleosa and lay a foundation for subsequent research, 89 MADS-box genes were identified across the whole genome of C. chekiangoleosa for the first time. These genes were present on all the chromosomes and were found to have expanded by tandem duplication and fragment duplication. Based on the results of a phylogenetic analysis, the 89 MADS-box genes could be divided into either type I (38) or type II (51). Both the number and proportion of the type II genes were significantly greater than those of Camellia sinensis and Arabidopsis thaliana, indicating that C. chekiangoleosa type II genes experienced a higher duplication rate or a lower loss rate. The results of both a sequence alignment and a conserved motif analysis suggest that the type II genes are more conserved, meaning that they may have originated and differentiated earlier than the type I genes did. At the same time, the presence of extra-long amino acid sequences may be an important feature of C. chekiangoleosa. Gene structure analysis revealed the number of introns of MADS-box genes: twenty-one type I genes had no introns, and 13 type I genes contained only 1~2 introns. The type II genes have far more introns and longer introns than the type I genes do. Some MIKCC genes have super large introns (≥15 kb), which are rare in other species. The super large introns of these MIKCC genes may indicate richer gene expression. Moreover, the results of a qPCR expression analysis of the roots, flowers, leaves and seeds of C. chekiangoleosa showed that the MADS-box genes were expressed in all those tissues. Overall, compared with that of the type I genes, the expression of the type II genes was significantly higher. The CchMADS31 and CchMADS58 genes (type II) were highly expressed specifically in the flowers, which may in turn regulate the size of the flower meristem and petals. CchMADS55 was expressed specifically in the seeds, which might affect seed development. This study provides additional information for the functional characterization of the MADS-box gene family and lays an important foundation for in-depth study of related genes, such as those involved in the development of the reproductive organs of C. chekiangoleosa. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 2702 KiB  
Communication
Creation of a Plant Metabolite Spectral Library for Untargeted and Targeted Metabolomics
by Yangyang Li, Wei Zhu, Qingyuan Xiang, Jeongim Kim, Craig Dufresne, Yufeng Liu, Tianlai Li and Sixue Chen
Int. J. Mol. Sci. 2023, 24(3), 2249; https://doi.org/10.3390/ijms24032249 - 23 Jan 2023
Cited by 4 | Viewed by 3220
Abstract
Large-scale high throughput metabolomic technologies are indispensable components of systems biology in terms of discovering and defining the metabolite parts of the system. However, the lack of a plant metabolite spectral library limits the metabolite identification of plant metabolomic studies. Here, we have [...] Read more.
Large-scale high throughput metabolomic technologies are indispensable components of systems biology in terms of discovering and defining the metabolite parts of the system. However, the lack of a plant metabolite spectral library limits the metabolite identification of plant metabolomic studies. Here, we have created a plant metabolite spectral library using 544 authentic standards, which increased the efficiency of identification for untargeted metabolomic studies. The process of creating the spectral library was described, and the mzVault library was deposited in the public repository for free download. Furthermore, based on the spectral library, we describe a process of creating a pseudo-targeted method, which was applied to a proof-of-concept study of Arabidopsis leaf extracts. As authentic standards become available, more metabolite spectra can be easily incorporated into the spectral library to improve the mzVault package. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 3996 KiB  
Article
Genome-Wide Analysis of ATP Binding Cassette (ABC) Transporters in Peach (Prunus persica) and Identification of a Gene PpABCC1 Involved in Anthocyanin Accumulation
by Cherono Sylvia, Juanli Sun, Yuanqiang Zhang, Charmaine Ntini, Collins Ogutu, Yun Zhao and Yuepeng Han
Int. J. Mol. Sci. 2023, 24(3), 1931; https://doi.org/10.3390/ijms24031931 - 18 Jan 2023
Cited by 8 | Viewed by 1986
Abstract
The ATP-binding cassette (ABC) transporter family is a large and diverse protein superfamily that plays various roles in plant growth and development. Although the ABC transporters are known to aid in the transport of a wide range of substrates across biological membranes, their [...] Read more.
The ATP-binding cassette (ABC) transporter family is a large and diverse protein superfamily that plays various roles in plant growth and development. Although the ABC transporters are known to aid in the transport of a wide range of substrates across biological membranes, their role in anthocyanin transport remains elusive. In this study, we identified a total of 132 putative ABC genes in the peach genome, and they were phylogenetically classified into eight subfamilies. Variations in spatial and temporal gene expression levels resulted in differential expression patterns of PpABC family members in various tissues of peach. PpABCC1 was identified as the most likely candidate gene essential for anthocyanin accumulation in peach. Transient overexpression of PpABCC1 caused a significant increase in anthocyanin accumulation in tobacco leaves and peach fruit, whereas virus-induced gene silencing of PpABCC1 in the blood-fleshed peach resulted in a significant decrease in anthocyanin accumulation. The PpABCC1 promoter contained an MYB binding cis-element, and it could be activated by anthocyanin-activator PpMYB10.1 based on yeast one-hybrid and dual luciferase assays. Thus, it seems that PpABCC1 plays a crucial role in anthocyanin accumulation in peach. Our results provide a new insight into the vacuolar transport of anthocyanins in peach. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 5047 KiB  
Article
Stellate Trichomes in Dionaea muscipula Ellis (Venus Flytrap) Traps, Structure and Functions
by Bartosz J. Płachno, Małgorzata Kapusta, Piotr Stolarczyk and Piotr Świątek
Int. J. Mol. Sci. 2023, 24(1), 553; https://doi.org/10.3390/ijms24010553 - 29 Dec 2022
Cited by 5 | Viewed by 2454
Abstract
The digestive organs of carnivorous plants have external (abaxial) glands and trichomes, which perform various functions. Dionaea muscipula Ellis (the Venus flytrap) is a model carnivorous plant species whose traps are covered by external trichomes. The aim of the study was to fill [...] Read more.
