ijms-logo

Journal Browser

Journal Browser

Special Issue "Stress Signaling and Programmed Cell Death 2.0"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Biochemistry".

Deadline for manuscript submissions: 25 November 2023 | Viewed by 983

Special Issue Editor

Special Issue Information

Dear Colleagues,

This Special Issue is a continuation of our previous successful Special Issue “Stress Signaling and Programmed Cell Death”.

Organisms are continuously exposed to various types of stress from external and internal environments. In order to protect cells against such stresses, each cell is equipped with multiple signal transduction systems that elicit a wide range of cellular responses to adapt to or resist such stresses. These signal transduction systems are often described as “stress signaling”. Compelling evidence indicates that the dysregulation of stress signaling induces aberrant responses to stresses, and is responsible for various diseases. Programmed cell death (PCD) is perceived as a crucial event during development and tissue formation. As a stress response, PCD also plays a critical role in the elimination of cells suffering severe stress-induced damage to maintain homeostasis within multicellular organisms, and a number of stress signaling pathways are involved in the regulation of PCD. For this Special Issue, studies of novel signaling mechanisms and pathological processes associated with PCD are welcomed.

Dr. Takuya Noguchi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • apoptosis
  • non-apoptotic cell death
  • inflammatory cell death
  • cancer
  • neurodegenerative disease.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Murine Mast Cells That Are Deficient in IFNAR-Signaling Respond to Viral Infection by Producing a Large Amount of Inflammatory Cytokines, a Low Level of Reactive Oxygen Species, and a High Rate of Cell Death
Int. J. Mol. Sci. 2023, 24(18), 14141; https://doi.org/10.3390/ijms241814141 - 15 Sep 2023
Viewed by 249
Abstract
Mat cells (MCs) are located in the skin and mucous membranes at points where the body meets the environment. When activated, MCs release inflammatory cytokines, which help the immune system to fight viruses. MCs produce, and have receptors for interferons (IFNs), which belong [...] Read more.
Mat cells (MCs) are located in the skin and mucous membranes at points where the body meets the environment. When activated, MCs release inflammatory cytokines, which help the immune system to fight viruses. MCs produce, and have receptors for interferons (IFNs), which belong to a family of cytokines recognized for their antiviral properties. Previously, we reported that MCs produced proinflammatory cytokines in response to a recombinant vesicular stomatitis virus (rVSVΔm51) and that IFNAR signaling was required to down-modulate these responses. Here, we have demonstrated that UV-irradiated rVSVΔm51 did not cause any inflammatory cytokines in either in vitro cultured mouse IFNAR-intact (IFNAR+/+), or in IFNAR-knockout (IFNAR−/−) MCs. However, the non-irradiated virus was able to replicate more effectively in IFNAR−/− MCs and produced a higher level of inflammatory cytokines compared with the IFNAR+/+ MCs. Interestingly, MCs lacking IFNAR expression displayed reduced levels of reactive oxygen species (ROS) compared with IFNAR+/+ MCs. Additionally, upon the viral infection, these IFNAR−/− MCs were found to coexist with many dying cells within the cell population. Based on our findings, IFNAR-intact MCs exhibit a lower rate of rVSVΔm51 infectivity and lower levels of cytokines while demonstrating higher levels of ROS. This suggests that MCs with intact IFNAR signaling may survive viral infections by producing cell-protective ROS mechanisms and are less likely to die than IFNAR−/− cells. Full article
(This article belongs to the Special Issue Stress Signaling and Programmed Cell Death 2.0)
Show Figures

Figure 1

Article
Involvement of Both Extrinsic and Intrinsic Apoptotic Pathways in Tridecylpyrrolidine-Diol Derivative-Induced Apoptosis In Vitro
Int. J. Mol. Sci. 2023, 24(14), 11696; https://doi.org/10.3390/ijms241411696 - 20 Jul 2023
Viewed by 545
Abstract
Despite the decreasing trend in mortality from colorectal cancer, this disease still remains the third most common cause of death from cancer. In the present study, we investigated the antiproliferative and pro-apoptotic effects of (2S,3S,4R)-2-tridecylpyrrolidine-3,4-diol hydrochloride on [...] Read more.
Despite the decreasing trend in mortality from colorectal cancer, this disease still remains the third most common cause of death from cancer. In the present study, we investigated the antiproliferative and pro-apoptotic effects of (2S,3S,4R)-2-tridecylpyrrolidine-3,4-diol hydrochloride on colon cancer cells (Caco-2 and HCT116). The antiproliferative effect and IC50 values were determined by the MTT and BrdU assays. Flow cytometry, qRT-PCR and Western blot were used to study the cellular and molecular mechanisms involved in the induction of apoptotic pathways. Colon cancer cell migration was monitored by the scratch assay. Concentration-dependent cytotoxic and antiproliferative effects on both cell lines, with IC50 values of 3.2 ± 0.1 μmol/L (MTT) vs. 6.46 ± 2.84 μmol/L (BrdU) for HCT116 and 2.17 ± 1.5 μmol/L (MTT) vs. 1.59 ± 0.72 μmol/L (BrdU), for Caco-2 were observed. The results showed that tridecylpyrrolidine-induced apoptosis was associated with the externalization of phosphatidylserine, reduced mitochondrial membrane potential (MMP) accompanied by the activation of casp-3/7, the cleavage of PARP and casp-8, the overexpression of TNF-α and FasL and the dysregulation of Bcl-2 family proteins. Inhibition of the migration of treated cells across the wound area was detected. Taken together, our data show that the anticancer effects of tridecylpyrrolidine analogues in colon cancer cells are mediated by antiproliferative activity, the induction of both extrinsic and intrinsic apoptotic pathways and the inhibition of cell migration. Full article
(This article belongs to the Special Issue Stress Signaling and Programmed Cell Death 2.0)
Show Figures

Figure 1

Back to TopTop