ijms-logo

Journal Browser

Journal Browser

Molecular Ecology, Physiology and Biochemistry of Insects 2.0

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biology".

Deadline for manuscript submissions: closed (31 December 2020) | Viewed by 47417

Special Issue Editor

Special Issue Information

Dear Colleagues,

Of all the zoological classes, insects are the most numerous in species and the most varied in structure. Estimates of the number of species vary from 1 to 10 million, and 1018 individuals are estimated to be alive at any given moment. Insects are relatively ancient and have survived more or less unchanged in their basic winged form for the last 300 million years. Due to their adaptability in behavior, physiology, and biochemistry to changing environmental conditions, insects have successfully colonized habitats stretching from arid deserts to the Arctic and Antarctic and from freshwater brooks to hot springs and saline marine environments.

Knowledge of the physiology and biochemistry of insects developed extensively at the end of the 20th century. The reasons for this increased interest in insect physiology and biochemistry were that insects can be useful as model systems for experimental studies of principles, but also as economic models. Mechanisms of environmental adaptation in growth and development, energy metabolism, or respiration to temperature, oxygen tension, food supply, or salt concentrations were the focus of interest. It was the time of “Physiological Ecology”.

About 30 years later, the omics era gives us the opportunity to gain deeper insight into the different aspects of insect physiology and environmental adaptation, for example, by silencing or overexpressing candidate genes of interest. A major challenge in current entomology is to integrate different levels of organization, from cellular mechanisms to functions in ecosystems. The rapid development of molecular techniques for studying the physiological functions of genes will revolutionize the entomology not only of so-called model organisms like Drosophila, but in general. When we understand how physiological processes are regulated and at what time, we will be able to manipulate them, thereby providing new attractive opportunities for practical applications, for example, in an ecologically friendly insect pest control.

We invite you to contribute original research articles and critical reviews on both basic and applied approaches in insect molecular biology. Articles on the molecular mechanisms of insect–plant interactions, and systems of insect communication in general, are also welcome.

Prof. Dr. Klaus H. Hoffmann
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Insect development and reproduction
  • Molecular endocrinology/neuropeptides
  • Insect immunity
  • Photoperiodism
  • Cold hardiness
  • Global climate change
  • Insect aging
  • Insect–plant interactions
  • Molecular interactions of insects with microorganisms
  • Chemical communication
  • Biochemistry of insect venoms
  • Insect genomics and proteomics
  • Genetic engineering
  • Molecular
  • volution/population genetics
  • Insect biotechnology

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

19 pages, 5789 KiB  
Article
Variation in Parasitoid Virulence of Tetrastichus brontispae during the Targeting of Two Host Beetles
by Hua-Jian Zhang, Ya-Ping Lin, Hong-Yu Li, Rui Wang, Lang Fu, Qing-Chen Jia, You-Ming Hou and Bao-Zhen Tang
Int. J. Mol. Sci. 2021, 22(7), 3581; https://doi.org/10.3390/ijms22073581 - 30 Mar 2021
Cited by 2 | Viewed by 2087
Abstract
In host-parasitoid interactions, antagonistic relationship drives parasitoids to vary in virulence in facing different hosts, which makes these systems excellent models for stress-induced evolutionary studies. Venom compositions varied between two strains of Tetrastichus brontispae, Tb-Bl and Tb-On. Tb-Bl targets Brontispa longissima pupae [...] Read more.
In host-parasitoid interactions, antagonistic relationship drives parasitoids to vary in virulence in facing different hosts, which makes these systems excellent models for stress-induced evolutionary studies. Venom compositions varied between two strains of Tetrastichus brontispae, Tb-Bl and Tb-On. Tb-Bl targets Brontispa longissima pupae as hosts, and Tb-On is a sub-population of Tb-Bl, which has been experimentally adapted to a new host, Octodonta nipae. Aiming to examine variation in parasitoid virulence of the two strains toward two hosts, we used reciprocal injection experiments to compare effect of venom/ovarian fluids from the two strains on cytotoxicity, inhibition of immunity and fat body lysis of the two hosts. We found that Tb-Onvenom was more virulent towards plasmatocyte spreading, granulocyte function and phenoloxidase activity than Tb-Blvenom. Tb-Blovary was able to suppress encapsulation and phagocytosis in both hosts; however, Tb-Onovary inhibition targeted only B. longissima. Our data suggest that the venom undergoes rapid evolution when facing different hosts, and that the wasp has good evolutionary plasticity. Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects 2.0)
Show Figures

