ijms-logo

Journal Browser

Journal Browser

Special Issue "Power Up Plant Genetic Research with Genomic Data 2.0"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Genetics and Genomics".

Deadline for manuscript submissions: 29 February 2024 | Viewed by 2887

Special Issue Editors

Lab of Plant Genetics and Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
Interests: molecular genetics; breeding, whole genome sequencing; digital phenotyping
Special Issues, Collections and Topics in MDPI journals
Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
Interests: genome; domestication; quantitative trait locus; flowering; agriculture; soybean
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Developments in plant genetics and genomics research usually lags behind those in mammals and human due to the complexity of the plant genome and the limitations of research resources. Regardless, with the advances in sequencing technology, the building of high-quality genomes and the sequencing of huge populations of plants are no longer technologically challenging, nor resource intensive. Epigenomics, transcriptomics, proteomics, metabolomics, and phenomics have also made significant advances in recently years, creating more opportunities in plant genomic research. Although the generation of genome sequencing data is no longer a limitation, there are a vast volume of genomic data deposited in public databases. Diving into the sea of genomic data to generate new knowledge has become the next challenge in the genomic era. Each plant genome is made up of hundreds of millions to trillions of bases, which each contain tens of thousands of genes and numerous non-coding elements. Currently, only a tiny fraction of the plant genome is being characterized, even in the model plant Arabidopsis. In this Special Issue, we would like to invite dedicated scientists to submit their recent research and review articles on plant genomics and genetics with the support of molecular biology and biotechnology.

Prof. Dr. Hon-Ming Lam
Dr. Sachiko Isobe
Dr. Man-Wah Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • genome sequencing
  • optical mapping
  • genome editing
  • population genomics
  • genome-wide
  • association mapping
  • functional genomics
  • epigenomics
  • genetic interaction
  • chromatin
  • biodiversity

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 8093 KiB  
Article
Distribution and Location of BEVs in Different Genotypes of Bananas Reveal the Coevolution of BSVs and Bananas
Int. J. Mol. Sci. 2023, 24(23), 17064; https://doi.org/10.3390/ijms242317064 - 02 Dec 2023
Viewed by 242
Abstract
Members of the family Caulimoviridae contain abundant endogenous pararetroviral sequences (EPRVs) integrated into the host genome. Banana streak virus (BSV), a member of the genus Badnavirus in this family, has two distinct badnaviral integrated sequences, endogenous BSV (eBSV) and banana endogenous badnavirus sequences [...] Read more.
Members of the family Caulimoviridae contain abundant endogenous pararetroviral sequences (EPRVs) integrated into the host genome. Banana streak virus (BSV), a member of the genus Badnavirus in this family, has two distinct badnaviral integrated sequences, endogenous BSV (eBSV) and banana endogenous badnavirus sequences (BEVs). BEVs are distributed widely across the genomes of different genotypes of bananas. To clarify the distribution and location of BEVs in different genotypes of bananas and their coevolutionary relationship with bananas and BSVs, BEVs and BSVs were identified in 102 collected banana samples, and a total of 327 BEVs were obtained and categorized into 26 BEVs species with different detection rates. However, the majority of BEVs were found in Clade II, and a few were clustered in Clade I. Additionally, BEVs and BSVs shared five common conserved motifs. However, BEVs had two unique amino acids, methionine and lysine, which differed from BSVs. BEVs were distributed unequally on most of chromosomes and formed hotspots. Interestingly, a colinear relationship of BEVs was found between AA and BB, as well as AA and SS genotypes of bananas. Notably, the chromosome integration time of different BEVs varied. Based on our findings, we propose that the coevolution of bananas and BSVs is driven by BSV Driving Force (BDF), a complex interaction between BSVs, eBSVs, and BEVs. This study provides the first clarification of the relationship between BEVs and the coevolution of BSVs and bananas in China. Full article
(This article belongs to the Special Issue Power Up Plant Genetic Research with Genomic Data 2.0)
Show Figures