The digestive organs of carnivorous plants have external (abaxial) glands and trichomes, which perform various functions. Dionaea muscipula Ellis (the Venus flytrap) is a model carnivorous plant species whose traps are covered by external trichomes. The aim of the study was to fill in the gap regarding the structure of the stellate outer trichomes and their immunocytochemistry and to determine whether these data support the suggestions of other authors about the roles of these trichomes. Light and electron microscopy was used to show the trichomes’ structure. Fluorescence microscopy was used to locate the carbohydrate epitopes that are associated with the major cell wall polysaccharides and glycoproteins. The endodermal cells and internal head cells of the trichomes were differentiated as transfer cells, and this supports the idea that stellate trichomes transport solutes and are not only tomentose-like trichomes. Trichome cells differ in the composition of their cell walls, e.g., the cell walls of the internal head cells are enriched with arabinogalactan proteins (AGPs). The cell walls of the outer head cells are poor in both low and highly homogalacturonans (HGs), but the immature trichomes are rich in the pectic polysaccharide (1–4)–β-D-galactan. In the immature traps, young stellate trichomes produce mucilage which may protect the trap surface, and in particular, the trap entrance. However, the role of these trichomes is different when the outer head cells collapse. In the internal head cells, a thick secondary wall cell was deposited, which together with the thick cell walls of the outer head cells played the role of a large apoplastic space. This may suggest that mature stellate trichomes might function as hydathodes, but this should be experimentally proven. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

12 pages, 3463 KiB  
Communication
LaDAL1 Coordinates Age and Environmental Signals in the Life Cycle of Larix kaempferi
by Xiang-Yi Li, Zha-Long Ye, Dong-Xia Cheng, Qiao-Lu Zang, Li-Wang Qi and Wan-Feng Li
Int. J. Mol. Sci. 2023, 24(1), 426; https://doi.org/10.3390/ijms24010426 - 27 Dec 2022
Cited by 5 | Viewed by 2032
Abstract
Perennial woody plants are long-lived, and their life-cycle events occur in order in each generation, but what drives the occurrence and restart of these events in their offspring is unknown. Based on its age-dependent expression pattern and function, Larix kaempferi DEFICIENS-AGAMOUS-LIKE 1 ( [...] Read more.
Perennial woody plants are long-lived, and their life-cycle events occur in order in each generation, but what drives the occurrence and restart of these events in their offspring is unknown. Based on its age-dependent expression pattern and function, Larix kaempferi DEFICIENS-AGAMOUS-LIKE 1 (LaDAL1), a MADS transcription factor has been suggested to be a time recorder and life-cycle event coordinator. Here, we studied the dynamic spatiotemporal expression pattern of LaDAL1 in the life cycle of L. kaempferi to analyze the molecular mechanism of life-cycle progression. In full view of the life cycle, LaDAL1 transcription was related with life-cycle progression, and its transcript level increased sharply from age 3 to 5 years, which might be the molecular characteristic of the vegetative phase change, and then stayed at a high level. During sexual reproduction, LaDAL1 transcript level decreased sequentially during meiosis and embryogenesis, suggesting that meiosis rapidly lowers the age signal, and after fertilization, the age signal was reset to “0” with the embryogenesis. When a seed germinates, the next generation restarts, and the age is re-counted. Altogether, these results not only provide important and novel insights into the life-cycle progression and transgeneration in perennial woody plants, but also advance our understanding of age recording. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 6650 KiB  
Article
Full-Length Transcriptome Characterization and Functional Analysis of Pathogenesis-Related Proteins in Lilium Oriental Hybrid ‘Sorbonne’ Infected with Botrytis elliptica
by Wenting Du, Nan Chai, Zhengqiong Sun, Huiru Wang, Sixian Liu, Shunzhao Sui, Lan Luo and Daofeng Liu
Int. J. Mol. Sci. 2023, 24(1), 425; https://doi.org/10.3390/ijms24010425 - 27 Dec 2022
Viewed by 1735
Abstract
Gray mold (Botrytis elliptica) causes a deleterious fungal disease that decreases the ornamental value and yield of lilies. Lilium oriental hybrid ‘Sorbonne’ is a variety that is resistant to gray mold. Understanding the mechanism of resistance against B. elliptica infection in [...] Read more.
