ijms-logo

Journal Browser

Journal Browser

Special Issue "Regulatory Mechanism of Transcription Factors in Plant Morphology and Function 2.0"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 31 January 2024 | Viewed by 5373

Special Issue Editor

Special Issue Information

Dear Colleagues, 

A plant forms various organs of flowers, leaves, and roots with highly different morphology. The morphogenesis is genetically programmed to function for the plant survival and can be changeable for the biotechnological application. For the morphogenesis, transcription factors temporally and spatially activate or repress the transcription of their target genes, and consequently regulate activities of proteins, hormones, and other metabolites. The importance of transcription factors in the morphogenesis is obvious, but only partial view of their roles has been obtained.

To update our understanding of the morphogenesis, this Special Issue will focus on the regulation of transcription factors in plant morphology and function. It will provide important insights in the transcription factors that regulate a gene-regulatory cascade operating for the morphogenesis. It will further emphasize the perspective views how the regulation of transcription factors in the morphogenesis contributes to functions for the plant survival. However, it will exclude reports without detailed molecular mechanisms of the morphogenesis nor in planta functions of transcription factors.

Dr. Tomotsugu Koyama
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • development
  • gene regulation
  • morphology
  • plant
  • transcription factor

Related Special Issue

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Genome-Wide Analysis of WUSCHEL-Related Homeobox Gene Family in Sacred Lotus (Nelumbo nucifera)
Int. J. Mol. Sci. 2023, 24(18), 14216; https://doi.org/10.3390/ijms241814216 - 18 Sep 2023
Viewed by 191
Abstract
WUSCHEL-related homeobox (WOX) is a plant-specific transcription factor (TF), which plays an essential role in the regulation of plant growth, development, and abiotic stress responses. However, little information is available on the specific roles of WOX TFs in sacred lotus (Nelumbo nucifera [...] Read more.
WUSCHEL-related homeobox (WOX) is a plant-specific transcription factor (TF), which plays an essential role in the regulation of plant growth, development, and abiotic stress responses. However, little information is available on the specific roles of WOX TFs in sacred lotus (Nelumbo nucifera), which is a perennial aquatic plant with important edible, ornamental, and medicinal values. We identified 15 WOX TFs distributing on six chromosomes in the genome of N. nucifera. A total of 72 WOX genes from five species were divided into three clades and nine subclades based on the phylogenetic tree. NnWOXs in the same subclades had similar gene structures and conserved motifs. Cis-acting element analysis of the promoter regions of NnWOXs found many elements enriched in hormone induction, stress responses, and light responses, indicating their roles in growth and development. The Ka/Ks analysis showed that the WOX gene family had been intensely purified and selected in N. nucifera. The expression pattern analysis suggested that NnWOXs were involved in organ development and differentiation of N. nucifera. Furthermore, the protein–protein interaction analysis showed that NnWOXs might participate in the growth, development, and metabolic regulation of N. nucifera. Taken together, these findings laid a foundation for further analysis of NnWOX functions. Full article
Show Figures

Figure 1

Article
Comprehensive Analysis and Characterization of the GATA Gene Family, with Emphasis on the GATA6 Transcription Factor in Poplar
Int. J. Mol. Sci. 2023, 24(18), 14118; https://doi.org/10.3390/ijms241814118 - 14 Sep 2023
Viewed by 241
Abstract
GATA transcription factors are ubiquitously present in eukaryotic organisms and play a crucial role in multiple biological processes, such as plant growth, stress response, and hormone signaling. However, the study of GATA factors in poplar is currently limited to a small number of [...] Read more.
GATA transcription factors are ubiquitously present in eukaryotic organisms and play a crucial role in multiple biological processes, such as plant growth, stress response, and hormone signaling. However, the study of GATA factors in poplar is currently limited to a small number of proteins, despite their evident functional importance. In this investigation, we utilized the most recent genome annotation and stringent criteria to identify 38 GATA transcription factor genes in poplar. Subsequently, we conducted a comprehensive analysis of this gene family, encompassing phylogenetic classification, protein characterization, analysis of promoter cis-acting elements, and determination of chromosomal location. Our examination of gene duplication events indicated that both tandem and segmental duplications have contributed to the expansion of the GATA gene family in poplar, with segmental duplication potentially being a major driving force. By performing collinearity analysis of genes across six different species, we identified 74 pairs of co-linear genes, which provide valuable insights for predicting gene functions from a comparative genomics perspective. Furthermore, through the analysis of gene expression patterns, we identified five GATA genes that exhibited differential expression in leaf–stem–root tissues and eight genes that were responsive to salt stress. Of particular interest was GATA6, which displayed strong induction by salt stress and overlapped between the two gene sets. We discovered that GATA6 encodes a nuclear-localized protein with transcription activation activity, which is continuously induced by salt stress in leaf and root tissues. Moreover, we constructed a co-expression network centered around GATA6, suggesting the potential involvement of these genes in the growth, development, and response to abiotic stress processes in poplar through cell transport systems and protein modification mechanisms, such as vesicle-mediated transport, intracellular transport, ubiquitination, and deubiquitination. This research provides a foundation for further exploration of the functions and mechanisms of GATA transcription factors in poplar. Full article
Show Figures

