ijms-logo

Journal Browser

Journal Browser

Microbial Virulence Factors

A topical collection in International Journal of Molecular Sciences (ISSN 1422-0067). This collection belongs to the section "Molecular Microbiology".

Viewed by 53357

Editor


E-Mail Website
Collection Editor

Topical Collection Information

Dear Colleagues,

Microbial virulence factors can be defined as a wide range of molecules produced by pathogenic microbes that enhance their ability to evade their host defenses and cause disease. This broad definition encompasses secreted products such as toxins, enzymes, and exopolysaccharides, but also cell surface structures such as capsules, lipopolysaccharides, glyco- and lipoproteins, and intracellular changes in metabolic regulatory networks governed by protein sensors/regulators and noncoding regulatory RNAs. The knowledge, at a molecular level, of the biology of microbial pathogens and their virulence factors is central in the development of novel therapeutic molecules and strategies to combat microbial infections. This is of particular importance at present with the worldwide emergence of microbes resistant to available antimicrobials. Advances in recent years in molecular biology, genomic technologies, and bioinformatics have contributed to the molecular identification and functional analyses of microbial virulence factors. This Topical Collection of IJMS will be focused on virulence factors and their regulatory networks from microbes such as bacteria, viruses, fungi, and parasites, as well as on the description of innovative experimental techniques to characterize microbial virulence factors. Research papers, up-to-date review articles, and commentaries are all welcome.

Prof. Jorge H. Leitão
Collection Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Pathogenic bacteria
  • Toxins
  • Bacterial capsules
  • Fungal virulence factors
  • Virus virulence factors
  • Host defense evasion
  • Intracellular survival
  • Virulence determinants
  • Human microbial parasites

Published Papers (23 papers)

2023

Jump to: 2022, 2021

20 pages, 5986 KiB  
Article
Transcriptome Analysis Reveals the Effect of PdhR in Plesiomonas shigelloides
by Junxiang Yan, Bin Yang, Xinke Xue, Jinghao Li, Yuehua Li, Ang Li, Peng Ding and Boyang Cao
Int. J. Mol. Sci. 2023, 24(19), 14473; https://doi.org/10.3390/ijms241914473 - 23 Sep 2023
Viewed by 965
Abstract
The pyruvate dehydrogenase complex regulator (PdhR) was originally identified as a repressor of the pdhR-aceEF-lpd operon, which encodes the pyruvate dehydrogenase complex (PDHc) and PdhR itself. According to previous reports, PdhR plays a regulatory role in the physiological and metabolic pathways of bacteria. [...] Read more.
The pyruvate dehydrogenase complex regulator (PdhR) was originally identified as a repressor of the pdhR-aceEF-lpd operon, which encodes the pyruvate dehydrogenase complex (PDHc) and PdhR itself. According to previous reports, PdhR plays a regulatory role in the physiological and metabolic pathways of bacteria. At present, the function of PdhR in Plesiomonas shigelloides is still poorly understood. In this study, RNA sequencing (RNA-Seq) of the wild-type strain and the ΔpdhR mutant strains was performed for comparison to identify the PdhR-controlled pathways, revealing that PdhR regulates ~7.38% of the P. shigelloides transcriptome. We found that the deletion of pdhR resulted in the downregulation of practically all polar and lateral flagella genes in P. shigelloides; meanwhile, motility assay and transmission electron microscopy (TEM) confirmed that the ΔpdhR mutant was non-motile and lacked flagella. Moreover, the results of RNA-seq and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) showed that PdhR positively regulated the expression of the T3SS cluster, and the ΔpdhR mutant significantly reduced the ability of P. shigelloides to infect Caco-2 cells compared with the WT. Consistent with previous research, pyruvate-sensing PdhR directly binds to its promoter and inhibits pdhR-aceEF-lpd operon expression. In addition, we identified two additional downstream genes, metR and nuoA, that are directly negatively regulated by PdhR. Furthermore, we also demonstrated that ArcA was identified as being located upstream of pdhR and lpdA and directly negatively regulating their expression. Overall, we revealed the function and regulatory pathway of PdhR, which will allow for a more in-depth investigation into P. shigelloides pathogenicity as well as the complex regulatory network. Full article
Show Figures

Figure 1

12 pages, 2208 KiB  
Article
The Response Regulator VC1795 of Vibrio Pathogenicity Island-2 Contributes to Intestinal Colonization by Vibrio cholerae
by Junxiang Yan, Qian Liu, Xinke Xue, Jinghao Li, Yuehua Li, Yingying Su and Boyang Cao
Int. J. Mol. Sci. 2023, 24(17), 13523; https://doi.org/10.3390/ijms241713523 - 31 Aug 2023
Viewed by 800
Abstract
Vibrio cholerae is an intestinal pathogen that can cause severe diarrheal disease. The disease has afflicted millions of people since the 19th century and has aroused global concern. The Vibrio Pathogenicity Island-2 (VPI-2) is a 57.3 kb region, VC1758VC1809, which [...] Read more.
Vibrio cholerae is an intestinal pathogen that can cause severe diarrheal disease. The disease has afflicted millions of people since the 19th century and has aroused global concern. The Vibrio Pathogenicity Island-2 (VPI-2) is a 57.3 kb region, VC1758VC1809, which is present in choleragenic V. cholerae. At present, little is known about the function of VC1795 in the VPI-2 of V. cholerae. In this study, the intestinal colonization ability of the ΔVC1795 strain was significantly reduced compared to that of the wild-type strain, and the colonization ability was restored to the wild-type strain after VC1795 gene replacement. This result indicated that the VC1795 gene plays a key role in the intestinal colonization and pathogenicity of V. cholerae. Then, we explored the upstream and downstream regulation mechanisms of the VC1795 gene. Cyclic adenylate receptor protein (CRP) was identified as being located upstream of VC1795 by a DNA pull-down assay and electrophoretic mobility shift assays (EMSAs) and negatively regulating the expression of VC1795. In addition, the results of Chromatin immunoprecipitation followed by sequencing (ChIP-seq), EMSAs, and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) indicated that VC1795 directly negatively regulates the expression of its downstream gene, VC1794. Furthermore, by using qRT-PCR, we hypothesized that VC1795 indirectly positively regulates the toxin-coregulated pilus (TCP) cluster to influence the colonization ability of V. cholerae in intestinal tracts. In short, our findings support the key regulatory role of VC1795 in bacterial pathogenesis as well as lay the groundwork for the further determination of the complex regulatory network of VC1795 in bacteria. Full article
Show Figures

