ijms-logo

Journal Browser

Journal Browser

Nitric Oxide Signalling in Plants

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 20 April 2024 | Viewed by 4462

Special Issue Editor


E-Mail Website
Guest Editor
Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
Interests: plant molecular biology; molecular plant physiology; nitric oxide; Arabidopsis; phytohormones
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues, 

Nitric oxide (NO) is a gaseous small molecule and as a free radical, it plays important roles in various physiological and biological processes in plants. NO also acts as signal molecule and transducer with a range of functions, including seed germination, growth, root development, ripening and plant aging. The study of NO biology in plants during the last few decades has proved the beneficial role of NO in plant growth, but also the toxic byproducts of oxidative metabolism when exposed to abiotic/biotic stresses. Some NO-mediated transcriptomic and metabolomic investigations have revealed that changes in cellular NO levels via the modification of thiol groups are critical for plants to acclimate against diverse stress conditions, and can be an important product of N metabolism. Recently, some research in NO biology has evidenced that the production of NO is affected by N supply, and free radical NO or exogenous NO donor appears to regulate N assimilation.

This Special Issue focuses on extending current knowledge of nitric oxide signaling in plants, along with the ways NO can interact with other reactive signaling molecules, enzymes and metabolites and also how NO signaling/metabolism can affect plant growth and development under normal or stressed conditions.

Dr. Mun Bong-Gyu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nitric oxide
  • NO-mediated transcriptome
  • post-transcription modification
  • S-nitrosylation
  • N assimilation
  • NO homeostasis
  • gaseous NO
  • cellular signaling
  • nitric oxide signaling
  • transcription factors (TFs)

 

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 2166 KiB  
Article
Exogenous Nitric Oxide Alleviates Water Deficit and Increases the Seed Production of an Endemic Amazonian Canga Grass
by Daniela Boanares, Cristiane J. Da-Silva, Keila Jamille Alves Costa, Joana Patrícia Pantoja Serrão Filgueira, Marina Ludmila Oliveira Conor Salles, Luiz Palhares Neto, Markus Gastauer, Rafael Valadares, Priscila Sanjuan Medeiros, Silvio Junio Ramos and Cecilio Frois Caldeira
Int. J. Mol. Sci. 2023, 24(23), 16676; https://doi.org/10.3390/ijms242316676 - 23 Nov 2023
Viewed by 873
Abstract
Open pit mining can cause loss in different ecosystems, including damage to habitats of rare and endemic species. Understanding the biology of these species is fundamental for their conservation, and to assist in decision-making. Sporobolus multiramosus is an annual grass endemic to the [...] Read more.
Open pit mining can cause loss in different ecosystems, including damage to habitats of rare and endemic species. Understanding the biology of these species is fundamental for their conservation, and to assist in decision-making. Sporobolus multiramosus is an annual grass endemic to the Amazon canga ecosystems, which comprise rocky outcrop vegetation covering one of the world’s largest iron ore reserves. Here, we evaluated whether nitric oxide aids S. multiramosus in coping with water shortages and examined the physiological processes behind these adaptations. nitric oxide application improved the water status, photosynthetic efficiency, biomass production, and seed production and germination of S. multiramosus under water deficit conditions. These enhancements were accompanied by adjustments in leaf and root anatomy, including changes in stomata density and size and root endodermis thickness and vascular cylinder diameter. Proteomic analysis revealed that nitric oxide promoted the activation of several proteins involved in the response to environmental stress and flower and fruit development. Overall, the results suggest that exogenous nitric oxide has the potential to enhance the growth and productivity of S. multiramosus. Enhancements in seed productivity have significant implications for conservation initiatives and can be applied to seed production areas, particularly for the restoration of native ecosystems. Full article
(This article belongs to the Special Issue Nitric Oxide Signalling in Plants)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 2060 KiB  
Review
Nitric Oxide Acts as a Key Signaling Molecule in Plant Development under Stressful Conditions
by Murtaza Khan, Sajid Ali, Tiba Nazar Ibrahim Al Azzawi and Byung-Wook Yun
Int. J. Mol. Sci. 2023, 24(5), 4782; https://doi.org/10.3390/ijms24054782 - 01 Mar 2023
Cited by 26 | Viewed by 2807
Abstract
Nitric oxide (NO), a colorless gaseous molecule, is a lipophilic free radical that easily diffuses through the plasma membrane. These characteristics make NO an ideal autocrine (i.e., within a single cell) and paracrine (i.e., between adjacent cells) signalling molecule. As a chemical messenger, [...] Read more.
Nitric oxide (NO), a colorless gaseous molecule, is a lipophilic free radical that easily diffuses through the plasma membrane. These characteristics make NO an ideal autocrine (i.e., within a single cell) and paracrine (i.e., between adjacent cells) signalling molecule. As a chemical messenger, NO plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. Furthermore, NO interacts with reactive oxygen species, antioxidants, melatonin, and hydrogen sulfide. It regulates gene expression, modulates phytohormones, and contributes to plant growth and defense mechanisms. In plants, NO is mainly produced via redox pathways. However, nitric oxide synthase, a key enzyme in NO production, has been poorly understood recently in both model and crop plants. In this review, we discuss the pivotal role of NO in signalling and chemical interactions as well as its involvement in the mitigation of biotic and abiotic stress conditions. In the current review, we have discussed various aspects of NO including its biosynthesis, interaction with reactive oxygen species (ROS), melatonin (MEL), hydrogen sulfide, enzymes, phytohormones, and its role in normal and stressful conditions. Full article
(This article belongs to the Special Issue Nitric Oxide Signalling in Plants)
Show Figures

Figure 1

Back to TopTop