Figure 1

Article
Genome-Wide Identification of the NF-Y Gene Family and Their Involvement in Bolting and Flowering in Flowering Chinese Cabbage
Int. J. Mol. Sci. 2023, 24(15), 11898; https://doi.org/10.3390/ijms241511898 - 25 Jul 2023
Viewed by 493
Abstract
Flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee) is a widely consumed vegetable in southern China with significant economic value. Developing product organs in the flowering Chinese cabbage involves two key processes: bolting and flowering. Nuclear factor [...] Read more.
Flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee) is a widely consumed vegetable in southern China with significant economic value. Developing product organs in the flowering Chinese cabbage involves two key processes: bolting and flowering. Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor known for its crucial role in various plant developmental processes. However, there is limited information available on the involvement of this gene family during flowering during Chinese cabbage development. In this study, 49 BcNF-Y genes were identified and characterized along with their physicochemical properties, gene structure, chromosomal location, collinearity, and expression patterns. We also conducted subcellular localization, yeast two-hybrid, and transcriptional activity assays on selected BcNF-Y genes. The findings of this study revealed enhanced expression levels of specific BcNF-Y genes during the stalk development and flowering stages in flowering Chinese cabbage. Notably, BcNF-YA8, BcNF-YB14, BcNF-YB20, and BcNF-YC5 interacted with BcRGA1, a negative regulator of GA signaling, indicating their potential involvement in GA-mediated stalk development. This study provides valuable insights into the role of BcNF-Y genes in flowering Chinese cabbage development and suggests that they are potential candidates for further investigating the key regulators of cabbage bolting and flowering. Full article
Show Figures

Figure 1

Article
Transcriptome Dynamics Underlying Planticine®-Induced Defense Responses of Tomato (Solanum lycopersicum L.) to Biotic Stresses
Int. J. Mol. Sci. 2023, 24(7), 6494; https://doi.org/10.3390/ijms24076494 - 30 Mar 2023
Viewed by 1808
Abstract
The induction of natural defense mechanisms in plants is considered to be one of the most important strategies used in integrated pest management (IPM). Plant immune inducers could reduce the use of chemicals for plant protection and their harmful impacts on the environment. [...] Read more.
The induction of natural defense mechanisms in plants is considered to be one of the most important strategies used in integrated pest management (IPM). Plant immune inducers could reduce the use of chemicals for plant protection and their harmful impacts on the environment. Planticine® is a natural plant defense biostimulant based on oligomers of α(1→4)-linked D-galacturonic acids, which are biodegradable and nontoxic. The aim of this study was to define the molecular basis of Planticine’s biological activity and the efficacy of its use as a natural plant resistance inducer in greenhouse conditions. Three independent experiments with foliar application of Planticine® were carried out. The first experiment in a climatic chamber (control environment, no pest pressure) subjected the leaves to RNA-seq analysis, and the second and third experiments in greenhouse conditions focused on efficacy after a pest infestation. The result was the RNA sequencing of six transcriptome libraries of tomatoes treated with Planticine® and untreated plants; a total of 3089 genes were found to be differentially expressed genes (DEGs); among them, 1760 and 1329 were up-regulated and down-regulated, respectively. DEG analysis indicated its involvement in such metabolic pathways and processes as plant-pathogen interaction, plant hormone signal transduction, MAPK signaling pathway, photosynthesis, and regulation of transcription. We detected up-regulated gene-encoded elicitor and effector recognition receptors (ELRR and ERR), mitogen-activated protein kinase (MAPKs) genes, and transcription factors (TFs), i.e., WRKY, ERF, MYB, NAC, bZIP, pathogenesis-related proteins (PRPs), and resistance-related metabolite (RRMs) genes. In the greenhouse trials, foliar application of Planticine® proved to be effective in reducing the infestation of tomato leaves by the biotrophic pathogen powdery mildew and in reducing feeding by thrips, which are insect herbivores. Prophylactic and intervention use of Planticine® at low infestation levels allows the activation of plant defense mechanisms. Full article
Show Figures