Gray mold (Botrytis elliptica) causes a deleterious fungal disease that decreases the ornamental value and yield of lilies. Lilium oriental hybrid ‘Sorbonne’ is a variety that is resistant to gray mold. Understanding the mechanism of resistance against B. elliptica infection in ‘Sorbonne’ can provide a basis for the genetic improvement in lily plants. In this study, a PacBio Sequel II system was used to sequence the full-length transcriptome of Lilium ‘Sorbonne’ after inoculation with B. elliptica. A total of 46.64 Gb subreads and 19,102 isoforms with an average length of 1598 bp were obtained. A prediction analysis revealed 263 lncRNAs, and 805 transcription factors, 4478 simple sequence repeats, and 17,752 coding sequences were identified. Pathogenesis-related proteins (PR), which may play important roles in resistance against B. elliptica infection, were identified based on the full-length transcriptome data and previously obtained second-generation transcriptome data. Nine non-redundant potential LhSorPR proteins were identified and assigned to two groups that were composed of two LhSorPR4 and seven LhSorPR10 proteins based on their genetic relatedness. The real-time quantitative reverse transcription PCR (qRT-PCR) results showed that the patterns of expression of nine differentially expressed PR genes under B. elliptica stress were basically consistent with the results of transcriptome sequencing. The pattern of expression of LhSorPR4s and LhSorPR10s genes in different tissues was analyzed, and the expression of each gene varied. Furthermore, we verified the function of LhSorPR4-2 gene in Lilium. The expression of LhSorPR4-2 was induced by phytohormones such as methyl jasmonate, salicylic acid, and ethephon. Moreover, the promoter region of LhSorPR4-2 was characterized by several functional domains associated with phytohormones and stress response. The overexpression of LhSorPR4-2 gene in ‘Sorbonne’ increased the resistance of the lily plant to B. elliptica and correlated with high chitinase activity. This study provides a full-length transcript database and functionally analyzed the resistance of PR gene to B. elliptica in Lilium, thereby introducing the candidate gene LhSorPR4-2 to breed resistance in Lilium. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 2236 KiB  
Article
Molecular Variation and Genomic Function of Citrus Vein Enation Virus
by Runqiu Dou, Qingqing Huang, Tao Hu, Fengzhe Yu, Hongxia Hu, Yaqin Wang, Xueping Zhou and Yajuan Qian
Int. J. Mol. Sci. 2023, 24(1), 412; https://doi.org/10.3390/ijms24010412 - 27 Dec 2022
Viewed by 1912
Abstract
In this study, we identified a new citrus vein enation virus (CVEV) isolate (named CVEV-DT1) through sRNA high-throughput sequencing and traditional sequencing. Phylogenetic analysis based on whole genome sequences of all known CVEV isolates revealed that CVEV-DT1 was in an evolutionary branch with [...] Read more.
In this study, we identified a new citrus vein enation virus (CVEV) isolate (named CVEV-DT1) through sRNA high-throughput sequencing and traditional sequencing. Phylogenetic analysis based on whole genome sequences of all known CVEV isolates revealed that CVEV-DT1 was in an evolutionary branch with other isolates from China. Molecular variation analysis showed that the single nucleotide variability along CVEV full-length sequences was less than 8%, with more transitions (60.55%) than transversions (39.43%), indicating a genetically homogeneous CVEV population. In addition, non-synonymous nucleotide mutations mainly occurred in ORF1 and ORF2. Based on disorder analysis of all encoded ORF by CVEV-DT1, we identified that the CVEV-DT1 coat protein (CP) formed spherical granules, mainly in the cell nucleus and partly throughout the cytoplasm, with liquid properties through subcellular localization and photobleaching assay. Furthermore, we also confirmed that the CVEV P0 protein has weak post-transcriptional RNA-silencing suppressor activity and could elicit a strong hypersensitive response (HR) in tobacco plants. Collectively, to the best of our knowledge, our study was the first to profile the genomic variation in all the reported CVEV isolates and reveal the functions of CVEV-DT1-encoded proteins. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 3325 KiB  
Article
Transcriptomic Evidence Reveals Low Gelatinous Layer Biosynthesis in Neolamarckia cadamba after Gravistimulation
by Mirza Faisal Qaseem, Kaili Wang, Haoqiang Yang, Shuai Zhao, Huiling Li and Ai-Min Wu
Int. J. Mol. Sci. 2023, 24(1), 268; https://doi.org/10.3390/ijms24010268 - 23 Dec 2022
Viewed by 1523
Abstract
Trees can control their shape and resist gravity by producing tension wood (TW), which is a special wood that results from trees being put under stress. TW is characterized by the presence of a gelatinous layer (G layer) and the differential distribution of [...] Read more.