Figure 1

11 pages, 2173 KiB  
Article
Oyster Mushroom Spherical Virus Crosses the Species Barrier and Is Pathogenic to a New Host Pleurotus pulmonarius
by Xiaoyan Zhang, Haijing Hu, Yanxiang Zhao, Yifan Wang, Wenjing Zhang, Lunhe You, Jianrui Wang, Yu Liu and Xianhao Cheng
Int. J. Mol. Sci. 2023, 24(13), 10584; https://doi.org/10.3390/ijms241310584 - 24 Jun 2023
Viewed by 1145
Abstract
Oyster mushroom spherical virus (OMSV) is a mycovirus with a positive-sense single-stranded RNA genome that infects the edible mushroom Pleurotus ostreatus. OMSV is horizontally transferred from an infected strain to a cured strain via mycelia. The infection results in significant inhibition of [...] Read more.
Oyster mushroom spherical virus (OMSV) is a mycovirus with a positive-sense single-stranded RNA genome that infects the edible mushroom Pleurotus ostreatus. OMSV is horizontally transferred from an infected strain to a cured strain via mycelia. The infection results in significant inhibition of mycelial growth, malformation of fruiting bodies, and yield loss in oyster mushrooms. This study successfully transferred OMSV from P. ostreatus to Pleurotus pulmonarius. However, transmission was not successful in other Pleurotus species including P. citrinopileatus, P. eryngii, P. nebrodensis, and P. salmoneostramineus. The successful OMSV infection in P. pulmonarius was further verified with Western blot analysis using a newly prepared polyclonal antiserum against the OMSV coat protein. Furthermore, OMSV infection reduced the mycelial growth rate of P. pulmonarius. The OMSV-infected strain demonstrated abnormal performance including twisted mushrooms or irregular edge of the cap as well as reduced yield of fruiting bodies in P. pulmonarius, compared to the OMSV-free strain. This study is the first report on the infection and pathogenicity of OMSV to the new host P. pulmonarius. The data from this study therefore suggest that OMSV is a potential threat to P. pulmonarius. Full article
Show Figures

Figure 1

12 pages, 2984 KiB  
Article
In Vivo Inflammation Caused by Achromobacter spp. Cystic Fibrosis Clinical Isolates Exhibiting Different Pathogenic Characteristics
by Angela Sandri, Giulia Maria Saitta, Laura Veschetti, Federico Boschi, Rebeca Passarelli Mantovani, Maria Carelli, Paola Melotti, Caterina Signoretto, Marzia Boaretti, Giovanni Malerba and Maria M. Lleò
Int. J. Mol. Sci. 2023, 24(8), 7432; https://doi.org/10.3390/ijms24087432 - 18 Apr 2023
Cited by 3 | Viewed by 1147
Abstract
Achromobacter spp. lung infection in cystic fibrosis has been associated with inflammation, increased frequency of exacerbations, and decline of respiratory function. We aimed to evaluate in vivo the inflammatory effects of clinical isolates exhibiting different pathogenic characteristics. Eight clinical isolates were selected based [...] Read more.
Achromobacter spp. lung infection in cystic fibrosis has been associated with inflammation, increased frequency of exacerbations, and decline of respiratory function. We aimed to evaluate in vivo the inflammatory effects of clinical isolates exhibiting different pathogenic characteristics. Eight clinical isolates were selected based on different pathogenic characteristics previously assessed: virulence in Galleria mellonella larvae, cytotoxicity in human bronchial epithelial cells, and biofilm formation. Acute lung infection was established by intratracheal instillation with 10.5 × 108 bacterial cells in wild-type and CFTR-knockout (KO) mice expressing a luciferase gene under control of interleukin-8 promoter. Lung inflammation was monitored by in vivo bioluminescence imaging up to 48 h after infection, and mortality was recorded up to 96 h. Lung bacterial load was evaluated by CFU count. Virulent isolates caused higher lung inflammation and mice mortality, especially in KO animals. Isolates both virulent and cytotoxic showed higher persistence in mice lungs, while biofilm formation was not associated with lung inflammation, mice mortality, or bacterial persistence. A positive correlation between virulence and lung inflammation was observed. These results indicate that Achromobacter spp. pathogenic characteristics such as virulence and cytotoxicity may be associated with clinically relevant effects and highlight the importance of elucidating their mechanisms. Full article
Show Figures

Figure 1

17 pages, 2693 KiB  
Article
Screening of Candidate Effectors from Magnaporthe oryzae by In Vitro Secretomic Analysis
by Guanjun Li, Qingchuan Shi, Yanqiu He, Jie Zhu, Mingluan Zhong, Lingjie Tong, Huaping Li, Yanfang Nie and Yunfeng Li
Int. J. Mol. Sci. 2023, 24(4), 3189; https://doi.org/10.3390/ijms24043189 - 06 Feb 2023
Viewed by 1615
Abstract
Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases of rice worldwide. Secreted proteins play essential roles during a M. oryzae–rice interaction. Although much progress has been made in recent decades, it is still necessary to [...] Read more.
Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases of rice worldwide. Secreted proteins play essential roles during a M. oryzae–rice interaction. Although much progress has been made in recent decades, it is still necessary to systematically explore M. oryzae-secreted proteins and to analyze their functions. This study employs a shotgun-based proteomic analysis to investigate the in vitro secretome of M. oryzae by spraying fungus conidia onto the PVDF membrane to mimic the early stages of infection, during which 3315 non-redundant secreted proteins were identified. Among these proteins, 9.6% (319) and 24.7% (818) are classified as classically or non-classically secreted proteins, while the remaining 1988 proteins (60.0%) are secreted through currently unknown secretory pathway. Functional characteristics analysis show that 257 (7.8%) and 90 (2.7%) secreted proteins are annotated as CAZymes and candidate effectors, respectively. Eighteen candidate effectors are selected for further experimental validation. All 18 genes encoding candidate effectors are significantly up- or down-regulated during the early infection process. Sixteen of the eighteen candidate effectors cause the suppression of BAX-mediated cell death in Nicotiana benthamiana by using an Agrobacterium-mediated transient expression assay, suggesting their involvement in pathogenicity related to secretion effectors. Our results provide high-quality experimental secretome data of M. oryzae and will expand our knowledge on the molecular mechanisms of M. oryzae pathogenesis. Full article
Show Figures