Figure 1

Review

Jump to: Research

Review
Transcriptional Regulators of Plant Adaptation to Heat Stress
Int. J. Mol. Sci. 2023, 24(17), 13297; https://doi.org/10.3390/ijms241713297 - 27 Aug 2023
Viewed by 454
Abstract
Heat stress (HS) is becoming an increasingly large problem for food security as global warming progresses. As sessile species, plants have evolved different mechanisms to cope with the disruption of cellular homeostasis, which can impede plant growth and development. Here, we summarize the [...] Read more.
Heat stress (HS) is becoming an increasingly large problem for food security as global warming progresses. As sessile species, plants have evolved different mechanisms to cope with the disruption of cellular homeostasis, which can impede plant growth and development. Here, we summarize the mechanisms underlying transcriptional regulation mediated by transcription factors, epigenetic regulators, and regulatory RNAs in response to HS. Additionally, cellular activities for adaptation to HS are discussed, including maintenance of protein homeostasis through protein quality control machinery, and autophagy, as well as the regulation of ROS homeostasis via a ROS-scavenging system. Plant cells harmoniously regulate their activities to adapt to unfavorable environments. Lastly, we will discuss perspectives on future studies for improving urban agriculture by increasing crop resilience to HS. Full article
Show Figures

Figure 1

Review
Insights into the Transcriptomics of Crop Wild Relatives to Unravel the Salinity Stress Adaptive Mechanisms
Int. J. Mol. Sci. 2023, 24(12), 9813; https://doi.org/10.3390/ijms24129813 - 06 Jun 2023
Viewed by 940
Abstract
The narrow genomic diversity of modern cultivars is a major bottleneck for enhancing the crop’s salinity stress tolerance. The close relatives of modern cultivated plants, crop wild relatives (CWRs), can be a promising and sustainable resource to broaden the diversity of crops. Advances [...] Read more.
The narrow genomic diversity of modern cultivars is a major bottleneck for enhancing the crop’s salinity stress tolerance. The close relatives of modern cultivated plants, crop wild relatives (CWRs), can be a promising and sustainable resource to broaden the diversity of crops. Advances in transcriptomic technologies have revealed the untapped genetic diversity of CWRs that represents a practical gene pool for improving the plant’s adaptability to salt stress. Thus, the present study emphasizes the transcriptomics of CWRs for salinity stress tolerance. In this review, the impacts of salt stress on the plant’s physiological processes and development are overviewed, and the transcription factors (TFs) regulation of salinity stress tolerance is investigated. In addition to the molecular regulation, a brief discussion on the phytomorphological adaptation of plants under saline environments is provided. The study further highlights the availability and use of transcriptomic resources of CWR and their contribution to pangenome construction. Moreover, the utilization of CWRs’ genetic resources in the molecular breeding of crops for salinity stress tolerance is explored. Several studies have shown that cytoplasmic components such as calcium and kinases, and ion transporter genes such as Salt Overly Sensitive 1 (SOS1) and High-affinity Potassium Transporters (HKTs) are involved in the signaling of salt stress, and in mediating the distribution of excess Na+ ions within the plant cells. Recent comparative analyses of transcriptomic profiling through RNA sequencing (RNA-Seq) between the crops and their wild relatives have unraveled several TFs, stress-responsive genes, and regulatory proteins for generating salinity stress tolerance. This review specifies that the use of CWRs transcriptomics in combination with modern breeding experimental approaches such as genomic editing, de novo domestication, and speed breeding can accelerate the CWRs utilization in the breeding programs for enhancing the crop’s adaptability to saline conditions. The transcriptomic approaches optimize the crop genomes with the accumulation of favorable alleles that will be indispensable for designing salt-resilient crops. Full article
Show Figures

Figure 1

Review
Transcription Factors-Regulated Leaf Senescence: Current Knowledge, Challenges and Approaches
Int. J. Mol. Sci. 2023, 24(11), 9245; https://doi.org/10.3390/ijms24119245 - 25 May 2023
Cited by 3 | Viewed by 774
Abstract
Leaf senescence is a complex biological process regulated at multiple levels, including chromatin remodeling, transcription, post-transcription, translation, and post-translational modifications. Transcription factors (TFs) are crucial regulators of leaf senescence, with NAC and WRKY families being the most studied. This review summarizes the progress [...] Read more.
Leaf senescence is a complex biological process regulated at multiple levels, including chromatin remodeling, transcription, post-transcription, translation, and post-translational modifications. Transcription factors (TFs) are crucial regulators of leaf senescence, with NAC and WRKY families being the most studied. This review summarizes the progress made in understanding the regulatory roles of these families in leaf senescence in Arabidopsis and various crops such as wheat, maize, sorghum, and rice. Additionally, we review the regulatory functions of other families, such as ERF, bHLH, bZIP, and MYB. Unraveling the mechanisms of leaf senescence regulated by TFs has the potential to improve crop yield and quality through molecular breeding. While significant progress has been made in leaf senescence research in recent years, our understanding of the molecular regulatory mechanisms underlying this process is still incomplete. This review also discusses the challenges and opportunities in leaf senescence research, with suggestions for possible strategies to address them. Full article
Show Figures

Figure 1

Back to TopTop