Special Issue "Soilless Culture — An Intensive Production Method on Its Way to Sustainability"

A special issue of Horticulturae (ISSN 2311-7524). This special issue belongs to the section "Protected Culture".

Deadline for manuscript submissions: 30 June 2023 | Viewed by 5980

Special Issue Editors

INRES—Institute of Crop Science and Resource Conservation, Division of Horticultural Sciences, University of Bonn, 53121 Bonn, Germany
Interests: vegetables; climate change; horticulture; soilless culture; growing media; protected cultivation; greenhouse production
Special Issues, Collections and Topics in MDPI journals
MED – Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
Interests: vegetable crops; vegetable production systems; greenhouse and open-field systems; fertigation; root dynamics; salinity; organic fertilization and soilless cultivation
Special Issues, Collections and Topics in MDPI journals
Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
Interests: horticulture; plant production systems; water quality; cropping systems; water purification; hydroponics; soilless culture

Special Issue Information

Dear Colleagues,

The prognosis suggests that the area of soilless culture will be dramatically increased in the future, both in protected and open field horticulture. This will be associated with the increased use of growing media in nurseries, herbaceous plants, such as vegetables, ornamentals, medicinal and aromatic plants, and some small fruits and woody crops. Soilless cultures are called intensive-sustainable systems. However, are they sustainable or on their way to being sustainable?

Today, solutions are needed to reduce or replace peat, increase nutrient and water use efficiency, and introduce circular waste flows. Using locally available and renewable raw materials, appropriate substrate mixtures, biostimulants, and adapted high techniques, such as Artificial Intelligence and the Internet of Things, could help us to construct a new strategy for cultivating soilless plants. This Special Issue aims to focus on recent progress in solutions to increase the sustainability of production in intensive horticulture without compromising yield and quality. Another objective will be to examine recent advances in the characterization and utilization of novel growing materials for plant production systems. On the other hand, reducing production costs is needed in these systems. Therefore, we welcome high-quality research publications and reviews covering all related topics in soilless culture and growing media and closely related research areas.

Prof. Dr. Nazim Gruda
Prof. Dr. Rui Manuel Almeida Machado
Dr. Erik van Os
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Horticulturae is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • abiotic and biotic stress management
  • artificial intelligence and the Internet of Things
  • biofortification
  • biostimulants for soilless culture systems
  • carbon footprints, lifecycle analysis, climate change, and intensive sustainable systems
  • compost utilization in growing media
  • circular growing media, alternative to peat and mineral wool
  • developments in remote growing
  • fertilization: threshold limits of sodium, etc.
  • green roof technology, vertical farming, and how to restrict costs and increase profitability
  • growing media analysis, formulation, and characterization and engineering
  • growing systems for new soilless crops, such as cannabis, freesia, and berries
  • novel inorganic and organic materials, such as waste and digestates, sphagnum moss, biochars, and hydrochars
  • organic soilless production
  • organic waste management and circular horticulture
  • organic fertilizers
  • pathogen elimination and cleaning pipework
  • plant propagation
  • recirculation of nutrient solution
  • root-medium properties, architecture, and plant nutrition
  • soilless culture and understanding of crop physiology and quality aspects
  • stability and biodegradation of growing media
  • water quality
  • water-/nutrient-use efficiency, automation

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Biodegradable Food Packaging of Wild Rocket (Diplotaxis tenuifolia L. [DC.]) and Sea Fennel (Crithmum maritimum L.) Grown in a Cascade Cropping System for Short Food Supply Chain
Horticulturae 2023, 9(6), 621; https://doi.org/10.3390/horticulturae9060621 - 26 May 2023
Viewed by 418
Abstract
The environmental impact of food products is significantly affected by their packaging. Therefore, this study aimed to assess the effect of PLA (polylactic acid) film, as an alternative to petroleum-based bags, on the shelf-life of fresh-cut wild rocket and sea fennel grown in [...] Read more.
The environmental impact of food products is significantly affected by their packaging. Therefore, this study aimed to assess the effect of PLA (polylactic acid) film, as an alternative to petroleum-based bags, on the shelf-life of fresh-cut wild rocket and sea fennel grown in a cascade cropping system (CCS). To this end, wild rocket (main crop) was cultivated using either peat or compost as a growing medium. Sea fennel (secondary crop) was subsequently grown in a floating system with leachates from the primary crop as a nutrient solution. The leaves of both crops were harvested and packaged in OPP- (oriented polypropylene) or PLA-based bags and stored for 7 days at 4 °C. The leaves of wild rocket and sea fennel showed lower dehydration and lower respiration when compost was used as a growing medium or leachate. Wild rocket in compost increased in nitrate and vitamin C contents at harvest while leachates had scarce influence on their contents in sea fennel. After storage, regardless of the crop, no relevant detrimental changes were observed on leaves packaged with PLA, being a product microbiologically safer when compared to OPP. The bag type had almost no influence on most relevant phytochemical compounds. In conclusion, the use of a PLA-based film on minimally processed wild rocket and sea fennel leaves is a sustainable alternative to petroleum-based plastic for a short food supply chain. Full article
Show Figures