Figure 1

17 pages, 3540 KiB  
Review
Convergent Evolution in SARS-CoV-2 Spike Creates a Variant Soup from Which New COVID-19 Waves Emerge
by Daniele Focosi, Rodrigo Quiroga, Scott McConnell, Marc C. Johnson and Arturo Casadevall
Int. J. Mol. Sci. 2023, 24(3), 2264; https://doi.org/10.3390/ijms24032264 - 23 Jan 2023
Cited by 44 | Viewed by 8070
Abstract
The first 2 years of the COVID-19 pandemic were mainly characterized by recurrent mutations of SARS-CoV-2 Spike protein at residues K417, L452, E484, N501 and P681 emerging independently across different variants of concern (Alpha, Beta, Gamma, and Delta). Such homoplasy is a marker [...] Read more.
The first 2 years of the COVID-19 pandemic were mainly characterized by recurrent mutations of SARS-CoV-2 Spike protein at residues K417, L452, E484, N501 and P681 emerging independently across different variants of concern (Alpha, Beta, Gamma, and Delta). Such homoplasy is a marker of convergent evolution. Since Spring 2022 and the third year of the pandemic, with the advent of Omicron and its sublineages, convergent evolution has led to the observation of different lineages acquiring an additional group of mutations at different amino acid residues, namely R346, K444, N450, N460, F486, F490, Q493, and S494. Mutations at these residues have become increasingly prevalent during Summer and Autumn 2022, with combinations showing increased fitness. The most likely reason for this convergence is the selective pressure exerted by previous infection- or vaccine-elicited immunity. Such accelerated evolution has caused failure of all anti-Spike monoclonal antibodies, including bebtelovimab and cilgavimab. While we are learning how fast coronaviruses can mutate and recombine, we should reconsider opportunities for economically sustainable escape-proof combination therapies, and refocus antibody-mediated therapeutic efforts on polyclonal preparations that are less likely to allow for viral immune escape. Full article
Show Figures

Figure 1

11 pages, 1660 KiB  
Article
Multiple S-Layer Proteins of Brevibacillus laterosporus as Virulence Factors against Insects
by Luca Ruiu
Int. J. Mol. Sci. 2023, 24(2), 1781; https://doi.org/10.3390/ijms24021781 - 16 Jan 2023
Viewed by 1369
Abstract
S-layers are involved in the adaptation of bacteria to the outside environment and in pathogenesis, often representing special virulence factors. Vegetative cells of the entomopathogenic bacterium Brevibacillus laterosporus are characterized by an overproduction of extracellular surface layers that are released in the medium [...] Read more.
S-layers are involved in the adaptation of bacteria to the outside environment and in pathogenesis, often representing special virulence factors. Vegetative cells of the entomopathogenic bacterium Brevibacillus laterosporus are characterized by an overproduction of extracellular surface layers that are released in the medium during growth. The purpose of this study was to characterize cell wall proteins of this bacterium and to investigate their involvement in pathogenesis. Electron microscopy observations documented the presence of multiple S-layers, including an outermost (OW) and a middle (MW) layer, in addition to the peptidoglycan layer covering the plasma membrane. After identifying these proteins (OWP and MWP) by mass spectrometry analyses, and determining their gene sequences, the cell wall multilayer-released fraction was successfully isolated and used in insect bioassays alone and in combination with bacterial spores. This study confirmed a central role of spores in bacterial pathogenicity to insects but also detected a significant virulence associated with fractions containing released cell wall multilayer proteins. Taken together, S-layer proteins appear to be part of the toxins and virulence factors complex of this microbial control agent of invertebrate pests. Full article
Show Figures

Figure 1

13 pages, 1461 KiB  
Article
Comparison of Virulence-Factor-Encoding Genes and Genotype Distribution amongst Clinical Pseudomonas aeruginosa Strains
by Tomasz Bogiel, Dagmara Depka, Stanisław Kruszewski, Adrianna Rutkowska, Piotr Kanarek, Mateusz Rzepka, Jorge H. Leitão, Aleksander Deptuła and Eugenia Gospodarek-Komkowska
Int. J. Mol. Sci. 2023, 24(2), 1269; https://doi.org/10.3390/ijms24021269 - 09 Jan 2023
Cited by 1 | Viewed by 1912
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen encoding several virulence factors in its genome, which is well-known for its ability to cause severe and life-threatening infections, particularly among cystic fibrosis patients. The organism is also a major cause of nosocomial infections, mainly affecting patients [...] Read more.
Pseudomonas aeruginosa is an opportunistic pathogen encoding several virulence factors in its genome, which is well-known for its ability to cause severe and life-threatening infections, particularly among cystic fibrosis patients. The organism is also a major cause of nosocomial infections, mainly affecting patients with immune deficiencies and burn wounds, ventilator-assisted patients, and patients affected by other malignancies. The extensively reported emergence of multidrug-resistant (MDR) P. aeruginosa strains poses additional challenges to the management of infections. The aim of this study was to compare the incidence rates of selected virulence-factor-encoding genes and the genotype distribution amongst clinical multidrug-sensitive (MDS) and MDR P. aeruginosa strains. The study involved 74 MDS and 57 MDR P. aeruginosa strains and the following virulence-factor-encoding genes: lasB, plC H, plC N, exoU, nan1, pilA, and pilB. The genotype distribution, with respect to the antimicrobial susceptibility profiles of the strains, was also analyzed. The lasB and plC N genes were present amongst several P. aeruginosa strains, including all the MDR P. aeruginosa, suggesting that their presence might be used as a marker for diagnostic purposes. A wide variety of genotype distributions were observed among the investigated isolates, with the MDS and MDR strains exhibiting, respectively, 18 and 9 distinct profiles. A higher prevalence of genes determining the virulence factors in the MDR strains was observed in this study, but more research is needed on the prevalence and expression levels of these genes in additional MDR strains. Full article
Show Figures

Figure 1

2022

Jump to: 2023, 2021

21 pages, 3086 KiB  
Article
Characterization of the Secreted Acid Phosphatase SapS Reveals a Novel Virulence Factor of Staphylococcus aureus That Contributes to Survival and Virulence in Mice
by Nour Ahmad-Mansour, Mohamed Ibrahem Elhawy, Sylvaine Huc-Brandt, Nadhuma Youssouf, Linda Pätzold, Marianne Martin, Noran Abdel-Wadood, Ahmad Aljohmani, Madjid Morsli, Gabriela Krasteva-Christ, Sören L. Becker, Daniela Yildiz, Jean-Philippe Lavigne, Laila Gannoun-Zaki, Markus Bischoff and Virginie Molle
Int. J. Mol. Sci. 2022, 23(22), 14031; https://doi.org/10.3390/ijms232214031 - 14 Nov 2022
Viewed by 1680
Abstract
Staphylococcus aureus possesses a large arsenal of immune-modulating factors, enabling it to bypass the immune system’s response. Here, we demonstrate that the acid phosphatase SapS is secreted during macrophage infection and promotes its intracellular survival in this type of immune cell. In animal [...] Read more.
Staphylococcus aureus possesses a large arsenal of immune-modulating factors, enabling it to bypass the immune system’s response. Here, we demonstrate that the acid phosphatase SapS is secreted during macrophage infection and promotes its intracellular survival in this type of immune cell. In animal models, the SA564 sapS mutant demonstrated a significantly lower bacterial burden in liver and renal tissues of mice at four days post infection in comparison to the wild type, along with lower pathogenicity in a zebrafish infection model. The SA564 sapS mutant elicits a lower inflammatory response in mice than the wild-type strain, while S. aureus cells harbouring a functional sapS induce a chemokine response that favours the recruitment of neutrophils to the infection site. Our in vitro and quantitative transcript analysis show that SapS has an effect on S. aureus capacity to adapt to oxidative stress during growth. SapS is also involved in S. aureus biofilm formation. Thus, this study shows for the first time that SapS plays a significant role during infection, most likely through inhibiting a variety of the host’s defence mechanisms. Full article
Show Figures