Trees can control their shape and resist gravity by producing tension wood (TW), which is a special wood that results from trees being put under stress. TW is characterized by the presence of a gelatinous layer (G layer) and the differential distribution of cell wall polymers. In this study, we investigated whether or not gravistimulation in N. cadamba resulted in TW with an obvious G layer. The results revealed an absence of an obvious G layer in samples of the upper side of a leaning stem (UW), as well as an accumulation of cellulose and a decrease in lignin content. A negligible change in the content of these polymers was recorded and compared to untreated plant (NW) samples, revealing the presence of a G layer either in much lower concentrations or in a lignified form. A transcriptomic investigation demonstrated a higher expression of cell wall esterase- and hydrolase-related genes in the UW, suggesting an accumulation of noncellulosic sugars in the UW, similar to the spectroscopy results. Furthermore, several G-layer-specific genes were also downregulated, including fasciclin-like arabinogalactan proteins (FLA), beta-galactosidase (BGAL) and chitinase-like proteins (CTL). The gene coexpression network revealed a strong correlation between cell-wall-synthesis-related genes and G-layer-synthesis-specific genes, suggesting their probable antagonistic role during G layer formation. In brief, the G layer in N. cadamba was either synthesized in a very low amount or was lignified during an early stage of growth; further experimental validation is required to understand the exact mechanism and stage of G layer formation in N. cadamba during gravistimulation. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 34229 KiB  
Article
Glutathione Plays a Positive Role in the Proliferation of Pinus koraiensis Embryogenic Cells
by Fang Gao, Chunxue Peng, Yue Zhang, Hao Wang, Hailong Shen and Ling Yang
Int. J. Mol. Sci. 2022, 23(23), 14679; https://doi.org/10.3390/ijms232314679 - 24 Nov 2022
Cited by 1 | Viewed by 1121
Abstract
In the large-scale breeding of conifers, cultivating embryogenic cells with good proliferative capacity is crucial in the process of somatic embryogenesis. In the same cultural environment, the proliferative capacity of different cell lines is significantly different. To reveal the regulatory mechanism of proliferation [...] Read more.
In the large-scale breeding of conifers, cultivating embryogenic cells with good proliferative capacity is crucial in the process of somatic embryogenesis. In the same cultural environment, the proliferative capacity of different cell lines is significantly different. To reveal the regulatory mechanism of proliferation in woody plant cell lines with different proliferative potential, we used Korean pine cell lines with high proliferative potential 001#–001 (Fast) and low proliferative potential 001#–010 (Slow) for analysis. A total of 17 glutathione-related differentially expressed genes was identified between F and S cell lines. A total of 893 metabolites was obtained from the two cell lines in the metabolomic studies. A total of nine metabolites related to glutathione was significantly upregulated in the F cell line compared with the S cell line. The combined analyses revealed that intracellular glutathione might be the key positive regulator mediating the difference in proliferative capacity between F and S cell lines. The qRT-PCR assay validated 11 differentially expressed genes related to glutathione metabolism. Exogenous glutathione and its synthase inhibitor L-buthionine-sulfoximine treatment assay demonstrated the positive role of glutathione in the proliferation of Korean pine embryogenic cells. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 3197 KiB  
Article
Mutation of Leaf Senescence 1 Encoding a C2H2 Zinc Finger Protein Induces ROS Accumulation and Accelerates Leaf Senescence in Rice
by Chao Zhang, Ni Li, Zhongxiao Hu, Hai Liu, Yuanyi Hu, Yanning Tan, Qiannan Sun, Xiqin Liu, Langtao Xiao, Weiping Wang and Ruozhong Wang
Int. J. Mol. Sci. 2022, 23(22), 14464; https://doi.org/10.3390/ijms232214464 - 21 Nov 2022
Cited by 7 | Viewed by 2118
Abstract
Premature senescence of leaves causes a reduced yield and quality of rice by affecting plant growth and development. The regulatory mechanisms underlying early leaf senescence are still unclear. The Leaf senescence 1 (LS1) gene encodes a C2H2-type zinc finger protein that [...] Read more.
Premature senescence of leaves causes a reduced yield and quality of rice by affecting plant growth and development. The regulatory mechanisms underlying early leaf senescence are still unclear. The Leaf senescence 1 (LS1) gene encodes a C2H2-type zinc finger protein that is localized to both the nucleus and cytoplasm. In this study, we constructed a rice mutant named leaf senescence 1 (ls1) with a premature leaf senescence phenotype using CRISPR/Cas9-mediated editing of the LS1 gene. The ls1 mutants exhibited premature leaf senescence and reduced chlorophyll content. The expression levels of LS1 were higher in mature or senescent leaves than that in young leaves. The contents of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were significantly increased and catalase (CAT) activity was remarkably reduced in the ls1 plants. Furthermore, a faster decrease in pigment content was detected in mutants than that in WT upon induction of complete darkness. TUNEL and staining experiments indicated severe DNA degradation and programmed cell death in the ls1 mutants, which suggested that excessive ROS may lead to leaf senescence and cell death in ls1 plants. Additionally, an RT-qPCR analysis revealed that most senescence-associated and ROS-scavenging genes were upregulated in the ls1 mutants compared with the WT. Collectively, our findings revealed that LS1 might regulate leaf development and function, and that disruption of LS1 function promotes ROS accumulation and accelerates leaf senescence and cell death in rice. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 2999 KiB  
Article
Overexpression of RuFLS2 Enhances Flavonol-Related Substance Contents and Gene Expression Levels
by Xin Huang, Yaqiong Wu, Shanshan Zhang, Hao Yang, Wenlong Wu, Lianfei Lyu and Weilin Li
Int. J. Mol. Sci. 2022, 23(22), 14230; https://doi.org/10.3390/ijms232214230 - 17 Nov 2022
Cited by 2 | Viewed by 1283
Abstract
As an emerging third-generation fruit, blackberry has high nutritional value and is rich in polyphenols, flavonoids and anthocyanins. Flavonoid biosynthesis and metabolism is a popular research topic, but no related details have been reported for blackberry. Based on previous transcriptome data from this [...] Read more.