Figure 1

Article
Testing the Greenhouse Emission Model (GEM) for Pesticides Applied via Drip Irrigation to Stone Wool Mats Growing Sweet Pepper in a Recirculation System
Horticulturae 2023, 9(4), 495; https://doi.org/10.3390/horticulturae9040495 - 14 Apr 2023
Viewed by 715
Abstract
Pesticide emissions to surface water from greenhouses with crops grown on substrates in open or closed systems may be significant. It is important, therefore, to test models such as the Greenhouse Emission Model (GEM), which was developed to assess these emissions as part [...] Read more.
Pesticide emissions to surface water from greenhouses with crops grown on substrates in open or closed systems may be significant. It is important, therefore, to test models such as the Greenhouse Emission Model (GEM), which was developed to assess these emissions as part of the Dutch authorization procedure for use of plant protection products in greenhouses. GEM was tested using an experiment in which imidacloprid and pymetrozine were applied via drip irrigation to stone wool mats growing sweet pepper. The irrigation system in such greenhouses consists of a mixing tank to prepare the nutrient solution and a series of tanks to treat and recirculate the drain water back to the mixing tank. Emissions may occur because (part of) this recirculation water may be discharged or leached to the surface water. GEM assumes that all tanks are perfectly mixed. GEM further assumes that the water in these mats is perfectly mixed and that the pesticide behavior can be simulated by assuming one perfectly mixed reservoir. The model predicted breakthrough of both pesticides out of the mats earlier than measured, and the measured maximum concentrations were approximately two times lower than predicted. We considered a series of possible causes, including a smaller water volume in the mats, a higher plant uptake factor, and sorption to the stone wool. The model performance improved by representing the mats as a sequence of two equally large tanks with plant uptake restricted to the first tank. We recommend to study the solute transport process and the distribution of plant roots in the mats in more detail to further underpin the hypothesis used and improve the model. After this first validation, the GEM model might also be used in other countries to forecast emissions of PPPs to surface water. Full article
Show Figures

Graphical abstract

Article
Impact of Sodium Hypochlorite Applied as Nutrient Solution Disinfectant on Growth, Nutritional Status, Yield, and Consumer Safety of Tomato (Solanum lycopersicum L.) Fruit Produced in a Soilless Cultivation
Horticulturae 2023, 9(3), 352; https://doi.org/10.3390/horticulturae9030352 - 07 Mar 2023
Cited by 1 | Viewed by 786
Abstract
Soilless crop production is spread worldwide. It is a cultivating technique that enhances yield quality and quantity, thus contributing to both food safety and food security. However, in closed-loop soilless crops, the risk of spreading soil-borne pathogens through the recycled nutrient solution makes [...] Read more.
Soilless crop production is spread worldwide. It is a cultivating technique that enhances yield quality and quantity, thus contributing to both food safety and food security. However, in closed-loop soilless crops, the risk of spreading soil-borne pathogens through the recycled nutrient solution makes the establishment of a disinfection strategy necessary. In the current study, sodium hypochlorite was applied to the recycled nutrient solution as a chemical disinfectant to assess its impact on plant growth, leaf gas exchange, fruit yield, tissue mineral composition, and possible accumulation of chlorate and perchlorate residues in tomato fruits. The application of 2.5, 5, and 7.5 mg L−1 of chlorine three times at fortnightly intervals during the cropping period had no impact on plant growth or gas exchange parameters. Furthermore, the application of 2.5 mg L−1 of chlorine led to a significant increase in the total production of marketable fruits (total fruit weight per plant). No consistent differences in nutrient concentrations were recorded between the treatments. Moreover, neither chlorate nor perchlorate residues were detected in tomato fruits, even though chlorate residues were present in the nutrient solution. Therefore, the obtained tomatoes were safe for consumption. Further research is needed to test the application of chlorine in combination with crop inoculation with pathogens to test the efficiency of chlorine as a disinfectant in soilless nutrient solutions. Full article
Show Figures