Figure 1

21 pages, 6178 KiB  
Article
Anti-Virulence Potential of a Chionodracine-Derived Peptide against Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates from Cystic Fibrosis Patients
by Marco Artini, Esther Imperlini, Francesco Buonocore, Michela Relucenti, Fernando Porcelli, Orlando Donfrancesco, Vanessa Tuccio Guarna Assanti, Ersilia Vita Fiscarelli, Rosanna Papa and Laura Selan
Int. J. Mol. Sci. 2022, 23(21), 13494; https://doi.org/10.3390/ijms232113494 - 04 Nov 2022
Cited by 3 | Viewed by 1601
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing several chronic infections resistant to currently available antibiotics. Its pathogenicity is related to the production of different virulence factors such as biofilm and protease secretion. Pseudomonas communities can persist in biofilms that protect bacterial cells from [...] Read more.
Pseudomonas aeruginosa is an opportunistic pathogen causing several chronic infections resistant to currently available antibiotics. Its pathogenicity is related to the production of different virulence factors such as biofilm and protease secretion. Pseudomonas communities can persist in biofilms that protect bacterial cells from antibiotics. Hence, there is a need for innovative approaches that are able to counteract these virulence factors, which play a pivotal role, especially in chronic infections. In this context, antimicrobial peptides are emerging drugs showing a broad spectrum of antibacterial activity. Here, we tested the anti-virulence activity of a chionodracine-derived peptide (KHS-Cnd) on five P. aeruginosa clinical isolates from cystic fibrosis patients. We demonstrated that KHS-Cnd impaired biofilm development and caused biofilm disaggregation without affecting bacterial viability in nearly all of the tested strains. Ultrastructural morphological analysis showed that the effect of KHS-Cnd on biofilm could be related to a different compactness of the matrix. KHS-Cnd was also able to reduce adhesion to pulmonary cell lines and to impair the invasion of host cells by P. aeruginosa. A cytotoxic effect of KHS-Cnd was observed only at the highest tested concentration. This study highlights the potential of KHS-Cnd as an anti-biofilm and anti-virulence molecule against P. aeruginosa clinical strains. Full article
Show Figures

Figure 1

16 pages, 2804 KiB  
Article
The OmpR-like Transcription Factor as a Negative Regulator of hrpR/S in Pseudomonas syringae pv. actinidiae
by Fu Zhao, Taihui Zhi, Renjian Hu, Rong Fan, Youhua Long, Fenghua Tian and Zhibo Zhao
Int. J. Mol. Sci. 2022, 23(20), 12306; https://doi.org/10.3390/ijms232012306 - 14 Oct 2022
Viewed by 1478
Abstract
Bacterial canker of kiwifruit is a devastating disease caused by Pseudomonas syringae pv. actinidiae (Psa). The type III secretion system (T3SS), which translocates effectors into plant cells to subvert plant immunity and promote extracellular bacterial growth, is required for Psa virulence. [...] Read more.
Bacterial canker of kiwifruit is a devastating disease caused by Pseudomonas syringae pv. actinidiae (Psa). The type III secretion system (T3SS), which translocates effectors into plant cells to subvert plant immunity and promote extracellular bacterial growth, is required for Psa virulence. Despite that the “HrpR/S-HrpL” cascade that sophisticatedly regulates the expression of T3SS and effectors has been well documented, the transcriptional regulators of hrpR/S remain to be determined. In this study, the OmpR-like transcription factor, previously identified by DNA pull-down assay, was found to be involved in the regulation of hrpR/S genes, and its regulatory mechanisms and other functions in Psa were explored through techniques including gene knockout and overexpression, ChIP-seq, and RNA-seq. The OmpR-like transcription factor had binding sites in the promoter region of the hrpR/S, and the transcriptional level of the hrpR/S increased after the deletion of OmpR-like and decreased upon its overexpression in an OmpR-like deletion background. Additionally, OmpR-like overexpression reduced the strain’s capacity to form biofilms and lipopolysaccharides, led to its slow growth in King’s B medium, and reduced its swimming ability, although there was no significant effect on its pathogenicity against kiwifruit hosts. Our results indicated that OmpR-like directly and negatively regulates the transcription of hrpR/S and may be involved in the regulation of multiple biological processes in Psa. Our results provide a basis for further understanding the transcriptional regulation mechanism of hrpR/S in Psa. Full article
Show Figures

Figure 1

19 pages, 761 KiB  
Review
The Role of Virulence Factors in Neonatal Sepsis Caused by Enterobacterales: A Systematic Review
by Lucia Barcellini, Giulia Ricci, Ilia Bresesti, Aurora Piazza, Francesco Comandatore, Mike Sharland, Gian Vincenzo Zuccotti and Laura Folgori
Int. J. Mol. Sci. 2022, 23(19), 11930; https://doi.org/10.3390/ijms231911930 - 08 Oct 2022
Cited by 1 | Viewed by 1823
Abstract
Neonatal sepsis is a life-threatening condition with high mortality. Virulence determinants relevant in causing Gram-negative (GN) neonatal sepsis are still poorly characterized. A better understanding of virulence factors (VFs) associated with GN neonatal sepsis could offer new targets for therapeutic interventions. The aim [...] Read more.
Neonatal sepsis is a life-threatening condition with high mortality. Virulence determinants relevant in causing Gram-negative (GN) neonatal sepsis are still poorly characterized. A better understanding of virulence factors (VFs) associated with GN neonatal sepsis could offer new targets for therapeutic interventions. The aim of this review was to assess the role of GN VFs in neonatal sepsis. We primarily aimed to investigate the main VFs leading to adverse outcome and second to evaluate VFs associated with increased invasiveness/pathogenicity in neonates. MEDLINE, Embase, and Cochrane Library were systematically searched for studies reporting data on the role of virulome/VFs in bloodstream infections caused by Enterobacterales among neonates and infants aged 0–90 days. Twenty studies fulfilled the inclusion criteria. Only 4 studies reported data on the association between pathogen virulence determinants and neonatal mortality, whereas 16 studies were included in the secondary analyses. The quality of reporting was suboptimal in the great majority of the published studies. No consistent association between virulence determinants and GN strains causing neonatal sepsis was identified. Considerable heterogeneity was found in terms of VFs analysed and reported, included population and microbiological methods, with the included studies often showing conflicting data. This variability hampered the comparison of the results. In conclusions, pathogens responsible for neonatal sepsis are widely heterogenous and can use different pathways to develop invasive disease. The recent genome-wide approach needs to include multicentre studies with larger sample sizes, analyses of VF gene profiles instead of single VF genes, alongside a comprehensive collection of clinical information. A better understanding of the roles of virulence genes in neonatal GN bacteraemia may offer new vaccine targets and new markers of highly virulent strains. This information can potentially be used for screening and preventive interventions as well as for new targets for anti-virulence antibiotic-sparing therapies. Full article
Show Figures