As an emerging third-generation fruit, blackberry has high nutritional value and is rich in polyphenols, flavonoids and anthocyanins. Flavonoid biosynthesis and metabolism is a popular research topic, but no related details have been reported for blackberry. Based on previous transcriptome data from this research group, two blackberry flavonol synthase genes were identified in this study, and the encoded proteins were subjected to bioinformatics analysis. RuFLS1 and RuFLS2 are both hydrophobic acidic proteins belonging to the 2OG-Fe(II) dioxygenase superfamily. RuFLS2 was expressed at 27.93-fold higher levels than RuFLS1 in red–purple fruit by RNA-seq analysis. Therefore, RuFLS2-overexpressing tobacco was selected for functional exploration. The identification of metabolites from transgenic tobacco showed significantly increased contents of flavonoids, such as apigenin 7-glucoside, kaempferol 3-O-rutinoside, astragalin, and quercitrin. The high expression of RuFLS2 also upregulated the expression levels of NtF3H and NtFLS in transgenic tobacco. The results indicate that RuFLS2 is an important functional gene regulating flavonoid biosynthesis and provides an important reference for revealing the molecular mechanism of flavonoid accumulation in blackberry fruit. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 4210 KiB  
Article
Genome-Wide Identification and Expression Patterns of AcSWEET Family in Pineapple and AcSWEET11 Mediated Sugar Accumulation
by Wenqiu Lin, Yue Pu, Shenghui Liu, Qingsong Wu, Yanli Yao, Yumei Yang, Xiumei Zhang and Weisheng Sun
Int. J. Mol. Sci. 2022, 23(22), 13875; https://doi.org/10.3390/ijms232213875 - 10 Nov 2022
Cited by 1 | Viewed by 1467
Abstract
Pineapple (Ananas comosus L.) is an important fruit crop in tropical regions, and it requires efficient sugar allocation during fruit development. Sugars Will Eventually be Exported Transporters (SWEETs) are a group of novel sugar transporters which play critical roles in seed and [...] Read more.
Pineapple (Ananas comosus L.) is an important fruit crop in tropical regions, and it requires efficient sugar allocation during fruit development. Sugars Will Eventually be Exported Transporters (SWEETs) are a group of novel sugar transporters which play critical roles in seed and fruit development. However, the function of AcSWEETs remains unknown in the sugar accumulation. Herein, 17 AcSWEETs were isolated and unevenly located in 11 chromosomes. Analysis of a phylogenetic tree indicated that 17 genes were classified into four clades, and the majority of AcSWEETs in each clade shared similar conserved motifs and gene structures. Tissue-specific gene expression showed that expression profiles of AcSWEETs displayed differences in different tissues and five AcSWEETs were strongly expressed during fruit development. AcSWEET11 was highly expressed in the stage of mature fruits in ‘Tainong16’ and ‘Comte de paris’, which indicates that AcSWEET11 was important to fruit development. Subcellular localization analysis showed that AcSWEET11 was located in the cell membrane. Notably, overexpression of AcSWEET11 could improve sugar accumulation in pineapple callus and transgenic tomato, which suggests that AcSWEET11 might positively contribute to sugar accumulation in pineapple fruit development. These results may provide insights to enhance sugar accumulation in fruit, thus improving pineapple quality in the future. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 3757 KiB  
Article
Identification of Genes and Metabolic Pathways Involved in Resin Yield in Masson Pine by Integrative Analysis of Transcriptome, Proteome and Biochemical Characteristics
by Zhengchun Li, Luonan Shen, Qiandong Hou, Zijing Zhou, Lina Mei, Hong Zhao and Xiaopeng Wen
Int. J. Mol. Sci. 2022, 23(19), 11420; https://doi.org/10.3390/ijms231911420 - 28 Sep 2022
Cited by 6 | Viewed by 1799
Abstract
Masson pine (Pinus massoniana L.) is one of the most important resin-producing tree species in southern China. However, the molecular regulatory mechanisms of resin yield are still unclear in masson pine. In this study, an integrated analysis of transcriptome, proteome, and biochemical [...] Read more.