Graphical abstract

Article
Bio-Fertilizers Reduced the Need for Mineral Fertilizers in Soilless-Grown Capia Pepper
Horticulturae 2023, 9(2), 188; https://doi.org/10.3390/horticulturae9020188 - 02 Feb 2023
Cited by 2 | Viewed by 918
Abstract
Soilless cultivation is extensively used in the greenhouse industry. Recently, hydroponic cultivation of capia pepper has become popular among growers. Capia pepper is harvested at the red maturity stage, and intensive mineral fertilizers are usually used for soilless cultivation. This study was performed [...] Read more.
Soilless cultivation is extensively used in the greenhouse industry. Recently, hydroponic cultivation of capia pepper has become popular among growers. Capia pepper is harvested at the red maturity stage, and intensive mineral fertilizers are usually used for soilless cultivation. This study was performed in a greenhouse during spring under Mediterranean climatic conditions. The effects of bacteria and mycorrhiza on capia pepper plant growth, yield, fruit quality, and nutrition were investigated. Furthermore, the synergistic effects of these two bio-fertilizers were investigated. Our objective was to replace 20% of mineral fertilizers with bio-fertilizers in a soilless culture system. The use of 80% mineral fertilizers, in combination with mycorrhiza and bacteria, provided a 32.4% higher yield than the control (100% mineral fertilizer without bio-fertilizers). Moreover, the concentrations of N, P, K, Ca, Mg, Fe, Mn, Zn, and Cu in the leaves of pepper plants fed with the reduced mineral fertilizers combined with bio-fertilizers were higher than that of the control. In addition, fruit parameters, such as fruit weight, diameter, volume, the electric conductivity of the fruit juice, and total soluble solids, were significantly higher in this treatment compared to the control. Using 80% mineral fertilizer with only bacteria provided a 24.2% higher yield than the control. In conclusion, mineral fertilizers were successfully reduced by 20% using bacteria and mycorrhiza. These results provide an eco-friendly approach to a sustainable environment. Full article
Show Figures

Figure 1

Article
Effects of Mixes of Peat with Different Rates of Spruce, Pine Fibers, or Perlite on the Growth of Blueberry Saplings
Horticulturae 2023, 9(2), 151; https://doi.org/10.3390/horticulturae9020151 - 24 Jan 2023
Viewed by 730
Abstract
Investigations of substrates for growing plant saplings is the basis for the search for new components. Currently, large numbers of saplings are grown for blueberry plantations. Studies on the use of various organic and inorganic components in substrates is relevant in order to [...] Read more.
Investigations of substrates for growing plant saplings is the basis for the search for new components. Currently, large numbers of saplings are grown for blueberry plantations. Studies on the use of various organic and inorganic components in substrates is relevant in order to reduce the amount of excavated peat. The goal of this study was to analyze the effects of mixes of peat with different rates of spruce, pine fibers and perlite on the growth of blueberry saplings. To define the suitability of substrates, plant vigor assessments of the cultivar ‘Duke’, including plant height and leaf weight, as well as the chlorophyll fluorescence, content of extractable macronutrients and organic carbon in leaves, were investigated. The best effect on the growth of blueberry saplings, the optimal content of macronutrients in the leaves, was shown for substrates in which a part of the peat was replaced by 15–45% v/v of pine wood fiber and by 15–30% v/v of spruce wood fiber. Pine bark fiber in the mix should not exceed 30% v/v. The addition of spruce bark fibers in the different rates had a negative effect on the vegetative growth of the saplings. The quantity of peat in the substrates can also be significantly reduced by adding 15–45% v/v of perlite. These results confirm that pine and spruce fibers or perlite in substrates for blueberry sapling growing could reduce the demand for peat and should significantly contribute to the preservation of unique wetland ecosystems. Full article
Show Figures

Figure 1

Article
Coir-Based Growing Media with Municipal Compost and Biochar and Their Impacts on Growth and Some Quality Parameters in Lettuce Seedlings
Horticulturae 2023, 9(1), 105; https://doi.org/10.3390/horticulturae9010105 - 12 Jan 2023
Viewed by 1242
Abstract
The purpose of this study was to develop substrates with little or no peat by combining coir-based growing media with municipal compost and/or acacia biochar, two locally produced renewable resources, and to assess their effects on lettuce seedling emergence and growth, as well [...] Read more.
The purpose of this study was to develop substrates with little or no peat by combining coir-based growing media with municipal compost and/or acacia biochar, two locally produced renewable resources, and to assess their effects on lettuce seedling emergence and growth, as well as their content in photosynthetic pigments and total phenols. Two experiments were carried out, the first with six mixes using compost and biochar blended with perlite, pine bark, and blonde peat to adjust some physicochemical characteristics. The mixes of coir: compost: pine bark: blonde peat (73:12:5:10, v/v) and coir: compost: biochar: blonde peat (73:12:10:5, v/v) had physicochemical characteristics closer to or within the normal range of the substrates. The presence of 12% compost and 10% biochar in the mixtures had no adverse effect on lettuce seed germination and cumulative seed emergence, which ranged from 90 to 99%. The seedling growth in those mixes was vigorous and higher than in other mixtures. Coir-based growing media with municipal solid waste compost and compost plus biochar can reduce the use of peat to a percentage of 5–10% v/v and the use of 17–22% v/v of locally produced renewable resources. In addition, mixtures affected the total phenol content in the lettuce leaves. Future research is needed to assess the behavior of seedlings after their transplantation. Full article
Show Figures

Figure 1

Back to TopTop