Figure 1

19 pages, 5608 KiB  
Article
The Bark Beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) Has Digestive Capacity to Degrade Complex Substrates: Functional Characterization and Heterologous Expression of an α-Amylase
by L. Viridiana Soto-Robles, María Fernanda López, Verónica Torres-Banda, Claudia Cano-Ramírez, Gabriel Obregón-Molina and Gerardo Zúñiga
Int. J. Mol. Sci. 2021, 22(1), 36; https://doi.org/10.3390/ijms22010036 - 22 Dec 2020
Cited by 2 | Viewed by 2269
Abstract
Dendroctonus-bark beetles are natural agents contributing to vital processes in coniferous forests, such as regeneration, succession, and material recycling, as they colonize and kill damaged, stressed, or old pine trees. These beetles spend most of their life cycle under stem and roots [...] Read more.
Dendroctonus-bark beetles are natural agents contributing to vital processes in coniferous forests, such as regeneration, succession, and material recycling, as they colonize and kill damaged, stressed, or old pine trees. These beetles spend most of their life cycle under stem and roots bark where they breed, develop, and feed on phloem. This tissue is rich in essential nutrients and complex molecules such as starch, cellulose, hemicellulose, and lignin, which apparently are not available for these beetles. We evaluated the digestive capacity of Dendroctonus rhizophagus to hydrolyze starch. Our aim was to identify α-amylases and characterize them both molecularly and biochemically. The findings showed that D. rhizophagus has an α-amylase gene (AmyDr) with a single isoform, and ORF of 1452 bp encoding a 483-amino acid protein (53.15 kDa) with a predicted signal peptide of 16 amino acids. AmyDr has a mutation in the chlorine-binding site, present in other phytophagous insects and in a marine bacterium. Docking analysis showed that AmyDr presents a higher binding affinity to amylopectin compared to amylose, and an affinity binding equally stable to calcium, chlorine, and nitrate ions. AmyDr native protein showed amylolytic activity in the head-pronotum and gut, and its recombinant protein, a polypeptide of ~53 kDa, showed conformational stability, and its activity is maintained both in the presence and absence of chlorine and nitrate ions. The AmyDr gene showed a differential expression significantly higher in the gut than the head-pronotum, indicating that starch hydrolysis occurs mainly in the midgut. An overview of the AmyDr gene expression suggests that the amylolytic activity is regulated through the developmental stages of this bark beetle and associated with starch availability in the host tree. Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects 2.0)
Show Figures

Figure 1

18 pages, 2191 KiB  
Article
RNAi-Mediated Knockdown of Transcription Factor E93 in Nymphs of the Desert Locust (Schistocerca gregaria) Inhibits Adult Morphogenesis and Results in Supernumerary Juvenile Stages
by Marijke Gijbels, Elisabeth Marchal, Thomas Wolf Verdonckt, Evert Bruyninckx and Jozef Vanden Broeck
Int. J. Mol. Sci. 2020, 21(20), 7518; https://doi.org/10.3390/ijms21207518 - 12 Oct 2020
Cited by 9 | Viewed by 3111
Abstract
Postembryonic development of insects is coordinated by juvenile hormone (JH) together with ecdysteroids. Whereas the JH early response gene krüppel-homolog 1 (Kr-h1) plays a crucial role in the maintenance of juvenile characteristics during consecutive larval stages, the ecdysteroid-inducible early gene E93 [...] Read more.
Postembryonic development of insects is coordinated by juvenile hormone (JH) together with ecdysteroids. Whereas the JH early response gene krüppel-homolog 1 (Kr-h1) plays a crucial role in the maintenance of juvenile characteristics during consecutive larval stages, the ecdysteroid-inducible early gene E93 appears to be a key factor promoting metamorphosis and adult morphogenesis. Here, we report on the developmental and molecular consequences of an RNAi-mediated knockdown of SgE93 in the desert locust, Schistocerca gregaria, a hemimetabolan species. Our experimental data show that injection of gregarious locust nymphs with a double-stranded RNA construct targeting the SgE93 transcript inhibited the process of metamorphosis and instead led to supernumerary nymphal stages. These supernumerary nymphal instars still displayed juvenile morphological features, such as a nymphal color scheme and body shape, while they reached the physical body size of the adult locusts, or even surpassed it after the next supernumerary molt. Interestingly, when compared to control locusts, the total duration of the fifth and normally final nymphal (N5) stage was shorter than normal. This appeared to correspond with temporal and quantitative changes in hemolymph ecdysteroid levels, as well as with altered expression of the rate-limiting Halloween gene, Spook (SgSpo). In addition, the levels of the ecdysone receptor (SgEcR) and retinoïd X receptor (SgRXR) transcripts were altered, indicating that silencing SgE93 affects both ecdysteroid synthesis and signaling. Upon knockdown of SgE93, a very potent upregulation of the SgKr-h1 transcript levels was observed in both head and fat body, while no significant changes were detected in the transcript levels of SgJHAMT and SgCYP15A1, the enzymes that catalyze the two final steps in JH biosynthesis. Moreover, the process of molting was disturbed in these supernumerary nymphs. While attempting ecdysis to the next stage, 50% of the N6 and all N7 nymphal instars eventually died. S. gregaria is a very harmful, swarm-forming pest species that destroys crops and threatens food security in many of the world’s poorest countries. We believe that a better knowledge of the mechanisms of postembryonic development may contribute to the discovery of novel, more selective and sustainable strategies for controlling gregarious locust populations. In this context, identification of molecular target candidates that are capable of significantly reducing the fitness of this devastating swarming pest will be of crucial importance. Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects 2.0)
Show Figures

