ijms-logo

Journal Browser

Journal Browser

The Role of the Tumor Microenvironment in Cancer

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Oncology".

Deadline for manuscript submissions: closed (28 February 2022) | Viewed by 56242

Special Issue Editor


E-Mail Website
Guest Editor
Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
Interests: immunology; inflammation; cancer biology; tumor microenvironment
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The tumor microenvironment (TME) plays an important role in the initiation, development, and progression of cancer. There is evidence that the TME promotes resistance to therapy. The TME consists of both immune and non-immune cells as well as cytokines, chemokines, and growth factors that promote the malignant cells. Therefore, an understanding of the interplay between cancer cells and cells in the TME is fundamental to the development of novel therapies that target the cancer cells and the supportive signals from the TME. In this Special Issue “The Role of the Tumor Microenvironment in Cancer”, we will discuss the molecular mechanisms in the TME that are involved in promoting cancer cells.

Dr. Sherine F. Elsawa
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Tumor microenvironment
  • Stromal cell
  • Fibroblasts
  • Myeloid-derived suppressor cells
  • Tumor-associated macrophages
  • Regulatory T cells
  • Cytokines
  • Chemokines
  • Hypoxia
  • Metastasis
  • Angiogenesis

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 5324 KiB  
Article
3D Printed Solutions for Spheroid Engineering and Cancer Research
by Tobias Butelmann, Yawei Gu, Aijun Li, Fabian Tribukait-Riemenschneider, Julius Hoffmann, Amin Molazem, Ellen Jaeger, Diana Pellegrini, Aurelien Forget and V. Prasad Shastri
Int. J. Mol. Sci. 2022, 23(15), 8188; https://doi.org/10.3390/ijms23158188 - 25 Jul 2022
Cited by 5 | Viewed by 2432
Abstract
In multicellular organisms, cells are organized in a 3-dimensional framework and this is essential for organogenesis and tissue morphogenesis. Systems to recapitulate 3D cell growth are therefore vital for understanding development and cancer biology. Cells organized in 3D environments can evolve certain phenotypic [...] Read more.
In multicellular organisms, cells are organized in a 3-dimensional framework and this is essential for organogenesis and tissue morphogenesis. Systems to recapitulate 3D cell growth are therefore vital for understanding development and cancer biology. Cells organized in 3D environments can evolve certain phenotypic traits valuable to physiologically relevant models that cannot be accessed in 2D culture. Cellular spheroids constitute an important aspect of in vitro tumor biology and they are usually prepared using the hanging drop method. Here a 3D printed approach is demonstrated to fabricate bespoke hanging drop devices for the culture of tumor cells. The design attributes of the hanging drop device take into account the need for high-throughput, high efficacy in spheroid formation, and automation. Specifically, in this study, custom-fit, modularized hanging drop devices comprising of inserts (Q-serts) were designed and fabricated using fused filament deposition (FFD). The utility of the Q-serts in the engineering of unicellular and multicellular spheroids-synthetic tumor microenvironment mimics (STEMs)—was established using human (cancer) cells. The culture of spheroids was automated using a pipetting robot and bioprinted using a custom bioink based on carboxylated agarose to simulate a tumor microenvironment (TME). The spheroids were characterized using light microscopy and histology. They showed good morphological and structural integrity and had high viability throughout the entire workflow. The systems and workflow presented here represent a user-focused 3D printing-driven spheroid culture platform which can be reliably reproduced in any research environment and scaled to- and on-demand. The standardization of spheroid preparation, handling, and culture should eliminate user-dependent variables, and have a positive impact on translational research to enable direct comparison of scientific findings. Full article
(This article belongs to the Special Issue The Role of the Tumor Microenvironment in Cancer)
Show Figures