Figure 1

17 pages, 9721 KiB  
Article
Surfactin Mitigates a High-Fat Diet and Streptozotocin-Induced Type 2 Diabetes through Improving Pancreatic Dysfunction and Inhibiting Inflammatory Response
by Xiaoyu Chen, Hongyuan Zhao, Yajun Lu, Huawei Liu, Fanqiang Meng, Zhaoxin Lu and Yingjian Lu
Int. J. Mol. Sci. 2022, 23(19), 11086; https://doi.org/10.3390/ijms231911086 - 21 Sep 2022
Cited by 3 | Viewed by 1953
Abstract
Surfactin from Bacillus amyloliquefaciens fmb50 was utilized to treat mice with type 2 diabetes (T2DM) induced by a high-fat diet/streptozotocin (HFD/STZ). Our group’s earlier research indicated that surfactin could lower blood glucose and mitigate liver dysfunction to further improve HFD/STZ-induced T2DM through modulating [...] Read more.
Surfactin from Bacillus amyloliquefaciens fmb50 was utilized to treat mice with type 2 diabetes (T2DM) induced by a high-fat diet/streptozotocin (HFD/STZ). Our group’s earlier research indicated that surfactin could lower blood glucose and mitigate liver dysfunction to further improve HFD/STZ-induced T2DM through modulating intestinal microbiota. Thus, we further investigated the effects of surfactin on the pancreas and colon in mice with T2DM to elucidate the detailed mechanism. In the present study, mice with HFD/STZ-induced T2DM had their pancreatic and colon inflammation, oxidative stress, and endoplasmic reticulum stress (ERS) reduced when given oral surfactin at a dose of 80 mg/kg body weight. According to further research, surfactin also improved glucose metabolism by activating the phosphatidylinositol kinase (PI3K)/protein kinase B (Akt) signaling pathway, further protecting islets β-cell, promoting insulin secretion, inhibiting glucagon release and mitigating pancreas dysfunction. Additionally, after surfactin treatment, the colon levels of the tight junction proteins Occludin and Claudin-1 of T2DM mice were considerably increased by 130.64% and by 36.40%, respectively. These findings revealed that surfactin not only ameliorated HFD/STZ-induced pancreas inflammation and dysfunction and preserved intestinal barrier dysfunction and gut microbiota homeostasis but also enhanced insulin sensitivity and glucose homeostasis in T2DM mice. Finally, in the further experiment, we were able to demonstrate that early surfactin intervention might delay the development of T2DM caused by HFD/STZ, according to critical biochemical parameters in serum. Full article
Show Figures

Figure 1

13 pages, 1089 KiB  
Article
Decoding Genetic Features and Antimicrobial Susceptibility of Pseudomonas aeruginosa Strains Isolated from Bloodstream Infections
by Tomasz Bogiel, Dagmara Depka, Mateusz Rzepka and Agnieszka Mikucka
Int. J. Mol. Sci. 2022, 23(16), 9208; https://doi.org/10.3390/ijms23169208 - 16 Aug 2022
Cited by 4 | Viewed by 1552
Abstract
Pseudomonas aeruginosa is a Gram-negative rod and an etiological factor of opportunistic infections. The infections of this etiology appear mostly among hospitalized patients and are relatively hard to treat due to widespread antimicrobial resistance. Many virulence factors are involved in the pathogenesis of [...] Read more.
Pseudomonas aeruginosa is a Gram-negative rod and an etiological factor of opportunistic infections. The infections of this etiology appear mostly among hospitalized patients and are relatively hard to treat due to widespread antimicrobial resistance. Many virulence factors are involved in the pathogenesis of P. aeruginosa infection, the coexistence of which have a significant impact on the course of an infection with a particular localization. The aim of this study was to assess the antimicrobial susceptibility profiles and the frequency of genes encoding selected virulence factors in clinical P. aeruginosa strains isolated from bloodstream infections (BSIs). The following genes encoding virulence factors of enzymatic activity were assessed: lasB, plC H, plC N, nan1, nan2, aprA and phzM. The frequency of the genes encoding the type III secretion system effector proteins (exoU and exoS) and the genes encoding pilin structural subunits (pilA and pilB) were also investigated. The occurrence of virulence-factor genes was assessed using polymerase chain reactions, each in a separate reaction. Seventy-one P. aeruginosa strains, isolated from blood samples of patients with confirmed bacteremia hospitalized at the University Hospital No. 1 of Dr. Antoni Jurasz in Bydgoszcz, Poland, were included in the study. All the investigated strains were susceptible to colistin, while the majority of the strains presented resistance to ticarcillin/clavulanate (71.8%), piperacillin (60.6 %), imipenem (57.7%) and piperacillin/tazobactam (52.1%). The presence of the lasB and plC H genes was noted in all the tested strains, while the plC N, nan2, aprA, phzM and nan1 genes were identified in 68 (95.8%), 66 (93.0%), 63 (88.7%), 55 (77.5%) and 34 (47.9%) isolates, respectively. In 44 (62.0%) and 41 (57.7%) strains, the presence of the exoU and exoS genes was confirmed, while the pilA and pilB genes were noted only in 14 (19.7%) and 3 (4.2%) isolates, respectively. This may be due to the diverse roles of these proteins in the development and maintenance of BSIs. Statistically significant correlations were observed between particular gene pairs’ coexistence (e.g., alkaline protease and neuraminidase 2). Altogether, twenty-seven distinctive genotypes were observed among the studied strains, indicating the vast variety of genetic compositions of P. aeruginosa strains causing BSIs. Full article
Show Figures