Figure 1

23 pages, 6085 KiB  
Article
Co-Expression Network Analysis of the Transcriptome Identified Hub Genes and Pathways Responding to Saline–Alkaline Stress in Sorghum bicolor L.
Int. J. Mol. Sci. 2023, 24(23), 16831; https://doi.org/10.3390/ijms242316831 - 27 Nov 2023
Viewed by 207
Abstract
Soil salinization, an intractable problem, is becoming increasingly serious and threatening fragile natural ecosystems and even the security of human food supplies. Sorghum (Sorghum bicolor L.) is one of the main crops growing in salinized soil. However, the tolerance mechanisms of sorghum [...] Read more.
Soil salinization, an intractable problem, is becoming increasingly serious and threatening fragile natural ecosystems and even the security of human food supplies. Sorghum (Sorghum bicolor L.) is one of the main crops growing in salinized soil. However, the tolerance mechanisms of sorghum to saline–alkaline soil are still ambiguous. In this study, RNA sequencing was carried out to explore the gene expression profiles of sorghum treated with sodium bicarbonate (150 mM, pH = 8.0, treated for 0, 6, 12 and 24 h). The results show that 6045, 5122, 6804, 7978, 8080 and 12,899 differentially expressed genes (DEGs) were detected in shoots and roots after 6, 12 and 24 h treatments, respectively. GO, KEGG and weighted gene co-expression analyses indicate that the DEGs generated by saline–alkaline stress were primarily enriched in plant hormone signal transduction, the MAPK signaling pathway, starch and sucrose metabolism, glutathione metabolism and phenylpropanoid biosynthesis. Key pathway and hub genes (TPP1, WRKY61, YSL1 and NHX7) are mainly related to intracellular ion transport and lignin synthesis. The molecular and physiological regulation processes of saline–alkali-tolerant sorghum are shown by these results, which also provide useful knowledge for improving sorghum yield and quality under saline–alkaline conditions. Full article
(This article belongs to the Special Issue Power Up Plant Genetic Research with Genomic Data 2.0)
Show Figures

Figure 1

17 pages, 6385 KiB  
Article
MicroRNA2871b of Dongxiang Wild Rice (Oryza rufipogon Griff.) Negatively Regulates Cold and Salt Stress Tolerance in Transgenic Rice Plants
Int. J. Mol. Sci. 2023, 24(19), 14502; https://doi.org/10.3390/ijms241914502 - 25 Sep 2023
Viewed by 584
Abstract
Cold and salt stresses are major environmental factors that constrain rice production. Understanding their mechanisms is important to enhance cold and salt stress tolerance in rice. MicroRNAs (miRNAs) are a class of non-coding RNAs with only 21–24 nucleotides that are gene regulators in [...] Read more.
Cold and salt stresses are major environmental factors that constrain rice production. Understanding their mechanisms is important to enhance cold and salt stress tolerance in rice. MicroRNAs (miRNAs) are a class of non-coding RNAs with only 21–24 nucleotides that are gene regulators in plants and animals. Previously, miR2871b expression was suppressed by cold stress in Dongxiang wild rice (DXWR, Oryza rufipogon Griff.). However, its biological functions in abiotic stress responses remain elusive. In the present study, miR2871b of DWXR was overexpressed to investigate its function under stress conditions. When miR2871b of DWXR was introduced into rice plants, the transgenic lines were more sensitive to cold and salt stresses, and their tolerance to cold and salt stress decreased. The increased expression of miR2871b in rice plants also increased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA); however, it markedly decreased the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) and the contents of proline (Pro) and soluble sugar (SS). These data suggested that miR2871b of DXWR has negative regulatory effects on cold and salt stress tolerance. Meanwhile, 412 differentially expressed genes (DEGs) were found in rice transgenic plants using transcriptome sequencing, among which 266 genes were up-regulated and 146 genes were down-regulated. Furthermore, the upstream cis-acting elements and downstream targets of miR2871b were predicted and analyzed, and several critical acting elements (ABRE and TC-rich repeats) and potential target genes (LOC_Os03g41200, LOC_Os07g47620, and LOC_Os04g30260) were obtained. Collectively, these results generated herein further elucidate the vital roles of miR2871b in regulating cold and salt responses of DXWR. Full article
(This article belongs to the Special Issue Power Up Plant Genetic Research with Genomic Data 2.0)
Show Figures