Figure 1

20 pages, 4872 KiB  
Article
Inter-Metastatic Heterogeneity of Tumor Marker Expression and Microenvironment Architecture in a Preclinical Cancer Model
by Jessica Kalra, Jennifer Baker, Justin Song, Alastair Kyle, Andrew Minchinton and Marcel Bally
Int. J. Mol. Sci. 2021, 22(12), 6336; https://doi.org/10.3390/ijms22126336 - 13 Jun 2021
Cited by 3 | Viewed by 2903
Abstract
Background: Preclinical drug development studies rarely consider the impact of a candidate drug on established metastatic disease. This may explain why agents that are successful in subcutaneous and even orthotopic preclinical models often fail to demonstrate efficacy in clinical trials. It is reasonable [...] Read more.
Background: Preclinical drug development studies rarely consider the impact of a candidate drug on established metastatic disease. This may explain why agents that are successful in subcutaneous and even orthotopic preclinical models often fail to demonstrate efficacy in clinical trials. It is reasonable to anticipate that sites of metastasis will be phenotypically unique, as each tumor will have evolved heterogeneously with respect to gene expression as well as the associated phenotypic outcome of that expression. The objective for the studies described here was to gain an understanding of the tumor heterogeneity that exists in established metastatic disease and use this information to define a preclinical model that is more predictive of treatment outcome when testing novel drug candidates clinically. Methods: Female NCr nude mice were inoculated with fluorescent (mKate), Her2/neu-positive human breast cancer cells (JIMT-mKate), either in the mammary fat pad (orthotopic; OT) to replicate a primary tumor, or directly into the left ventricle (intracardiac; IC), where cells eventually localize in multiple sites to create a model of established metastasis. Tumor development was monitored by in vivo fluorescence imaging (IVFI). Subsequently, animals were sacrificed, and tumor tissues were isolated and imaged ex vivo. Tumors within organ tissues were further analyzed via multiplex immunohistochemistry (mIHC) for Her2/neu expression, blood vessels (CD31), as well as a nuclear marker (Hoechst) and fluorescence (mKate) expressed by the tumor cells. Results: Following IC injection, JIMT-1mKate cells consistently formed tumors in the lung, liver, brain, kidney, ovaries, and adrenal glands. Disseminated tumors were highly variable when assessing vessel density (CD31) and tumor marker expression (mkate, Her2/neu). Interestingly, tumors which developed within an organ did not adopt a vessel microarchitecture that mimicked the organ where growth occurred, nor did the vessel microarchitecture appear comparable to the primary tumor. Rather, metastatic lesions showed considerable variability, suggesting that each secondary tumor is a distinct disease entity from a microenvironmental perspective. Conclusions: The data indicate that more phenotypic heterogeneity in the tumor microenvironment exists in models of metastatic disease than has been previously appreciated, and this heterogeneity may better reflect the metastatic cancer in patients typically enrolled in early-stage Phase I/II clinical trials. Similar to the suggestion of others in the past, the use of models of established metastasis preclinically should be required as part of the anticancer drug candidate development process, and this may be particularly important for targeted therapeutics and/or nanotherapeutics. Full article
(This article belongs to the Special Issue The Role of the Tumor Microenvironment in Cancer)
Show Figures

