ijms-logo

Journal Browser

Journal Browser

Special Issue "Molecular Pathology, Diagnostics and Therapeutics of Nephropathy 3.0"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (30 November 2023) | Viewed by 1277

Special Issue Editor

Special Issue Information

Dear Colleagues,

This Special Issue is the continuation of our previous Special Issue "Molecular Pathology, Diagnostics and Therapeutics of Nephropathy 2.0”.

Until recently, kidney disease was most frequently diagnosed based exclusively on the histologic examination of kidney biopsy and treated with non-specific immunosuppression. The availability of new diagnostic methods has resulted not only in a better understanding of the molecular pathogenesis of different kidney diseases and more specific and non-invasive diagnostics but also in the identification of new molecular targets for more personalized treatment with putatively better efficacy and safety. This Special Issue invites contributions of both original articles and reviews dedicated to advanced diagnostics and new treatment approaches in chronic kidney disease. Attention is paid not only to glomerular disease but also autosomal dominant polycystic kidney disease and kidney transplantation.

Prof. Dr. Vladimir Tesar
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nephropathy
  • kidney disease
  • glomerulonephritis
  • renal vasculitis
  • lupus nephritis

Related Special Issues

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 3232 KiB  
Article
Efficacy of Mesenchymal-Stromal-Cell-Derived Extracellular Vesicles in Ameliorating Cisplatin Nephrotoxicity, as Modeled Using Three-Dimensional, Gravity-Driven, Two-Layer Tubule-on-a-Chip (3D-MOTIVE Chip)
Int. J. Mol. Sci. 2023, 24(21), 15726; https://doi.org/10.3390/ijms242115726 - 29 Oct 2023
Viewed by 391
Abstract
Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) are known to have a therapeutic effect on nephrotoxicity. As animal models require significant time and resources to evaluate drug effects, there is a need for a new experimental technique that can accurately predict drug effects [...] Read more.
Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) are known to have a therapeutic effect on nephrotoxicity. As animal models require significant time and resources to evaluate drug effects, there is a need for a new experimental technique that can accurately predict drug effects in humans. We evaluated the therapeutic effect of MSC-derived EVs in cisplatin nephrotoxicity using a three-dimensional, gravity-driven, two-layer tubule-on-a-chip (3D-MOTIVE chip). In the 3D-MOTIVE chip, 10 μM cisplatin decreased the number of attached cells compared to the vehicle. Conversely, annexin V and reactive oxygen species (ROS) were increased. Cell viability was increased 2.8-fold and 2.5-fold after treatment with EVs at 4 and 8 µg/mL, respectively, compared to the cisplatin-induced nephrotoxicity group. Cell attachment was increased 2.25-fold by treatment with 4 µg/mL EVs and 2.02-fold by 8 µg/mL EVs. Annexin V and ROS levels were decreased compared to those in the cisplatin-induced nephrotoxicity group. There were no significant differences in annexin V and ROS levels according to EV concentration. In sum, we created a cisplatin-induced nephrotoxicity model on a 3D-MOTIVE chip and found that MSC-derived EVs could restore cell viability. Thus, MSC-derived EVs may have the potential to ameliorate cisplatin-induced nephrotoxicity. Full article
(This article belongs to the Special Issue Molecular Pathology, Diagnostics and Therapeutics of Nephropathy 3.0)
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 2133 KiB  
Review
SCARF Genes in COVID-19 and Kidney Disease: A Path to Comorbidity-Specific Therapies
Int. J. Mol. Sci. 2023, 24(22), 16078; https://doi.org/10.3390/ijms242216078 - 08 Nov 2023
Viewed by 469
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which has killed ~7 million persons worldwide. Chronic kidney disease (CKD) is the most common risk factor for severe COVID-19 and one that most increases the risk of COVID-19-related death. Moreover, CKD [...] Read more.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which has killed ~7 million persons worldwide. Chronic kidney disease (CKD) is the most common risk factor for severe COVID-19 and one that most increases the risk of COVID-19-related death. Moreover, CKD increases the risk of acute kidney injury (AKI), and COVID-19 patients with AKI are at an increased risk of death. However, the molecular basis underlying this risk has not been well characterized. CKD patients are at increased risk of death from multiple infections, to which immune deficiency in non-specific host defenses may contribute. However, COVID-19-associated AKI has specific molecular features and CKD modulates the local (kidney) and systemic (lung, aorta) expression of host genes encoding coronavirus-associated receptors and factors (SCARFs), which SARS-CoV-2 hijacks to enter cells and replicate. We review the interaction between kidney disease and COVID-19, including the over 200 host genes that may influence the severity of COVID-19, and provide evidence suggesting that kidney disease may modulate the expression of SCARF genes and other key host genes involved in an effective adaptive defense against coronaviruses. Given the poor response of certain CKD populations (e.g., kidney transplant recipients) to SARS-CoV-2 vaccines and their suboptimal outcomes when infected, we propose a research agenda focusing on CKD to develop the concept of comorbidity-specific targeted therapeutic approaches to SARS-CoV-2 infection or to future coronavirus infections. Full article
(This article belongs to the Special Issue Molecular Pathology, Diagnostics and Therapeutics of Nephropathy 3.0)
Show Figures

Figure 1

Back to TopTop