Graphical abstract

15 pages, 4435 KiB  
Article
Tip60 Phosphorylation at Ser 99 Is Essential for Autophagy Induction in Bombyx mori
by Wenmei Wu, Kang Li, Haigang Zhao, Xianying Xu, Jing Xu, Man Luo, Yang Xiao and Ling Tian
Int. J. Mol. Sci. 2020, 21(18), 6893; https://doi.org/10.3390/ijms21186893 - 20 Sep 2020
Cited by 3 | Viewed by 2124 | Correction
Abstract
Tip60, a key histone acetyltransferase of the MYST family and member of the nuclear multimeric protein complex (NuA4), regulates the activity and stability of proteins involved in the cell cycle, DNA damage responses, autophagy, etc. However, the function and regulatory mechanism of Tip60 [...] Read more.
Tip60, a key histone acetyltransferase of the MYST family and member of the nuclear multimeric protein complex (NuA4), regulates the activity and stability of proteins involved in the cell cycle, DNA damage responses, autophagy, etc. However, the function and regulatory mechanism of Tip60 homolog in Bombyx mori are not elucidated. In the present study, Bombyx Tip60 (BmTip60) was functionally identified. Developmental profiles showed that the protein levels and nuclear localization of BmTip60 peaked in fat body during the larval–pupal metamorphosis when autophagy was intensive; simultaneously, the BmTip60 protein migrated to form an upper band as detected by Western blot. Interestingly, the upper band of BmTip60 was reduced by λ-phosphatase treatment, indicating that it was a phosphorylated form of BmTip60. Results showed that BmTip60 was promoted by starvation but not 20-hydroxyecdysone treatment. Transcription factor AMP-activated protein kinase (AMPK) affected by starvation was pivotal for BmTip60 protein migration. In addition, one mammalian phosphorylation site was identified in BmTip60 at Ser99, the constitutive-activation mutation of Ser99 to Asp99 but not its inactive mutation to Ala99 significantly upregulated autophagy, showing the critical role of phosphorylation at Ser99 for BmTip60-mediated autophagy. In conclusion, the starvation-AMPK axis promotes BmTip60 in B. mori, which was requisite for autophagy induction. These results reveal a regulatory mechanism of histone acetyltransferase Tip60 homologs by phosphorylation in insects, and sheds light on further related studies of acetylation regulation. Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects 2.0)
Show Figures