Figure 1

26 pages, 6667 KiB  
Article
Initiation of Pancreatic Cancer: The Interplay of Hyperglycemia and Macrophages Promotes the Acquisition of Malignancy-Associated Properties in Pancreatic Ductal Epithelial Cells
by Lilli Otto, Sascha Rahn, Tina Daunke, Frederik Walter, Elsa Winter, Julia Luisa Möller, Stefan Rose-John, Daniela Wesch, Heiner Schäfer and Susanne Sebens
Int. J. Mol. Sci. 2021, 22(10), 5086; https://doi.org/10.3390/ijms22105086 - 11 May 2021
Cited by 9 | Viewed by 2681
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still one of the most aggressive solid malignancies with a poor prognosis. Obesity and type 2 diabetes mellitus (T2DM) are two major risk factors linked to the development and progression of PDAC, both often characterized by high blood [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is still one of the most aggressive solid malignancies with a poor prognosis. Obesity and type 2 diabetes mellitus (T2DM) are two major risk factors linked to the development and progression of PDAC, both often characterized by high blood glucose levels. Macrophages represent the main immune cell population in PDAC contributing to PDAC development. It has already been shown that pancreatic ductal epithelial cells (PDEC) undergo epithelial–mesenchymal transition (EMT) when exposed to hyperglycemia or macrophages. Thus, this study aimed to investigate whether concomitant exposure to hyperglycemia and macrophages aggravates EMT-associated alterations in PDEC. Exposure to macrophages and elevated glucose levels (25 mM glucose) impacted gene expression of EMT inducers such as IL-6 and TNF-α as well as EMT transcription factors in benign (H6c7-pBp) and premalignant (H6c7-kras) PDEC. Most strikingly, exposure to hyperglycemic coculture with macrophages promoted downregulation of the epithelial marker E-cadherin, which was associated with an elevated migratory potential of PDEC. While blocking IL-6 activity by tocilizumab only partially reverted the EMT phenotype in H6c7-kras cells, neutralization of TNF-α by etanercept was able to clearly impair EMT-associated properties in premalignant PDEC. Altogether, the current study attributes a role to a T2DM-related hyperglycemic, inflammatory micromilieu in the acquisition of malignancy-associated alterations in premalignant PDEC, thus providing new insights on how metabolic diseases might promote PDAC initiation. Full article
(This article belongs to the Special Issue The Role of the Tumor Microenvironment in Cancer)
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 725 KiB  
Review
Disabled-2 (DAB2): A Key Regulator of Anti- and Pro-Tumorigenic Pathways
by Zoe K. Price, Noor A. Lokman, Masato Yoshihara, Hiroaki Kajiyama, Martin K. Oehler and Carmela Ricciardelli
Int. J. Mol. Sci. 2023, 24(1), 696; https://doi.org/10.3390/ijms24010696 - 31 Dec 2022
Cited by 6 | Viewed by 2496
Abstract
Disabled-2 (DAB2), a key adaptor protein in clathrin mediated endocytosis, is implicated in the regulation of key signalling pathways involved in homeostasis, cell positioning and epithelial to mesenchymal transition (EMT). It was initially identified as a tumour suppressor implicated in the [...] Read more.
Disabled-2 (DAB2), a key adaptor protein in clathrin mediated endocytosis, is implicated in the regulation of key signalling pathways involved in homeostasis, cell positioning and epithelial to mesenchymal transition (EMT). It was initially identified as a tumour suppressor implicated in the initiation of ovarian cancer, but was subsequently linked to many other cancer types. DAB2 contains key functional domains which allow it to negatively regulate key signalling pathways including the mitogen activated protein kinase (MAPK), wingless/integrated (Wnt) and transforming growth factor beta (TGFβ) pathways. Loss of DAB2 is primarily associated with activation of these pathways and tumour progression, however this review also explores studies which demonstrate the complex nature of DAB2 function with pro-tumorigenic effects. A recent strong interest in microRNAs (miRNA) in cancer has identified DAB2 as a common target. This has reignited an interest in DAB2 research in cancer. Transcriptomics of tumour associated macrophages (TAMs) has also identified a pro-metastatic role of DAB2 in the tumour microenvironment. This review will cover the broad depth literature on the tumour suppressor role of DAB2, highlighting its complex relationships with different pathways. Furthermore, it will explore recent findings which suggest DAB2 has a more complex role in cancer than initially thought. Full article
(This article belongs to the Special Issue The Role of the Tumor Microenvironment in Cancer)
Show Figures