Figure 1

14 pages, 6775 KiB  
Article
Identification of Key Functions Required for Production and Utilization of the Siderophore Piscibactin Encoded by the High-Pathogenicity Island irp-HPI in Vibrionaceae
by Marta A. Lages, Lucía Ageitos, Jaime Rodríguez, Carlos Jiménez, Manuel L. Lemos and Miguel Balado
Int. J. Mol. Sci. 2022, 23(16), 8865; https://doi.org/10.3390/ijms23168865 - 09 Aug 2022
Cited by 3 | Viewed by 1641
Abstract
Piscibactin is a widespread siderophore system present in many different bacteria, especially within the Vibrionaceae family. Previous works showed that most functions required for biosynthesis and transport of this siderophore are encoded by the high-pathogenicity island irp-HPI. In the present work, using [...] Read more.
Piscibactin is a widespread siderophore system present in many different bacteria, especially within the Vibrionaceae family. Previous works showed that most functions required for biosynthesis and transport of this siderophore are encoded by the high-pathogenicity island irp-HPI. In the present work, using Vibrio anguillarum as a model, we could identify additional key functions encoded by irp-HPI that are necessary for piscibactin production and transport and that have remained unknown. Allelic exchange mutagenesis, combined with cross-feeding bioassays and LC-MS analysis, were used to demonstrate that Irp4 protein is an essential component for piscibactin synthesis since it is the thioesterase required for nascent piscibactin be released from the NRPS Irp1. We also show that Irp8 is a MFS-type protein essential for piscibactin secretion. In addition, after passage through the outer membrane transporter FrpA, the completion of ferri-piscibactin internalization through the inner membrane would be achieved by the ABC-type transporter FrpBC. The expression of this transporter is coordinated with the expression of FrpA and with the genes encoding biosynthetic functions. Since piscibactin is a major virulence factor of some pathogenic vibrios, the elements of biosynthesis and transport described here could be additional interesting targets for the design of novel antimicrobials against these bacterial pathogens. Full article
Show Figures

Figure 1

24 pages, 3704 KiB  
Article
A Highly Unstable and Elusive Plasmid That Encodes the Type III Secretion System Is Necessary for Full Virulence in the Marine Fish Pathogen Photobacterium damselae subsp. piscicida
by Saqr Abushattal, Ana Vences and Carlos R. Osorio
Int. J. Mol. Sci. 2022, 23(9), 4729; https://doi.org/10.3390/ijms23094729 - 25 Apr 2022
Cited by 2 | Viewed by 2287
Abstract
The marine bacterium Photobacterium damselae subsp. piscicida (Pdp) causes photobacteriosis in fish and important financial losses in aquaculture, but knowledge of its virulence factors is still scarce. We here demonstrate that an unstable plasmid (pPHDPT3) that encodes a type III secretion [...] Read more.
The marine bacterium Photobacterium damselae subsp. piscicida (Pdp) causes photobacteriosis in fish and important financial losses in aquaculture, but knowledge of its virulence factors is still scarce. We here demonstrate that an unstable plasmid (pPHDPT3) that encodes a type III secretion system (T3SS) is highly prevalent in Pdp strains from different geographical origins and fish host species. We found that pPHDPT3 undergoes curing upon in vitro cultivation, and this instability constitutes a generalized feature of pPHDPT3-like plasmids in Pdp strains. pPHDPT3 markers were detected in tissues of naturally-infected moribund fish and in the Pdp colonies grown directly from the fish tissues but were undetectable in a fraction of the colonies produced upon the first passage of the primeval colonies on agar plates. Notably, cured strains exhibited a marked reduction in virulence for fish, demonstrating that pPHDPT3 is a major virulence factor of Pdp. The attempts to stabilize pPHDPT3 by insertion of antibiotic resistance markers by allelic exchange caused an even greater reduction in virulence. We hypothesize that the existence of a high pressure to shed pPHDPT3 plasmid in vitro caused the selection of clones with off-target mutations and gene rearrangements during the process of genetic modification. Collectively, these results show that pPHDPT3 constitutes a novel, hitherto unreported virulence factor of Pdp that shows a high instability in vitro and warn that the picture of Pdp virulence genes has been historically underestimated, since the loss of the T3SS and other plasmid-borne genes may have occurred systematically in laboratories for decades. Full article
Show Figures

Figure 1

39 pages, 3784 KiB  
Article
The Periplasmic Oxidoreductase DsbA Is Required for Virulence of the Phytopathogen Dickeya solani
by Tomasz Przepiora, Donata Figaj, Aleksandra Bogucka, Jakub Fikowicz-Krosko, Robert Czajkowski, Nicole Hugouvieux-Cotte-Pattat and Joanna Skorko-Glonek
Int. J. Mol. Sci. 2022, 23(2), 697; https://doi.org/10.3390/ijms23020697 - 09 Jan 2022
Cited by 6 | Viewed by 2278
Abstract
In bacteria, the DsbA oxidoreductase is a crucial factor responsible for the introduction of disulfide bonds to extracytoplasmic proteins, which include important virulence factors. A lack of proper disulfide bonds frequently leads to instability and/or loss of protein function; therefore, improper disulfide bonding [...] Read more.
In bacteria, the DsbA oxidoreductase is a crucial factor responsible for the introduction of disulfide bonds to extracytoplasmic proteins, which include important virulence factors. A lack of proper disulfide bonds frequently leads to instability and/or loss of protein function; therefore, improper disulfide bonding may lead to avirulent phenotypes. The importance of the DsbA function in phytopathogens has not been extensively studied yet. Dickeya solani is a bacterium from the Soft Rot Pectobacteriaceae family which is responsible for very high economic losses mainly in potato. In this work, we constructed a D. solani dsbA mutant and demonstrated that a lack of DsbA caused a loss of virulence. The mutant bacteria showed lower activities of secreted virulence determinants and were unable to develop disease symptoms in a potato plant. The SWATH-MS-based proteomic analysis revealed that the dsbA mutation led to multifaceted effects in the D. solani cells, including not only lower levels of secreted virulence factors, but also the induction of stress responses. Finally, the outer membrane barrier seemed to be disturbed by the mutation. Our results clearly demonstrate that the function played by the DsbA oxidoreductase is crucial for D. solani virulence, and a lack of DsbA significantly disturbs cellular physiology. Full article
Show Figures