Figure 1

15 pages, 3071 KiB  
Article
Differential Profiles of Gut Microbiota and Metabolites Associated with Host Shift of Plutella xylostella
by Fei-Ying Yang, Hafiz Sohaib Ahmed Saqib, Jun-Hui Chen, Qian-Qian Ruan, Liette Vasseur, Wei-Yi He and Min-Sheng You
Int. J. Mol. Sci. 2020, 21(17), 6283; https://doi.org/10.3390/ijms21176283 - 30 Aug 2020
Cited by 25 | Viewed by 3061
Abstract
Evolutionary and ecological forces are important factors that shape gut microbial profiles in hosts, which can help insects adapt to different environments through modulating their metabolites. However, little is known about how gut microbes and metabolites are altered when lepidopteran pest species switch [...] Read more.
Evolutionary and ecological forces are important factors that shape gut microbial profiles in hosts, which can help insects adapt to different environments through modulating their metabolites. However, little is known about how gut microbes and metabolites are altered when lepidopteran pest species switch hosts. In the present study, using 16S-rDNA sequencing and mass spectrometry-based metabolomics, we analyzed the gut microbiota and metabolites of three populations of Plutella xylostella: one feeding on radish (PxR) and two feeding on peas (PxP; with PxP-1 and PxP-17 being the first and 17th generations after host shift from radish to peas, respectively). We found that the diversity of gut microbes in PxP-17 was significantly lower than those in PxR and PxP-1, which indicates a distinct change in gut microbiota after host shift. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the functions of energy metabolism, signal transduction, and xenobiotics biodegradation and metabolism were increased in PxP-17, suggesting their potential roles in host adaptation. Metabolic profiling showed a significant difference in the abundance of gut metabolites between PxR and PxP-17, and significant correlations of gut bacteria with gut metabolites. These findings shed light on the interaction among plants, herbivores, and symbionts, and advance our understanding of host adaptation associated with gut bacteria and metabolic activities in P. xylostella. Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects 2.0)
Show Figures

Graphical abstract

24 pages, 2552 KiB  
Article
Precocious Downregulation of Krüppel-Homolog 1 in the Migratory Locust, Locusta migratoria, Gives Rise to An Adultoid Phenotype with Accelerated Ovarian Development but Disturbed Mating and Oviposition
by Marijke Gijbels, Sam Schellens, Tine Schellekens, Evert Bruyninckx, Elisabeth Marchal and Jozef Vanden Broeck
Int. J. Mol. Sci. 2020, 21(17), 6058; https://doi.org/10.3390/ijms21176058 - 22 Aug 2020
Cited by 8 | Viewed by 2978
Abstract
Krüppel-homolog 1 (Kr-h1) is a zinc finger transcription factor maintaining the status quo in immature insect stages and promoting reproduction in adult insects through the transduction of the Juvenile Hormone (JH) signal. Knockdown studies have shown that precocious silencing of Kr-h1 in the [...] Read more.
Krüppel-homolog 1 (Kr-h1) is a zinc finger transcription factor maintaining the status quo in immature insect stages and promoting reproduction in adult insects through the transduction of the Juvenile Hormone (JH) signal. Knockdown studies have shown that precocious silencing of Kr-h1 in the immature stages results in the premature development of adult features. However, the molecular characteristics and reproductive potential of these premature adult insect stages are still poorly understood. Here we report on an adult-like or ‘adultoid’ phenotype of the migratory locust, Locusta migratoria, obtained after a premature metamorphosis induced by the silencing of LmKr-h1 in the penultimate instar. The freshly molted adultoid shows precocious development of adult features, corresponding with increased transcript levels of the adult specifier gene LmE93. Furthermore, accelerated ovarian maturation and vitellogenesis were observed in female adultoids, coinciding with elevated expression of LmCYP15A1 in corpora allata (CA) and LmKr-h1 and vitellogenin genes (LmVg) in fat body, whereas LmE93 and Methoprene-tolerant (LmMet) transcript levels decreased in fat body. In adultoid ovaries, expression of the Halloween genes, Spook (LmSpo) and Phantom (LmPhm), was elevated as well. In addition, the processes of mating and oviposition were severely disturbed in these females. L. migratoria is a well-known, swarm-forming pest insect that can destroy crops and harvests in some of the world’s poorest countries. As such, a better understanding of factors that are capable of significantly reducing the reproductive potential of this pest may be of crucial importance for the development of novel locust control strategies. Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects 2.0)
Show Figures