Figure 1

21 pages, 1118 KiB  
Review
Macrophage Polarization States in the Tumor Microenvironment
by Ava J. Boutilier and Sherine F. Elsawa
Int. J. Mol. Sci. 2021, 22(13), 6995; https://doi.org/10.3390/ijms22136995 - 29 Jun 2021
Cited by 519 | Viewed by 19763
Abstract
The M1/M2 macrophage paradigm plays a key role in tumor progression. M1 macrophages are historically regarded as anti-tumor, while M2-polarized macrophages, commonly deemed tumor-associated macrophages (TAMs), are contributors to many pro-tumorigenic outcomes in cancer through angiogenic and lymphangiogenic regulation, immune suppression, hypoxia induction, [...] Read more.
The M1/M2 macrophage paradigm plays a key role in tumor progression. M1 macrophages are historically regarded as anti-tumor, while M2-polarized macrophages, commonly deemed tumor-associated macrophages (TAMs), are contributors to many pro-tumorigenic outcomes in cancer through angiogenic and lymphangiogenic regulation, immune suppression, hypoxia induction, tumor cell proliferation, and metastasis. The tumor microenvironment (TME) can influence macrophage recruitment and polarization, giving way to these pro-tumorigenic outcomes. Investigating TME-induced macrophage polarization is critical for further understanding of TAM-related pro-tumor outcomes and potential development of new therapeutic approaches. This review explores the current understanding of TME-induced macrophage polarization and the role of M2-polarized macrophages in promoting tumor progression. Full article
(This article belongs to the Special Issue The Role of the Tumor Microenvironment in Cancer)
Show Figures

Figure 1

24 pages, 4644 KiB  
Review
The Acidic Brain—Glycolytic Switch in the Microenvironment of Malignant Glioma
by Anna Maria Reuss, Dominik Groos, Michael Buchfelder and Nicolai Savaskan
Int. J. Mol. Sci. 2021, 22(11), 5518; https://doi.org/10.3390/ijms22115518 - 24 May 2021
Cited by 26 | Viewed by 4598
Abstract
Malignant glioma represents a fatal disease with a poor prognosis and development of resistance mechanisms against conventional therapeutic approaches. The distinct tumor zones of this heterogeneous neoplasm develop their own microenvironment, in which subpopulations of cancer cells communicate. Adaptation to hypoxia in the [...] Read more.
Malignant glioma represents a fatal disease with a poor prognosis and development of resistance mechanisms against conventional therapeutic approaches. The distinct tumor zones of this heterogeneous neoplasm develop their own microenvironment, in which subpopulations of cancer cells communicate. Adaptation to hypoxia in the center of the expanding tumor mass leads to the glycolytic and angiogenic switch, accompanied by upregulation of different glycolytic enzymes, transporters, and other metabolites. These processes render the tumor microenvironment more acidic, remodel the extracellular matrix, and create energy gradients for the metabolic communication between different cancer cells in distinct tumor zones. Escape mechanisms from hypoxia-induced cell death and energy deprivation are the result. The functional consequences are more aggressive and malignant behavior with enhanced proliferation and survival, migration and invasiveness, and the induction of angiogenesis. In this review, we go from the biochemical principles of aerobic and anaerobic glycolysis over the glycolytic switch, regulated by the key transcription factor hypoxia-inducible factor (HIF)-1α, to other important metabolic players like the monocarboxylate transporters (MCTs)1 and 4. We discuss the metabolic symbiosis model via lactate shuttling in the acidic tumor microenvironment and highlight the functional consequences of the glycolytic switch on glioma malignancy. Furthermore, we illustrate regulation by micro ribonucleic acids (miRNAs) and the connection between isocitrate dehydrogenase (IDH) mutation status and glycolytic metabolism. Finally, we give an outlook about the diagnostic and therapeutic implications of the glycolytic switch and the relation to tumor immunity in malignant glioma. Full article
(This article belongs to the Special Issue The Role of the Tumor Microenvironment in Cancer)
Show Figures