Figure 1

16 pages, 6504 KiB  
Article
Towards the Investigation of the Adaptive Divergence in a Species of Exceptional Ecological Plasticity: Chromosome-Scale Genome Assembly of Chouardia litardierei (Hyacinthaceae)
Int. J. Mol. Sci. 2023, 24(13), 10755; https://doi.org/10.3390/ijms241310755 - 28 Jun 2023
Viewed by 753
Abstract
One of the central goals of evolutionary biology is to understand the genomic basis of adaptive divergence. Different aspects of evolutionary processes should be studied through genome-wide approaches, therefore maximizing the investigated genomic space. However, in-depth genome-scale analyses often are restricted to a [...] Read more.
One of the central goals of evolutionary biology is to understand the genomic basis of adaptive divergence. Different aspects of evolutionary processes should be studied through genome-wide approaches, therefore maximizing the investigated genomic space. However, in-depth genome-scale analyses often are restricted to a model or economically important species and their closely related wild congeners with available reference genomes. Here, we present the high-quality chromosome-level genome assembly of Chouardia litardierei, a plant species with exceptional ecological plasticity. By combining PacBio and Hi-C sequencing technologies, we generated a 3.7 Gbp genome with a scaffold N50 size of 210 Mbp. Over 80% of the genome comprised repetitive elements, among which the LTR retrotransposons prevailed. Approximately 86% of the 27,257 predicted genes were functionally annotated using public databases. For the comparative analysis of different ecotypes’ genomes, the whole-genome sequencing of two individuals, each from a distinct ecotype, was performed. The detected above-average SNP density within coding regions suggests increased adaptive divergence-related mutation rates, therefore confirming the assumed divergence processes within the group. The constructed genome presents an invaluable resource for future research activities oriented toward the investigation of the genetics underlying the adaptive divergence that is likely unfolding among the studied species’ ecotypes. Full article
(This article belongs to the Special Issue Power Up Plant Genetic Research with Genomic Data 2.0)
Show Figures

Graphical abstract

Review

Jump to: Research

38 pages, 1164 KiB  
Review
Genetic Basis of Grain Size and Weight in Rice, Wheat, and Barley
Int. J. Mol. Sci. 2023, 24(23), 16921; https://doi.org/10.3390/ijms242316921 - 29 Nov 2023
Viewed by 315
Abstract
Grain size is a key component of grain yield in cereals. It is a complex quantitative trait controlled by multiple genes. Grain size is determined via several factors in different plant development stages, beginning with early tillering, spikelet formation, and assimilates accumulation during [...] Read more.
Grain size is a key component of grain yield in cereals. It is a complex quantitative trait controlled by multiple genes. Grain size is determined via several factors in different plant development stages, beginning with early tillering, spikelet formation, and assimilates accumulation during the pre-anthesis phase, up to grain filling and maturation. Understanding the genetic and molecular mechanisms that control grain size is a prerequisite for improving grain yield potential. The last decade has brought significant progress in genomic studies of grain size control. Several genes underlying grain size and weight were identified and characterized in rice, which is a model plant for cereal crops. A molecular function analysis revealed most genes are involved in different cell signaling pathways, including phytohormone signaling, transcriptional regulation, ubiquitin–proteasome pathway, and other physiological processes. Compared to rice, the genetic background of grain size in other important cereal crops, such as wheat and barley, remains largely unexplored. However, the high level of conservation of genomic structure and sequences between closely related cereal crops should facilitate the identification of functional orthologs in other species. This review provides a comprehensive overview of the genetic and molecular bases of grain size and weight in wheat, barley, and rice, focusing on the latest discoveries in the field. We also present possibly the most updated list of experimentally validated genes that have a strong effect on grain size and discuss their molecular function. Full article
(This article belongs to the Special Issue Power Up Plant Genetic Research with Genomic Data 2.0)
Show Figures

Figure 1

Back to TopTop