Graphical abstract

27 pages, 4126 KiB  
Article
Black Soldier Fly Larvae Adapt to Different Food Substrates through Morphological and Functional Responses of the Midgut
by Marco Bonelli, Daniele Bruno, Matteo Brilli, Novella Gianfranceschi, Ling Tian, Gianluca Tettamanti, Silvia Caccia and Morena Casartelli
Int. J. Mol. Sci. 2020, 21(14), 4955; https://doi.org/10.3390/ijms21144955 - 13 Jul 2020
Cited by 58 | Viewed by 8004
Abstract
Modulation of nutrient digestion and absorption is one of the post-ingestion mechanisms that guarantees the best exploitation of food resources, even when they are nutritionally poor or unbalanced, and plays a pivotal role in generalist feeders, which experience an extreme variability in diet [...] Read more.
Modulation of nutrient digestion and absorption is one of the post-ingestion mechanisms that guarantees the best exploitation of food resources, even when they are nutritionally poor or unbalanced, and plays a pivotal role in generalist feeders, which experience an extreme variability in diet composition. Among insects, the larvae of black soldier fly (BSF), Hermetia illucens, can grow on a wide range of feeding substrates with different nutrient content, suggesting that they can set in motion post-ingestion processes to match their nutritional requirements. In the present study we address this issue by investigating how the BSF larval midgut adapts to diets with different nutrient content. Two rearing substrates were compared: a nutritionally balanced diet for dipteran larvae and a nutritionally poor diet that mimics fruit and vegetable waste. Our data show that larval growth performance is only moderately affected by the nutritionally poor diet, while differences in the activity of digestive enzymes, midgut cell morphology, and accumulation of long-term storage molecules can be observed, indicating that diet-dependent adaptation processes in the midgut ensure the exploitation of poor substrates. Midgut transcriptome analysis of larvae reared on the two substrates showed that genes with important functions in digestion and absorption are differentially expressed, confirming the adaptability of this organ. Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects 2.0)
Show Figures

Graphical abstract

15 pages, 3544 KiB  
Article
Identification, Characterization, and Functional Analysis of Chitin Synthase Genes in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae)
by Zuo-Min Shao, Yi-Jiangcheng Li, Jian-Hao Ding, Zhi-Xiang Liu, Xiao-Rui Zhang, Jun Wang, Sheng Sheng and Fu-An Wu
Int. J. Mol. Sci. 2020, 21(13), 4656; https://doi.org/10.3390/ijms21134656 - 30 Jun 2020
Cited by 13 | Viewed by 2669
Abstract
Glyphodes pyloalis Walker (G. pyloalis) causes significant damage to mulberry every year, and we currently lack effective and environmentally friendly ways to control the pest. Chitin synthase (CHS) is a critical regulatory enzyme related to chitin biosynthesis, which plays a vital [...] Read more.
Glyphodes pyloalis Walker (G. pyloalis) causes significant damage to mulberry every year, and we currently lack effective and environmentally friendly ways to control the pest. Chitin synthase (CHS) is a critical regulatory enzyme related to chitin biosynthesis, which plays a vital role in the growth and development of insects. The function of CHS in G. pyloalis, however, has not been studied. In this study, two chitin synthase genes (GpCHSA and GpCHSB) were screened from our previously created transcriptome database. The complete coding sequences of the two genes are 5,955 bp and 5,896 bp, respectively. Expression of GpCHSA and GpCHSB could be detected throughout all developmental stages. Relatively high expression levels of GpCHSA occurred in the head and integument and GpCHSB was most highly expressed in the midgut. Moreover, silencing of GpCHSA and GpCHSB using dsRNA reduced expression of downstream chitin metabolism pathway genes and resulted in abnormal development and wings stretching, but did not affect normal pupating of larvae. Furthermore, the inhibitor of chitin synthesis diflubenzuron (DFB) was used to further validate the RNAi result. DFB treatment significantly improved expression of GpCHSA, except GpCHSB, and their downstream genes, and also effected G. Pyloali molting at 48 h (62% mortality rate) and 72 h (90% mortality rate), respectively. These results show that GpCHSA and GpCHSB play critical roles in the development and wing stretching in G. pyloalis adults, indicating that the genes are attractive potential pest control targets. Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects 2.0)
Show Figures