Masson pine (Pinus massoniana L.) is one of the most important resin-producing tree species in southern China. However, the molecular regulatory mechanisms of resin yield are still unclear in masson pine. In this study, an integrated analysis of transcriptome, proteome, and biochemical characteristics from needles of masson pine with the high and common resin yield was investigated. The results showed that chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll (Chl C), carotenoids (Car), glucose (Glu), gibberellin A9 (GA9), gibberellin A15 (GA15), and gibberellin A53 (GA53) were significantly increased, whereas fructose (Fru), jasmonic acid (JA), jasmonoyl-L-isoleucine (JA-ILE), gibberellin A1 (GA1), gibberellin A3 (GA3), gibberellin A19 (GA19), and gibberellin A24 (GA24) were significantly decreased in the high resin yield in comparison with those in the common one. The integrated analysis of transcriptome and proteome showed that chlorophyll synthase (chlG), hexokinase (HXK), sucrose synthase (SUS), phosphoglycerate kinase (PGK), dihydrolipoamide dehydrogenase (PDH), dihydrolipoamide succinyltransferase (DLST), 12-oxophytodienoic acid reductase (OPR), and jasmonate O-methyltransferases (JMT) were consistent at the transcriptomic, proteomic, and biochemical levels. The pathways of carbohydrate metabolism, terpenoid biosynthesis, photosynthesis, and hormone biosynthesis may play crucial roles in the regulation of resin yield, and some key genes involved in these pathways may be candidates that influence the resin yield. These results provide insights into the molecular regulatory mechanisms of resin yield and also provide candidate genes that can be applied for the molecular-assisted selection and breeding of high resin-yielding masson pine. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 3584 KiB  
Article
Transgenerationally Transmitted DNA Demethylation of a Spontaneous Epialleles Using CRISPR/dCas9-TET1cd Targeted Epigenetic Editing in Arabidopsis
by Min Wang, Li He, Bowei Chen, Yanwei Wang, Lishan Wang, Wei Zhou, Tianxu Zhang, Lesheng Cao, Peng Zhang, Linan Xie and Qingzhu Zhang
Int. J. Mol. Sci. 2022, 23(18), 10492; https://doi.org/10.3390/ijms231810492 - 10 Sep 2022
Cited by 4 | Viewed by 1808
Abstract
CRISPR/dCas9 is an important DNA modification tool in which a disarmed Cas9 protein with no nuclease activity is fused with a specific DNA modifying enzyme. A previous study reported that overexpression of the TET1 catalytic domain (TET1cd) reduces genome-wide methylation in Arabidopsis. A [...] Read more.
CRISPR/dCas9 is an important DNA modification tool in which a disarmed Cas9 protein with no nuclease activity is fused with a specific DNA modifying enzyme. A previous study reported that overexpression of the TET1 catalytic domain (TET1cd) reduces genome-wide methylation in Arabidopsis. A spontaneous naturally occurring methylation region (NMR19-4) was identified in the promoter region of the PPH (Pheophytin Pheophorbide Hydrolase) gene, which encodes an enzyme that can degrade chlorophyll and accelerate leaf senescence. The methylation status of NMR19-4 is associated with PPH expression and leaf senescence in Arabidopsis natural accessions. In this study, we show that the CRISPR/dCas9-TET1cd system can be used to target the methylation of hypermethylated NMR19-4 region to reduce the level of methylation, thereby increasing the expression of PPH and accelerating leaf senescence. Furthermore, hybridization between transgenic demethylated plants and hypermethylated ecotypes showed that the demethylation status of edited NMR19-4, along with the enhanced PPH expression and accelerated leaf senescence, showed Mendelian inheritance in F1 and F2 progeny, indicating that spontaneous epialleles are stably transmitted trans-generationally after demethylation editing. Our results provide a rational approach for future editing of spontaneously mutated epialleles and provide insights into the epigenetic mechanisms that control plant leaf senescence. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 3945 KiB  
Review
Application of Single-Cell Assay for Transposase-Accessible Chromatin with High Throughput Sequencing in Plant Science: Advances, Technical Challenges, and Prospects
by Chao Lu, Yunxiao Wei, Mubashir Abbas, Hasi Agula, Edwin Wang, Zhigang Meng and Rui Zhang
Int. J. Mol. Sci. 2024, 25(3), 1479; https://doi.org/10.3390/ijms25031479 - 25 Jan 2024
Viewed by 929
Abstract
The Single-cell Assay for Transposase-Accessible Chromatin with high throughput sequencing (scATAC-seq) has gained increasing popularity in recent years, allowing for chromatin accessibility to be deciphered and gene regulatory networks (GRNs) to be inferred at single-cell resolution. This cutting-edge technology now enables the genome-wide [...] Read more.
