ijms-logo

Journal Browser

Journal Browser

Special Issue "Advanced Research on Nucleic Acids: Therapeutic Potential and Applications"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Biochemistry".

Deadline for manuscript submissions: 29 February 2024 | Viewed by 1152

Special Issue Editors

Special Issue Information

Dear Colleagues,

This Special Issue, entitled “Advanced Research on Nucleic Acids: Therapeutic Potential and Applications”, will present a selection of original research, reviews, and commentaries focused on diverse topics in this field, with particular attention being paid to advancements in nucleic acid research at the molecular level. Nucleic acid therapeutics represent an innovative and challenging research field. Oligonucleotide (ON)-based therapy has become an alternative to classical approaches in the search for novel therapeutics involving gene-related diseases. Nucleic-acid-based drugs can be designed to modulate cellular pathways that are not readily druggable, and different nucleic acid chemical modifications can be optimally combined in the context of various targeting mechanisms, in order to circumvent the main pharmacokinetic restrictions for therapeutic ON applications. The wide versatility of the mechanism of action of ONs, combined with various designs and multiple choices of chemical modifications, provide the concept of ON targeting with vast potential. Clinically relevant applications and remaining challenges in this field are still numerous and exciting.

Dr. Veronica Esposito
Dr. Antonella Virgilio
Prof. Dr. Aldo Galeone
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aptamer
  • decoy
  • DNAzyme
  • ribozyme
  • siRNA
  • miRNA, antisense oligonucleotide
  • antigene strategy
  • G-quadruplex
  • triplex

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Myogenetic Oligodeoxynucleotide Induces Myocardial Differentiation of Murine Pluripotent Stem Cells
Int. J. Mol. Sci. 2023, 24(18), 14380; https://doi.org/10.3390/ijms241814380 - 21 Sep 2023
Viewed by 243
Abstract
An 18-base myogenetic oligodeoxynucleotide (myoDN), iSN04, acts as an anti-nucleolin aptamer and induces myogenic differentiation of skeletal muscle myoblasts. This study investigated the effect of iSN04 on murine embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). In the undifferentiated state, iSN04 [...] Read more.
An 18-base myogenetic oligodeoxynucleotide (myoDN), iSN04, acts as an anti-nucleolin aptamer and induces myogenic differentiation of skeletal muscle myoblasts. This study investigated the effect of iSN04 on murine embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). In the undifferentiated state, iSN04 inhibited the proliferation of ESCs and iPSCs but did not affect the expression of pluripotent markers. In the differentiating condition, iSN04 treatment of ESCs/iPSCs from day 5 onward dramatically induced differentiation into Nkx2-5+ beating cardiomyocytes with upregulation of Gata4, Isl1, and Nkx2-5, whereas iSN04 treatment from earlier stages completely inhibited cardiomyogenesis. RNA sequencing revealed that iSN04 treatment from day 5 onward contributes to the generation of cardiac progenitors by modulating the Wnt signaling pathway. Immunostaining showed that iSN04 suppressed the cytoplasmic translocation of nucleolin and restricted it to the nucleoli. These results demonstrate that nucleolin inhibition by iSN04 facilitates the terminal differentiation of cardiac mesoderm into cardiomyocytes but interferes with the differentiation of early mesoderm into the cardiac lineage. This is the first report on the generation of cardiomyocytes from pluripotent stem cells using a DNA aptamer. Since iSN04 did not induce hypertrophic responses in primary-cultured cardiomyocytes, iSN04 would be useful and safe for the regenerative therapy of heart failure using stem cell-derived cardiomyocytes. Full article
Show Figures

Figure 1

Article
Exploring the Interaction of New Pyridoquinazoline Derivatives with G-Quadruplex in the c-MYC Promoter Region
Int. J. Mol. Sci. 2023, 24(18), 14346; https://doi.org/10.3390/ijms241814346 - 20 Sep 2023
Viewed by 238
Abstract
Novel amino-substituted pyridoquinazolinone derivatives have been designed and synthesized as potential c-MYC G-quadruplex (G4) ligands, employing an efficient methodology. All the new compounds exhibited moderate to good antiproliferative activity against the human osteosarcoma U2OS cell line. NMR and docking experiments revealed that the [...] Read more.
Novel amino-substituted pyridoquinazolinone derivatives have been designed and synthesized as potential c-MYC G-quadruplex (G4) ligands, employing an efficient methodology. All the new compounds exhibited moderate to good antiproliferative activity against the human osteosarcoma U2OS cell line. NMR and docking experiments revealed that the recently synthesized compounds interact with the Pu22 G-quadruplex in the c-MYC promoter region, establishing a 2:1 complex, with each molecule positioned over the tetrads at the 3′- and 5′-ends. Full article
Show Figures

Figure 1

Article
A Unique G-Quadruplex Aptamer: A Novel Approach for Cancer Cell Recognition, Cell Membrane Visualization, and RSV Infection Detection
Int. J. Mol. Sci. 2023, 24(18), 14344; https://doi.org/10.3390/ijms241814344 - 20 Sep 2023
Viewed by 226
Abstract
Surface staining has emerged as a rapid technique for applying external stains to trace cellular identities in diverse populations. In this study, we developed a distinctive aptamer with selective binding to cell surface nucleolin (NCL), bypassing cytoplasmic internalization. Conjugation of the aptamer with [...] Read more.
Surface staining has emerged as a rapid technique for applying external stains to trace cellular identities in diverse populations. In this study, we developed a distinctive aptamer with selective binding to cell surface nucleolin (NCL), bypassing cytoplasmic internalization. Conjugation of the aptamer with a FAM group facilitated NCL visualization on live cell surfaces with laser confocal microscopy. To validate the aptamer-NCL interaction, we employed various methods, including the surface plasmon resonance, IHC-based flow cytometry, and electrophoretic mobility shift assay. The G-quadruplex formations created by aptamers were confirmed with a nuclear magnetic resonance and an electrophoretic mobility shift assay utilizing BG4, a G-quadruplex-specific antibody. Furthermore, the aptamer exhibited discriminatory potential in distinguishing between cancerous and normal cells using flow cytometry. Notably, it functioned as a dynamic probe, allowing real-time monitoring of heightened NCL expression triggered by a respiratory syncytial virus (RSV) on normal cell surfaces. This effect was subsequently counteracted with dsRNA transfection and suppressed the NCL expression; thus, emphasizing the dynamic attributes of the probe. These collective findings highlight the robust versatility of our aptamer as a powerful tool for imaging cell surfaces, holding promising implications for cancer cell identification and the detection of RSV infections. Full article
Show Figures

Figure 1

Back to TopTop