Figure 1

15 pages, 1606 KiB  
Article
Gene Expression and Functional Analyses of Odorant Receptors in Small Hive Beetles (Aethina tumida)
by Yuanzhen Liu, Alexis Beaurepaire, Curtis W. Rogers, Dawn Lopez, Jay D. Evans, Lars Straub, Peter Neumann, Steven C. Cook and Qiang Huang
Int. J. Mol. Sci. 2020, 21(13), 4582; https://doi.org/10.3390/ijms21134582 - 27 Jun 2020
Cited by 4 | Viewed by 3034
Abstract
Olfaction is key to many insects. Odorant receptors (ORs) stand among the key chemosensory receptors mediating the detection of pheromones and kairomones. Small hive beetles (SHBs), Aethina tumida, are parasites of social bee colonies and olfactory cues are especially important for host [...] Read more.
Olfaction is key to many insects. Odorant receptors (ORs) stand among the key chemosensory receptors mediating the detection of pheromones and kairomones. Small hive beetles (SHBs), Aethina tumida, are parasites of social bee colonies and olfactory cues are especially important for host finding. However, how interactions with their hosts may have shaped the evolution of ORs in the SHB remains poorly understood. Here, for the first time, we analyzed the evolution of SHB ORs through phylogenetic and positive selection analyses. We then tested the expression of selected OR genes in antennae, heads, and abdomens in four groups of adult SHBs: colony odor-experienced/-naive males and females. The results show that SHBs experienced both OR gene losses and duplications, thereby providing a first understanding of the evolution of SHB ORs. Additionally, three candidate ORs potentially involved in host finding and/or chemical communication were identified. Significantly different downregulations of ORs between the abdomens of male and female SHBs exposed to colony odors may reflect that these expression patterns might also reflect other internal events, e.g., oviposition. Altogether, these results provide novel insights into the evolution of SHB ORs and provide a valuable resource for analyzing the function of key genes, e.g., for developing biological control. These results will also help in understanding the chemosensory system in SHBs and other beetles. Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects 2.0)
Show Figures

Figure 1

15 pages, 4291 KiB  
Article
Molecular Modeling of Chemosensory Protein 3 from Spodoptera litura and Its Binding Property with Plant Defensive Metabolites
by Sujata Singh, Chetna Tyagi, Irfan A. Rather, Jamal S.M. Sabir, Md. Imtaiyaz Hassan, Archana Singh and Indrakant Kumar Singh
Int. J. Mol. Sci. 2020, 21(11), 4073; https://doi.org/10.3390/ijms21114073 - 06 Jun 2020
Cited by 14 | Viewed by 3481
Abstract
Chemosensory perception in insects involves a broad set of chemosensory proteins (CSPs) that identify the bouquet of chemical compounds present in the external environment and regulate specific behaviors. The current study is focused on the Spodoptera litura (Fabricius) chemosensory-related protein, SlitCSP3, a midgut-expressed [...] Read more.
Chemosensory perception in insects involves a broad set of chemosensory proteins (CSPs) that identify the bouquet of chemical compounds present in the external environment and regulate specific behaviors. The current study is focused on the Spodoptera litura (Fabricius) chemosensory-related protein, SlitCSP3, a midgut-expressed CSP, which demonstrates differential gene expression upon different diet intake. There is an intriguing possibility that SlitCSP3 can perceive food-derived chemical signals and modulate insect feeding behavior. We predicted the three-dimensional structure of SlitCSP3 and subsequently performed an accelerated molecular dynamics (aMD) simulation of the best-modeled structure. SlitCSP3 structure has six α-helices arranged as a prism and a hydrophobic binding pocket predominated by leucine and isoleucine. We analyzed the interaction of selected host plant metabolites with the modeled structure of SlitCSP3. Out of two predicted binding pockets in SlitCSP3, the plant-derived defensive metabolites 2-b-D-glucopyranosyloxy-4-hydroxy-7-methoxy-1, 4-benzoxazin-3-one (DIMBOA), 6-Methoxy-2–benzoxazolinone (MBOA), and nicotine were found to interact preferably to the hydrophobic site 1, compared to site 2. The current study provides the potential role of CSPs in recognizing food-derived chemical signals, host-plant specialization, and adaptation to the varied ecosystem. Our work opens new perspectives in designing novel pest-management strategies. It can be further used in the development of CSP-based advanced biosensors. Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects 2.0)
Show Figures