Figure 1

2021

Jump to: 2023, 2022

18 pages, 3736 KiB  
Article
Pseudomonas donghuensis HYS gtrA/B/II Gene Cluster Contributes to Its Pathogenicity toward Caenorhabditis elegans
by Yaqian Xiao, Panning Wang, Xuesi Zhu and Zhixiong Xie
Int. J. Mol. Sci. 2021, 22(19), 10741; https://doi.org/10.3390/ijms221910741 - 04 Oct 2021
Cited by 6 | Viewed by 1911
Abstract
Pseudomonas donghuensis HYS is more virulent than P. aeruginosa toward Caenorhabditis elegans but the mechanism underlying virulence is unclear. This study is the first to report that the specific gene cluster gtrA/B/II in P. donghuensis HYS is involved in the virulence [...] Read more.
Pseudomonas donghuensis HYS is more virulent than P. aeruginosa toward Caenorhabditis elegans but the mechanism underlying virulence is unclear. This study is the first to report that the specific gene cluster gtrA/B/II in P. donghuensis HYS is involved in the virulence of this strain toward C. elegans, and there are no reports of GtrA, GtrB and GtrII in any Pseudomonas species. The pathogenicity of P. donghuensis HYS was evaluated using C. elegans as a host. Based on the prediction of virulence factors and comparative genomic analysis of P. donghuensis HYS, we identified 42 specific virulence genes in P. donghuensis HYS. Slow-killing assays of these genes showed that the gtrAB mutation had the greatest effect on the virulence of P. donghuensis HYS, and GtrA, GtrB and GtrII all positively affected P. donghuensis HYS virulence. Two critical GtrII residues (Glu47 and Lys480) were identified in P. donghuensis HYS. Transmission electron microscopy (TEM) showed that GtrA, GtrB and GtrII were involved in the glucosylation of lipopolysaccharide (LPS) O-antigen in P. donghuensis HYS. Furthermore, colony-forming unit (CFU) assays showed that GtrA, GtrB and GtrII significantly enhanced P. donghuensis HYS colonization in the gut of C. elegans, and glucosylation of LPS O-antigen and colonization in the host intestine contributed to the pathogenicity of P. donghuensis HYS. In addition, experiments using the worm mutants ZD101, KU4 and KU25 revealed a correlation between P. donghuensis HYS virulence and the TIR-1/SEK-1/PMK-1 pathways of the innate immune p38 MAPK pathway in C. elegans. In conclusion, these results reveal that the specific virulence gene cluster gtrA/B/II contributes to the unique pathogenicity of HYS compared with other pathogenic Pseudomonas, and that this process also involves C. elegans innate immunity. These findings significantly increase the available information about GtrA/GtrB/GtrII-based virulence mechanisms in the genus Pseudomonas. Full article
Show Figures

Figure 1

19 pages, 1599 KiB  
Article
A Secreted Chorismate Mutase from Xanthomonas arboricola pv. juglandis Attenuates Virulence and Walnut Blight Symptoms
by Renata de A. B. Assis, Cíntia H. D. Sagawa, Paulo A. Zaini, Houston J. Saxe, Phillip A. Wilmarth, Brett S. Phinney, Michelle Salemi, Leandro M. Moreira and Abhaya M. Dandekar
Int. J. Mol. Sci. 2021, 22(19), 10374; https://doi.org/10.3390/ijms221910374 - 26 Sep 2021
Cited by 3 | Viewed by 2666
Abstract
Walnut blight is a significant above-ground disease of walnuts caused by Xanthomonas arboricola pv. juglandis (Xaj). The secreted form of chorismate mutase (CM), a key enzyme of the shikimate pathway regulating plant immunity, is highly conserved between plant-associated beta and gamma proteobacteria including [...] Read more.
Walnut blight is a significant above-ground disease of walnuts caused by Xanthomonas arboricola pv. juglandis (Xaj). The secreted form of chorismate mutase (CM), a key enzyme of the shikimate pathway regulating plant immunity, is highly conserved between plant-associated beta and gamma proteobacteria including phytopathogens belonging to the Xanthomonadaceae family. To define its role in walnut blight disease, a dysfunctional mutant of chorismate mutase was created in a copper resistant strain Xaj417 (XajCM). Infections of immature walnut Juglans regia (Jr) fruit with XajCM were hypervirulent compared with infections with the wildtype Xaj417 strain. The in vitro growth rate, size and cellular morphology were similar between the wild-type and XajCM mutant strains, however the quantification of bacterial cells by dPCR within walnut hull tissues showed a 27% increase in XajCM seven days post-infection. To define the mechanism of hypervirulence, proteome analysis was conducted to compare walnut hull tissues inoculated with the wild type to those inoculated with the XajCM mutant strain. Proteome analysis revealed 3296 Jr proteins (five decreased and ten increased with FDR ≤ 0.05) and 676 Xaj417 proteins (235 increased in XajCM with FDR ≤ 0.05). Interestingly, the most abundant protein in Xaj was a polygalacturonase, while in Jr it was a polygalacturonase inhibitor. These results suggest that this secreted chorismate mutase may be an important virulence suppressor gene that regulates Xaj417 virulence response, allowing for improved bacterial survival in the plant tissues. Full article
Show Figures

Figure 1

14 pages, 2950 KiB  
Article
Hypervirulent Klebsiella pneumoniae Sequence Type 420 with a Chromosomally Inserted Virulence Plasmid
by Elias Eger, Stefan E. Heiden, Karsten Becker, Andrea Rau, Katharina Geisenhainer, Evgeny A. Idelevich and Katharina Schaufler
Int. J. Mol. Sci. 2021, 22(17), 9196; https://doi.org/10.3390/ijms22179196 - 25 Aug 2021
Cited by 17 | Viewed by 2864
Abstract
Background: Klebsiella pneumoniae causes severe diseases including sepsis, pneumonia and wound infections and is differentiated into hypervirulent (hvKp) and classic (cKp) pathotypes. hvKp isolates are characterized clinically by invasive and multiple site infection and phenotypically in particular through hypermucoviscosity and increased siderophore production, [...] Read more.
Background: Klebsiella pneumoniae causes severe diseases including sepsis, pneumonia and wound infections and is differentiated into hypervirulent (hvKp) and classic (cKp) pathotypes. hvKp isolates are characterized clinically by invasive and multiple site infection and phenotypically in particular through hypermucoviscosity and increased siderophore production, enabled by the presence of the respective virulence genes, which are partly carried on plasmids. Methods: Here, we analyzed two K. pneumoniae isolates of a human patient that caused severe multiple site infection. By applying both genomic and phenotypic experiments and combining basic science with clinical approaches, we aimed at characterizing the clinical background as well as the two isolates in-depth. This also included bioinformatics analysis of a chromosomal virulence plasmid integration event. Results: Our genomic analysis revealed that the two isolates were clonal and belonged to sequence type 420, which is not only the first description of this K. pneumoniae subtype in Germany but also suggests belonging to the hvKp pathotype. The latter was supported by the clinical appearance and our phenotypic findings revealing increased siderophore production and hypermucoviscosity similar to an archetypical, hypervirulent K. pneumoniae strain. In addition, our in-depth bioinformatics analysis suggested the insertion of a hypervirulence plasmid in the bacterial chromosome, mediated by a new IS5 family sub-group IS903 insertion sequence designated ISKpn74. Conclusion: Our study contributes not only to the understanding of hvKp and the association between hypervirulence and clinical outcomes but reveals the chromosomal integration of a virulence plasmid, which might lead to tremendous public health implications. Full article
Show Figures