Figure 1

21 pages, 582 KiB  
Review
The Tumor Microenvironment in Follicular Lymphoma: Its Pro-Malignancy Role with Therapeutic Potential
by Takashi Watanabe
Int. J. Mol. Sci. 2021, 22(10), 5352; https://doi.org/10.3390/ijms22105352 - 19 May 2021
Cited by 11 | Viewed by 3778
Abstract
In the follicular lymphoma (FL) microenvironment, CXCR5+ICOS+PD1+BCL6+ follicular helper T (Tfh) cells, which closely correlate with FL B cells in neoplastic follicles, play a major role in supporting FL. Interleukin-4 secreted by Tfh cells triggers the [...] Read more.
In the follicular lymphoma (FL) microenvironment, CXCR5+ICOS+PD1+BCL6+ follicular helper T (Tfh) cells, which closely correlate with FL B cells in neoplastic follicles, play a major role in supporting FL. Interleukin-4 secreted by Tfh cells triggers the upregulation of the lymphocyte chemoattractant CXCL12 in stromal cell precursors, in particular by fibroblastic reticular cells (FRCs). In turn, mesenchymal stem cells (MSCs) can be committed to FRC differentiation in the bone marrow and lymph nodes involved by FL. Noteworthy, MSCs can promote the differentiation of Tfh cells into highly immunosuppressive T-follicular regulatory cells. The tumor suppressor HVEM is highly mutated in FL cells, and its deficiency increases Tfh cell frequency. In contrast, PI3Kδ inhibition impedes the recruitment of Tfh/regulatory T cells and impairs the proliferation of follicular dendritic cells (FDCs) and FDC-induced angiogenesis. Since TIGIT ligands are expressed by FDCs, the immune checkpoint receptor TIGIT plays an important role in tumor-infiltrating T cells. Thus, TIGIT blockade might invigorate cytotoxic T cells in the FL microenvironment. Given their potential to simultaneously reduce the neoplastic B cells, Tfh, and TFR cells could also reinforce the effects of the cytotoxic T cells. This combinatory strategy should be explored as a treatment option to tackle FL. Full article
(This article belongs to the Special Issue The Role of the Tumor Microenvironment in Cancer)
Show Figures

Figure 1

19 pages, 6014 KiB  
Review
Mechanisms of PD-L1 Regulation in Malignant and Virus-Infected Cells
by Hadia Farrukh, Nader El-Sayes and Karen Mossman
Int. J. Mol. Sci. 2021, 22(9), 4893; https://doi.org/10.3390/ijms22094893 - 05 May 2021
Cited by 11 | Viewed by 4700
Abstract
Programmed cell death protein 1 (PD-1), a receptor on T cells, and its ligand, PD-L1, have been a topic of much interest in cancer research. Both tumour and virus-infected cells can upregulate PD-L1 to suppress cytotoxic T-cell killing. Research on the PD-1/PD-L1 axis [...] Read more.
Programmed cell death protein 1 (PD-1), a receptor on T cells, and its ligand, PD-L1, have been a topic of much interest in cancer research. Both tumour and virus-infected cells can upregulate PD-L1 to suppress cytotoxic T-cell killing. Research on the PD-1/PD-L1 axis has led to the development of anti-PD-1/PD-L1 immune checkpoint blockades (ICBs) as promising cancer therapies. Although effective in some cancer patients, for many, this form of treatment is ineffective due to a lack of immunogenicity in the tumour microenvironment (TME). Despite the development of therapies targeting the PD-1/PD-L1 axis, the mechanisms and pathways through which these proteins are regulated are not completely understood. In this review, we discuss the latest research on molecules of inflammation and innate immunity that regulate PD-L1 expression, how its expression is regulated during viral infection, and how it is modulated by different cancer therapies. We also highlight existing research on the development of different combination therapies with anti-PD-1/PD-L1 antibodies. This information can be used to develop better cancer immunotherapies that take into consideration the pathways involved in the PD-1/PD-L1 axis, so these molecules do not reduce their efficacy, which is currently seen with some cancer therapies. This review will also assist in understanding how the TME changes during treatment, which will provide further rationale for combination therapies. Full article
(This article belongs to the Special Issue The Role of the Tumor Microenvironment in Cancer)
Show Figures