Figure 1

13 pages, 2176 KiB  
Article
Spliceosomal Protein Gene BmSPX Regulates Reproductive Organ Development in Bombyx mori
by Yao Wang, Juan Li, Qiu-Xing Wan, Qin Zhao, Kai-Xuan Wang and Xing-Fu Zha
Int. J. Mol. Sci. 2020, 21(7), 2579; https://doi.org/10.3390/ijms21072579 - 08 Apr 2020
Cited by 4 | Viewed by 2434
Abstract
Sex determination and differentiation are nearly universal to all eukaryotic organisms, encompassing diverse systems and mechanisms. Here, we identified a spliceosomal protein gene BmSPX involved in sex determination of the lepidopeteran insect, Bombyx mori. In a transgenic silkworm line that overexpressed the [...] Read more.
Sex determination and differentiation are nearly universal to all eukaryotic organisms, encompassing diverse systems and mechanisms. Here, we identified a spliceosomal protein gene BmSPX involved in sex determination of the lepidopeteran insect, Bombyx mori. In a transgenic silkworm line that overexpressed the BmSPX gene, transgenic silkworm males exhibited differences in their external genitalia compared to wild-type males, but normal internal genitalia. Additionally, transgenic silkworm females exhibited a developmental disorder of the reproductive organs. Upregulation of BmSPX significantly increased the expression levels of sex-determining genes (BmMasc and BmIMP) and reduced the female-type splice isoform of Bmdsx, which is a key switch gene downstream of the sex-determination pathway. Additionally, co-immunoprecipitation assays confirmed an interaction between the BmSPX protein and BmPSI, an upstream regulatory factor of Bmdsx. Quantitative real-time PCR showed that BmSPX over-expression upregulated the expression of the Hox gene abdominal-B (Adb-B), which is required for specification of the posterior abdomen, external genitalia, and gonads of insects, as well as the genes in the Receptor Tyrosine Kinase (RTK) signaling pathway. In conclusion, our study suggested the involvement of BmSPX, identified as a novel regulatory factor, in the sex-determination pathway and regulation of reproductive organ development in silkworms. Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects 2.0)
Show Figures

Figure 1

15 pages, 3086 KiB  
Article
Role of Chitin Deacetylase 1 in the Molting and Metamorphosis of the Cigarette Beetle Lasioderma serricorne
by Wen-Jia Yang, Kang-Kang Xu, Yi Yan, Can Li and Dao-Chao Jin
Int. J. Mol. Sci. 2020, 21(7), 2449; https://doi.org/10.3390/ijms21072449 - 01 Apr 2020
Cited by 22 | Viewed by 4133
Abstract
Chitin deacetylases (CDAs) are chitin-modifying enzymes known to play vital roles in insect metamorphosis and development. In this study, we identified and characterized a chitin deacetylase 1 gene (LsCDA1) from the cigarette beetle Lasioderma serricorne. LsCDA1 contains a 1614 bp [...] Read more.
Chitin deacetylases (CDAs) are chitin-modifying enzymes known to play vital roles in insect metamorphosis and development. In this study, we identified and characterized a chitin deacetylase 1 gene (LsCDA1) from the cigarette beetle Lasioderma serricorne. LsCDA1 contains a 1614 bp open reading frame encoding a protein of 537 amino acids that includes domain structures typical of CDAs. LsCDA1 was mainly expressed in the late larval and late pupal stages. In larval tissues, the highest level of LsCDA1 was detected in the integument. The expression of LsCDA1 was induced by 20-hydroxyecdysone (20E) in vivo, and it was significantly suppressed by knocking down the expression of ecdysteroidogenesis genes and 20E signaling genes. RNA interference (RNAi)-aided silencing of LsCDA1 in fifth-instar larvae prevented the larval–pupal molt and caused 75% larval mortality. In the late pupal stage, depletion of LsCDA1 resulted in the inhibition of pupal growth and wing abnormalities, and the expression levels of four wing development-related genes (LsDY, LsWG, LsVG, and LsAP) were dramatically decreased. Meanwhile, the chitin contents of LsCDA1 RNAi beetles were significantly reduced, and expressions of three chitin synthesis pathway genes (LsTRE1, LsUAP1, and LsCHS1) were greatly decreased. The results suggest that LsCDA1 is indispensable for larval–pupal and pupal–adult molts, and that it is a potential target for the RNAi-based control of L. serricorne. Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects 2.0)
Show Figures