Figure 1

27 pages, 10503 KiB  
Article
Bacillus pumilus 15.1, a Strain Active against Ceratitis capitata, Contains a Novel Phage and a Phage-Related Particle with Bacteriocin Activity
by Alberto Fernández-Fernández, Antonio Osuna and Susana Vilchez
Int. J. Mol. Sci. 2021, 22(15), 8164; https://doi.org/10.3390/ijms22158164 - 29 Jul 2021
Cited by 3 | Viewed by 1687
Abstract
A 98.1 Kb genomic region from B. pumilus 15.1, a strain isolated as an entomopathogen toward C. capitata, the Mediterranean fruit fly, has been characterised in search of potential virulence factors. The 98.1 Kb region shows a high number of phage-related protein-coding [...] Read more.
A 98.1 Kb genomic region from B. pumilus 15.1, a strain isolated as an entomopathogen toward C. capitata, the Mediterranean fruit fly, has been characterised in search of potential virulence factors. The 98.1 Kb region shows a high number of phage-related protein-coding ORFs. Two regions with different phylogenetic origins, one with 28.7 Kb in size, highly conserved in Bacillus strains, and one with 60.2 Kb in size, scarcely found in Bacillus genomes are differentiated. The content of each region is thoroughly characterised using comparative studies. This study demonstrates that these two regions are responsible for the production, after mitomycin induction, of a phage-like particle that packages DNA from the host bacterium and a novel phage for B. pumilus, respectively. Both the phage-like particles and the novel phage are observed and characterised by TEM, and some of their structural proteins are identified by protein fingerprinting. In addition, it is found that the phage-like particle shows bacteriocin activity toward other B. pumilus strains. The effect of the phage-like particles and the phage in the toxicity of the strain toward C. capitata is also evaluated. Full article
Show Figures

Figure 1

29 pages, 3377 KiB  
Review
Mammalian Neuropeptides as Modulators of Microbial Infections: Their Dual Role in Defense versus Virulence and Pathogenesis
by Daria Augustyniak, Eliza Kramarska, Paweł Mackiewicz, Magdalena Orczyk-Pawiłowicz and Fionnuala T. Lundy
Int. J. Mol. Sci. 2021, 22(7), 3658; https://doi.org/10.3390/ijms22073658 - 01 Apr 2021
Cited by 10 | Viewed by 5256
Abstract
The regulation of infection and inflammation by a variety of host peptides may represent an evolutionary failsafe in terms of functional degeneracy and it emphasizes the significance of host defense in survival. Neuropeptides have been demonstrated to have similar antimicrobial activities to conventional [...] Read more.
The regulation of infection and inflammation by a variety of host peptides may represent an evolutionary failsafe in terms of functional degeneracy and it emphasizes the significance of host defense in survival. Neuropeptides have been demonstrated to have similar antimicrobial activities to conventional antimicrobial peptides with broad-spectrum action against a variety of microorganisms. Neuropeptides display indirect anti-infective capacity via enhancement of the host’s innate and adaptive immune defense mechanisms. However, more recently concerns have been raised that some neuropeptides may have the potential to augment microbial virulence. In this review we discuss the dual role of neuropeptides, perceived as a double-edged sword, with antimicrobial activity against bacteria, fungi, and protozoa but also capable of enhancing virulence and pathogenicity. We review the different ways by which neuropeptides modulate crucial stages of microbial pathogenesis such as adhesion, biofilm formation, invasion, intracellular lifestyle, dissemination, etc., including their anti-infective properties but also detrimental effects. Finally, we provide an overview of the efficacy and therapeutic potential of neuropeptides in murine models of infectious diseases and outline the intrinsic host factors as well as factors related to pathogen adaptation that may influence efficacy. Full article
Show Figures

Figure 1

20 pages, 1689 KiB  
Article
Granulibacter bethesdensis, a Pathogen from Patients with Chronic Granulomatous Disease, Produces a Penta-Acylated Hypostimulatory Glycero-D-talo-oct-2-ulosonic Acid–Lipid A Glycolipid (Ko-Lipid A)
by Artur Muszyński, Kol A. Zarember, Christian Heiss, Joseph Shiloach, Lars J. Berg, John Audley, Arina Kozyr, David E. Greenberg, Steven M. Holland, Harry L. Malech, Parastoo Azadi, Russell W. Carlson and John I. Gallin
Int. J. Mol. Sci. 2021, 22(7), 3303; https://doi.org/10.3390/ijms22073303 - 24 Mar 2021
Cited by 4 | Viewed by 3362
Abstract
Granulibacter bethesdensis can infect patients with chronic granulomatous disease, an immunodeficiency caused by reduced phagocyte NADPH oxidase function. Intact G. bethesdensis (Gb) is hypostimulatory compared to Escherichia coli, i.e., cytokine production in human blood requires 10–100 times more G. bethesdensis [...] Read more.
Granulibacter bethesdensis can infect patients with chronic granulomatous disease, an immunodeficiency caused by reduced phagocyte NADPH oxidase function. Intact G. bethesdensis (Gb) is hypostimulatory compared to Escherichia coli, i.e., cytokine production in human blood requires 10–100 times more G. bethesdensis CFU/mL than E. coli. To better understand the pathogenicity of G. bethesdensis, we isolated its lipopolysaccharide (GbLPS) and characterized its lipid A. Unlike with typical Enterobacteriaceae, the release of presumptive Gb lipid A from its LPS required a strong acid. NMR and mass spectrometry demonstrated that the carbohydrate portion of the isolated glycolipid consists of α-Manp-(1→4)-β-GlcpN3N-(1→6)-α-GlcpN-(1⇿1)-α-GlcpA tetra-saccharide substituted with five acyl chains: the amide-linked N-3′ 14:0(3-OH), N-2′ 16:0(3-O16:0), and N-2 18:0(3-OH) and the ester-linked O-3 14:0(3-OH) and 16:0. The identification of glycero-d-talo-oct-2-ulosonic acid (Ko) as the first constituent of the core region of the LPS that is covalently attached to GlcpN3N of the lipid backbone may account for the acid resistance of GbLPS. In addition, the presence of Ko and only five acyl chains may explain the >10-fold lower proinflammatory potency of GbKo–lipidA compared to E. coli lipid A, as measured by cytokine induction in human blood. These unusual structural properties of the G.bethesdensis Ko–lipid A glycolipid likely contribute to immune evasion during pathogenesis and resistance to antimicrobial peptides. Full article
Show Figures

Figure 1

Back to TopTop