Figure 1

27 pages, 1383 KiB  
Review
The Role of CXCL16 in the Pathogenesis of Cancer and Other Diseases
by Jan Korbecki, Karolina Bajdak-Rusinek, Patrycja Kupnicka, Patrycja Kapczuk, Donata Simińska, Dariusz Chlubek and Irena Baranowska-Bosiacka
Int. J. Mol. Sci. 2021, 22(7), 3490; https://doi.org/10.3390/ijms22073490 - 28 Mar 2021
Cited by 55 | Viewed by 8318
Abstract
CXCL16 is a chemotactic cytokine belonging to the α-chemokine subfamily. It plays a significant role in the progression of cancer, as well as the course of atherosclerosis, renal fibrosis, and non-alcoholic fatty liver disease (NAFLD). Since there has been no review paper discussing [...] Read more.
CXCL16 is a chemotactic cytokine belonging to the α-chemokine subfamily. It plays a significant role in the progression of cancer, as well as the course of atherosclerosis, renal fibrosis, and non-alcoholic fatty liver disease (NAFLD). Since there has been no review paper discussing the importance of this chemokine in various diseases, we have collected all available knowledge about CXCL16 in this review. In the first part of the paper, we discuss background information about CXCL16 and its receptor, CXCR6. Next, we focus on the importance of CXCL16 in a variety of diseases, with an emphasis on cancer. We discuss the role of CXCL16 in tumor cell proliferation, migration, invasion, and metastasis. Next, we describe the role of CXCL16 in the tumor microenvironment, including involvement in angiogenesis, and its significance in tumor-associated cells (cancer associated fibroblasts (CAF), microglia, tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), mesenchymal stem cells (MSC), myeloid suppressor cells (MDSC), and regulatory T cells (Treg)). Finally, we focus on the antitumor properties of CXCL16, which are mainly caused by natural killer T (NKT) cells. At the end of the article, we summarize the importance of CXCL16 in cancer therapy. Full article
(This article belongs to the Special Issue The Role of the Tumor Microenvironment in Cancer)
Show Figures

Graphical abstract

47 pages, 1824 KiB  
Review
Engaging the Innate and Adaptive Antitumor Immune Response in Lymphoma
by Clifford M. Csizmar and Stephen M. Ansell
Int. J. Mol. Sci. 2021, 22(7), 3302; https://doi.org/10.3390/ijms22073302 - 24 Mar 2021
Cited by 6 | Viewed by 3327
Abstract
Immunotherapy has emerged as a powerful therapeutic strategy for many malignancies, including lymphoma. As in solid tumors, early clinical trials have revealed that immunotherapy is not equally efficacious across all lymphoma subtypes. For example, immune checkpoint inhibition has a higher overall response rate [...] Read more.
Immunotherapy has emerged as a powerful therapeutic strategy for many malignancies, including lymphoma. As in solid tumors, early clinical trials have revealed that immunotherapy is not equally efficacious across all lymphoma subtypes. For example, immune checkpoint inhibition has a higher overall response rate and leads to more durable outcomes in Hodgkin lymphomas compared to non-Hodgkin lymphomas. These observations, combined with a growing understanding of tumor biology, have implicated the tumor microenvironment as a major determinant of treatment response and prognosis. Interactions between lymphoma cells and their microenvironment facilitate several mechanisms that impair the antitumor immune response, including loss of major histocompatibility complexes, expression of immunosuppressive ligands, secretion of immunosuppressive cytokines, and the recruitment, expansion, and skewing of suppressive cell populations. Accordingly, treatments to overcome these barriers are being rapidly developed and translated into clinical trials. This review will discuss the mechanisms of immune evasion, current avenues for optimizing the antitumor immune response, clinical successes and failures of lymphoma immunotherapy, and outstanding hurdles that remain to be addressed. Full article
(This article belongs to the Special Issue The Role of the Tumor Microenvironment in Cancer)
Show Figures

Figure 1

Back to TopTop