Graphical abstract

11 pages, 1941 KiB  
Article
Structural and Functional Analysis of PGRP-LC Indicates Exclusive Dap-Type PGN Binding in Bumblebees
by Yanjie Liu, Nanhui Ye, Minming Chen, Huiyue Zhao and Jiandong An
Int. J. Mol. Sci. 2020, 21(7), 2441; https://doi.org/10.3390/ijms21072441 - 01 Apr 2020
Cited by 5 | Viewed by 3159
Abstract
Peptidoglycan recognition proteins (PGRPs) play an important role in the defense against invading microbes via the recognition of the immunogenic substance peptidoglycan (PGN). Bees possess fewer PGRPs than Drosophila melanogaster and Anopheles gambiae but retain two important immune pathways, the Toll pathway and [...] Read more.
Peptidoglycan recognition proteins (PGRPs) play an important role in the defense against invading microbes via the recognition of the immunogenic substance peptidoglycan (PGN). Bees possess fewer PGRPs than Drosophila melanogaster and Anopheles gambiae but retain two important immune pathways, the Toll pathway and the Imd pathway, which can be triggered by the recognition of Dap-type PGN by PGRP-LCx with the assistance of PGRP-LCa in Drosophila. There are three isoforms of PGRP-LC including PGRP-LCx, PGRP-LCa and PGRP-LCy in Drosophila. Our previous study showed that a single PGRP-LC exists in bumblebees. In this present study, we prove that the bumblebee Bombus lantschouensis PGRP-LC (Bl-PGRP-LC) can respond to an infection with Gram-negative bacterium Escherichia coli through binding to the Dap-type PGNs directly, and that E. coli infection induces the quick and strong upregulation of PGRP-LC, abaecin and defensin. Moreover, the Bl-PGRP-LC exhibits a very strong affinity for the Dap-type PGN, much stronger than the affinity exhibited by the PGRP-LC from the more eusocial honeybee Apis mellifera (Am-PGRP-LC). In addition, mutagenesis experiments showed that the residue His390 is the anchor residue for the binding to the Dap-type PGN and forms a hydrogen bond with MurNAc rather than meso-Dap, which interacts with the anchor residue Arg413 of PGRP-LCx in Drosophila. Therefore, bumblebee PGRP-LC possesses exclusive characteristics for the immune response among insect PGRPs. Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects 2.0)
Show Figures

Graphical abstract

18 pages, 3322 KiB  
Article
Identification of Novel ARSB Genes Necessary for p-Benzoquinone Biosynthesis in the Larval Oral Secretion Participating in External Immune Defense in the Red Palm Weevil
by Yu-Chen Pu, Xin-Yu Liang, He Zhang, Hua-Jian Zhang, Li-Na Xu, Ya-Nan Ji, Shu-Ning Huang, Juan Bai and You-Ming Hou
Int. J. Mol. Sci. 2020, 21(5), 1610; https://doi.org/10.3390/ijms21051610 - 26 Feb 2020
Cited by 2 | Viewed by 2506
Abstract
External secretions, composed of a variety of chemical components, are among the most important traits that endow insects with the ability to defend themselves against predators, parasites, or other adversities, especially pathogens. Thus, these exudates play a crucial role in external immunity. Red [...] Read more.
External secretions, composed of a variety of chemical components, are among the most important traits that endow insects with the ability to defend themselves against predators, parasites, or other adversities, especially pathogens. Thus, these exudates play a crucial role in external immunity. Red palm weevil larvae are prolific in this regard, producing large quantities of p-benzoquinone, which is present in their oral secretion. Benzoquinone with antimicrobial activity has been proven to be an active ingredient and key factor for external immunity in a previous study. To obtain a better understanding of the genetic and molecular basis of external immune secretions, we identify genes necessary for p-benzoquinone synthesis. Three novel ARSB genes, namely, RfARSB-0311, RfARSB-11581, and RfARSB-14322, are screened, isolated, and molecularly characterized on the basis of transcriptome data. To determine whether these genes are highly and specifically expressed in the secretory gland, we perform tissue/organ-specific expression profile analysis. The functions of these genes are further determined by examining the antimicrobial activity of the secretions and quantification of p-benzoquinone after RNAi. All the results reveal that the ARSB gene family can regulate the secretory volume of p-benzoquinone by participating in the biosynthesis of quinones, thus altering the host’s external immune inhibitory efficiency. Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects 2.0)
Show Figures

Graphical abstract

Other

Jump to: Research

2 pages, 3261 KiB  
Correction
Correction: Wu, W., et al. Tip60 Phosphorylation at Ser 99 Is Essential for Autophagy Induction in Bombyx mori. Int. J. Mol. Sci. 2020, 21, 6893
by Wenmei Wu, Kang Li, Haigang Zhao, Xianying Xu, Jing Xu, Man Luo, Yang Xiao and Ling Tian
Int. J. Mol. Sci. 2021, 22(4), 1751; https://doi.org/10.3390/ijms22041751 - 10 Feb 2021
Viewed by 1390
Abstract
The author wishes to make the following correction to this paper [...] Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects 2.0)
Show Figures

Figure 1

Back to TopTop