The Single-cell Assay for Transposase-Accessible Chromatin with high throughput sequencing (scATAC-seq) has gained increasing popularity in recent years, allowing for chromatin accessibility to be deciphered and gene regulatory networks (GRNs) to be inferred at single-cell resolution. This cutting-edge technology now enables the genome-wide profiling of chromatin accessibility at the cellular level and the capturing of cell-type-specific cis-regulatory elements (CREs) that are masked by cellular heterogeneity in bulk assays. Additionally, it can also facilitate the identification of rare and new cell types based on differences in chromatin accessibility and the charting of cellular developmental trajectories within lineage-related cell clusters. Due to technical challenges and limitations, the data generated from scATAC-seq exhibit unique features, often characterized by high sparsity and noise, even within the same cell type. To address these challenges, various bioinformatic tools have been developed. Furthermore, the application of scATAC-seq in plant science is still in its infancy, with most research focusing on root tissues and model plant species. In this review, we provide an overview of recent progress in scATAC-seq and its application across various fields. We first conduct scATAC-seq in plant science. Next, we highlight the current challenges of scATAC-seq in plant science and major strategies for cell type annotation. Finally, we outline several future directions to exploit scATAC-seq technologies to address critical challenges in plant science, ranging from plant ENCODE(The Encyclopedia of DNA Elements) project construction to GRN inference, to deepen our understanding of the roles of CREs in plant biology. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 950 KiB  
Review
Isolation, Purification, and Application of Protoplasts and Transient Expression Systems in Plants
by Kebin Chen, Jiali Chen, Xin Pi, Li-Jun Huang and Ning Li
Int. J. Mol. Sci. 2023, 24(23), 16892; https://doi.org/10.3390/ijms242316892 - 29 Nov 2023
Viewed by 1458
Abstract
Protoplasts, derived from plant cells, exhibit remarkable totipotency and hold significant value across a wide spectrum of biological and biotechnological applications. These versatile applications encompass protein subcellular localization and interaction analysis, gene expression regulation, functional characterization, gene editing techniques, and single-cell sequencing. Protoplasts’ [...] Read more.
Protoplasts, derived from plant cells, exhibit remarkable totipotency and hold significant value across a wide spectrum of biological and biotechnological applications. These versatile applications encompass protein subcellular localization and interaction analysis, gene expression regulation, functional characterization, gene editing techniques, and single-cell sequencing. Protoplasts’ usability stems from their inherent accessibility and their ability to efficiently incorporate exogenous genes. In this review, we provide a comprehensive overview, including details on isolation procedures and influencing factors, purification and viability assessment methodologies, and the utilization of the protoplast transient expression system. The aim is to provide a comprehensive overview of current applications and offer valuable insights into protoplast isolation and the establishment of transient expression systems in a diverse range of plant species, thereby serving as a valuable resource for the plant science community. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 881 KiB  
Review
Molecular Machinery of Lipid Droplet Degradation and Turnover in Plants
by Zhaoxia Qin, Tianyu Wang, Yanxiu Zhao, Changle Ma and Qun Shao
Int. J. Mol. Sci. 2023, 24(22), 16039; https://doi.org/10.3390/ijms242216039 - 07 Nov 2023
Viewed by 1084
Abstract
Lipid droplets (LDs) are important organelles conserved across eukaryotes with a fascinating biogenesis and consumption cycle. Recent intensive research has focused on uncovering the cellular biology of LDs, with emphasis on their degradation. Briefly, two major pathways for LD degradation have been recognized: [...] Read more.
Lipid droplets (LDs) are important organelles conserved across eukaryotes with a fascinating biogenesis and consumption cycle. Recent intensive research has focused on uncovering the cellular biology of LDs, with emphasis on their degradation. Briefly, two major pathways for LD degradation have been recognized: (1) lipolysis, in which lipid degradation is catalyzed by lipases on the LD surface, and (2) lipophagy, in which LDs are degraded by autophagy. Both of these pathways require the collective actions of several lipolytic and proteolytic enzymes, some of which have been purified and analyzed for their in vitro activities. Furthermore, several genes encoding these proteins have been cloned and characterized. In seed plants, seed germination is initiated by the hydrolysis of stored lipids in LDs to provide energy and carbon equivalents for the germinating seedling. However, little is known about the mechanism regulating the LD mobilization. In this review, we focus on recent progress toward understanding how lipids are degraded and the specific pathways that coordinate LD mobilization in plants, aiming to provide an accurate and detailed outline of the process. This will set the stage for future studies of LD dynamics and help to utilize LDs to their full potential. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 1525 KiB  
Review
Defense Strategies of Rice in Response to the Attack of the Herbivorous Insect, Chilo suppressalis
by Xing Xiang, Shuhua Liu, Hongjian Li, Andrews Danso Ofori, Xiaoqun Yi and Aiping Zheng
Int. J. Mol. Sci. 2023, 24(18), 14361; https://doi.org/10.3390/ijms241814361 - 21 Sep 2023
Cited by 2 | Viewed by 2038
Abstract
Chilo suppressalis is a notorious pest that attacks rice, feeding throughout the entire growth period of rice and posing a serious threat to rice production worldwide. Due to the boring behavior and overlapping generations of C. suppressalis, the pest is difficult to [...] Read more.
Chilo suppressalis is a notorious pest that attacks rice, feeding throughout the entire growth period of rice and posing a serious threat to rice production worldwide. Due to the boring behavior and overlapping generations of C. suppressalis, the pest is difficult to control. Moreover, no rice variety with high resistance to the striped stem borer (SSB) has been found in the available rice germplasm, which also poses a challenge to controlling the SSB. At present, chemical control is widely used in agricultural production to manage the problem, but its effect is limited and it also pollutes the environment. Therefore, developing genetic resistance is the only way to avoid the use of chemical insecticides. This article primarily focuses on the research status of the induced defense of rice against the SSB from the perspective of immunity, in which plant hormones (such as jasmonic acid and ethylene) and mitogen-activated protein kinases (MAPKs) play an important role in the immune response of rice to the SSB. The article also reviews progress in using transgenic technology to study the relationship between rice and the SSB as well as exploring the resistance genes. Lastly, the article discusses prospects for future research on rice’s resistance to the SSB. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 632 KiB  
Review
Molecular Network for Regulation of Seed Size in Plants
by Jinghua Zhang, Xuan Zhang, Xueman Liu, Qiaofeng Pai, Yahui Wang and Xiaolin Wu
Int. J. Mol. Sci. 2023, 24(13), 10666; https://doi.org/10.3390/ijms241310666 - 26 Jun 2023
Cited by 2 | Viewed by 2098
Abstract
The size of seeds is particularly important for agricultural development, as it is a key trait that determines yield. It is controlled by the coordinated development of the integument, endosperm, and embryo. Large seeds are an important way of improving the ultimate “sink [...] Read more.
The size of seeds is particularly important for agricultural development, as it is a key trait that determines yield. It is controlled by the coordinated development of the integument, endosperm, and embryo. Large seeds are an important way of improving the ultimate “sink strength” of crops, providing more nutrients for early plant growth and showing certain tolerance to abiotic stresses. There are several pathways for regulating plant seed size, including the HAIKU (IKU) pathway, ubiquitin–proteasome pathway, G (Guanosine triphosphate) protein regulatory pathway, mitogen-activated protein kinase (MAPK) pathway, transcriptional regulators pathway, and phytohormone regulatory pathways including the auxin, brassinosteroid (BR), gibberellin (GA), jasmonic acid (JA), cytokinin (CK), Abscisic acid (ABA), and microRNA (miRNA) regulatory pathways. This article summarizes the seed size regulatory network and prospective ways of improving yield. We expect that it will provide a valuable reference to researchers in related fields. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 1044 KiB  
Review
Advances in Rice Seed Shattering
by Hao Wu, Qi He and Quan Wang
Int. J. Mol. Sci. 2023, 24(10), 8889; https://doi.org/10.3390/ijms24108889 - 17 May 2023
Cited by 2 | Viewed by 1968
Abstract
Seed shattering is an important trait that wild rice uses to adapt to the natural environment and maintain population reproduction, and weedy rice also uses it to compete with the rice crop. The loss of shattering is a key event in rice domestication. [...] Read more.
Seed shattering is an important trait that wild rice uses to adapt to the natural environment and maintain population reproduction, and weedy rice also uses it to compete with the rice crop. The loss of shattering is a key event in rice domestication. The degree of shattering is not only one of the main reasons for rice yield reduction but also affects its adaptability to modern mechanical harvesting methods. Therefore, it is important to cultivate rice varieties with a moderate shattering degree. In this paper, the research progress on rice seed shattering in recent years is reviewed, including the physiological basis, morphological and anatomical characteristics of rice seed shattering, inheritance and QTL/gene mapping of rice seed shattering, the molecular mechanism regulating rice seed shattering, the application of seed-shattering genes, and the relationship between seed-shattering genes and domestication. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

23 pages, 1476 KiB  
Review
New Insight into Plant Saline-Alkali Tolerance Mechanisms and Application to Breeding
by Yibo Cao, Huifang Song and Lingyun Zhang
Int. J. Mol. Sci. 2022, 23(24), 16048; https://doi.org/10.3390/ijms232416048 - 16 Dec 2022
Cited by 15 | Viewed by 3980
Abstract
Saline-alkali stress is a widespread adversity that severely affects plant growth and productivity. Saline-alkaline soils are characterized by high salt content and high pH values, which simultaneously cause combined damage from osmotic stress, ionic toxicity, high pH and HCO3/CO3 [...] Read more.
Saline-alkali stress is a widespread adversity that severely affects plant growth and productivity. Saline-alkaline soils are characterized by high salt content and high pH values, which simultaneously cause combined damage from osmotic stress, ionic toxicity, high pH and HCO3/CO32− stress. In recent years, many determinants of salt tolerance have been identified and their regulatory mechanisms are fairly well understood. However, the mechanism by which plants respond to comprehensive saline-alkali stress remains largely unknown. This review summarizes recent advances in the physiological, biochemical and molecular mechanisms of plants tolerance to salinity or salt- alkali stress. Focused on the progress made in elucidating the regulation mechanisms adopted by plants in response to saline-alkali stress and present some new views on the understanding of plants in the face of comprehensive stress. Plants generally promote saline-alkali tolerance by maintaining pH and Na+ homeostasis, while the plants responding to HCO3/CO32− stress are not exactly the same as high pH stress. We proposed that pH-tolerant or sensitive plants have evolved distinct mechanisms to adapt to saline-alkaline stress. Finally, we highlight the areas that require further research to reveal the new components of saline-alkali tolerance in plants and present the current and potential application of key determinants in breed improvement and molecular breeding. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop