New Advance in Germplasm Resources, Biotechnology and Genetic Breeding of Vegetable Crops

A special issue of Horticulturae (ISSN 2311-7524). This special issue belongs to the section "Genetics, Genomics, Breeding, and Biotechnology (G2B2)".

Deadline for manuscript submissions: closed (20 December 2023) | Viewed by 7434

Special Issue Editors

College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
Interests: vegetable; plant molecular biology; abiotic stress; biotic stress; genetic improvement
Special Issues, Collections and Topics in MDPI journals
Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan 512000, China
Interests: vegetable; plant molecular biology; abiotic stress; biotic stress; genetic improvement
Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan 512000, China
Interests: vegetable; plant molecular biology; abiotic stress; biotic stress; genetic improvement

Special Issue Information

Dear Colleagues,

Vegetable crops encompass numerous species that are major nutrient sources for humanity. The collection, exploitation and utilization of germplasm resources play vital roles in discovering agriculturally useful genes, which will be of great significance to the improvement of the yield and quality of vegetable crops in the future. The aim of this Special Issue on “New Advance in Germplasm Resources, Biotechnology and Genetic Breeding of Vegetable Crops” is to present innovative studies on the development of new varieties or germplasms with higher yields and quality and resistance to biotic and abiotic stresses or on the identification of new genes or specific alleles on the basis of multi-omics technologies, genomics and germplasm research, as well as breeding technologies for vegetable crops. This Special Issue also encourages innovative articles on in-depth molecular genetics research of important agriculturally useful genes for the genetic improvement of vegetable crops.

We look forward to your excellent contributions to this Special Issue of Horticulturae.

Dr. Yong Zhou
Dr. Jie Zheng
Dr. Hao Wu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Horticulturae is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • vegetable crops
  • germplasm resources
  • molecular mechanism
  • breeding
  • gene expression and function
  • multi-omics technologies

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 5584 KiB  
Article
Genetic Diversity and Population Structure Analysis of Excellent Sugar Beet (Beta vulgaris L.) Germplasm Resources
by Fei Peng, Zhi Pi, Shengnan Li and Zedong Wu
Horticulturae 2024, 10(2), 120; https://doi.org/10.3390/horticulturae10020120 - 25 Jan 2024
Viewed by 947
Abstract
This study analyzed the genetic diversity, population structure, and cluster analysis of 129 sugar beet germplasm resources to screen superior germplasms for breeding using the 27 simple sequence repeat (SSR) and 33 pairs of insertion–deletion (InDel) molecular markers. After integrating the phenotypic variation [...] Read more.
This study analyzed the genetic diversity, population structure, and cluster analysis of 129 sugar beet germplasm resources to screen superior germplasms for breeding using the 27 simple sequence repeat (SSR) and 33 pairs of insertion–deletion (InDel) molecular markers. After integrating the phenotypic variation of 16 descriptive and 4 qualitative phenotypic variables, the genetic variation levels of the 129 sugar beet germplasms’ phenotypic traits were analyzed using the principal component analysis (PCA), correlation analysis, and analysis of variance methods. The genetic diversity examination of molecular markers showed a polymorphism information content (PIC) of 0.419–0.773 (mean = 0.610). Moreover, the mean number of effective alleles detected via the SSR and InDel markers was 3.054 and 2.298, respectively. Meanwhile, the PIC ranged from 0.130 to 0.602 (mean = 0.462). The population structure analysis revealed the most appropriate K-value, indicating three populations (K = 3). The genetic distances of the 129 germplasm resources ranged from 0.099 to 0.466 (mean = 0.283). The cluster analysis results demonstrated that the germplasms were grouped into three primary classes. Based on the analysis of variance, the two qualitative features with the highest coefficients of variation were petiole width (16.64%) and length (17.11%). The descriptive trait root length index (1.395) exhibited the greatest genetic diversity. The PCA reduced the 20 phenotypic traits into five principal components, contributing 51.151%. The results of this study provide a theoretical foundation for the future selection and breeding of superior sugar beet germplasm resources. Full article
Show Figures

Figure 1

15 pages, 3148 KiB  
Article
CsSE59 Encoding Invertase/Pectin Methyl Esterase Inhibitor Is a Candidate Gene Conferring the Virescent True Leaf Phenotype in Cucumber
by Yuelong Zhou, Liting Liao, Liu Liu, Lingdi Xiao, Zixian Zhou, Yong Zhou, Zhaoyang Hu and Shiqiang Liu
Horticulturae 2023, 9(9), 951; https://doi.org/10.3390/horticulturae9090951 - 22 Aug 2023
Viewed by 736
Abstract
Leaf color mutants are the ideal materials to study the regulation mechanisms of chlorophyll biosynthesis and chloroplast development or as markers for crop breeding. In this study, we identified a virescent true leaf mutant se59 from the ethyl methane sulfonate (EMS)-induced mutant lines [...] Read more.
Leaf color mutants are the ideal materials to study the regulation mechanisms of chlorophyll biosynthesis and chloroplast development or as markers for crop breeding. In this study, we identified a virescent true leaf mutant se59 from the ethyl methane sulfonate (EMS)-induced mutant lines of cucumber (Cucumis sativus L.). The se59 mutant showed normal cotyledons, but the true leaf displays light green at early growth stage, which can recover normal green later. The se59 locus was controlled by a single recessive nuclear gene. The grana stacking in the chloroplasts of se59 decreased significantly, and both the photosynthetic ability and the photosynthetic pigment contents of the se59 were significantly lower than those of wild type. The results of BSA-seq and genotyping showed that an Invertase/Pectin Methyl Esterase Inhibitor (INV/PMEI) protein encoded by CsSE59 is a candidate gene for the virescent true leaf mutant. The expression level of CsSE59 in stem, leaf and root is high. Based on the transcriptome analysis of the first true leaf of se59 mutant, the expression levels of 17 leaf color related genes changed significantly, suggesting CsSE59 may regulate virescent true leaf by interacting with some of these genes in cucumber. The identification of CsSE59 is helpful to clarify the role of INV/PMEI in chloroplast development and to understand the mechanisms of leaf color variation in cucumber. Full article
Show Figures

Figure 1

13 pages, 2567 KiB  
Article
Analysis of YUC and TAA/TAR Gene Families in Tomato
by Sida Meng, Hengzuo Xiang, Xiaoru Yang, Yunzhu Ye, Yuying Ma, Leilei Han, Tao Xu, Yufeng Liu, Feng Wang, Mingfang Qi and Tianlai Li
Horticulturae 2023, 9(6), 665; https://doi.org/10.3390/horticulturae9060665 - 04 Jun 2023
Viewed by 1521
Abstract
Auxin is a vital phytohormone, but its synthesis pathway is poorly understood. This study used bioinformatic analysis to identify and analyze the gene family members that encode tomato auxin biosynthesis. The FZY gene family members encoding flavin-containing monooxygenases were retrieved from the tomato [...] Read more.
Auxin is a vital phytohormone, but its synthesis pathway is poorly understood. This study used bioinformatic analysis to identify and analyze the gene family members that encode tomato auxin biosynthesis. The FZY gene family members encoding flavin-containing monooxygenases were retrieved from the tomato genome database. DNAMAN analysis revealed nine genes within the landmark domain WL(I/V)VATGENAE, between the FAD and NADPH domains. Phylogenetic analysis showed that the FZY gene family in tomato is closely related to the YUC gene family in Arabidopsis thaliana. A qRT-PCR showed that SlFZY2, SlFZY3, SlFZY4-1, and SlFZY5 were highly expressed in tomato flower organs. The analysis of promoter cis-acting elements revealed light-responsive elements in the promoters of all nine members in tomato, indicating their sensitivity to light signals. Furthermore, the promoters of SlFZY4-2, SlFZY5, and SlFZY7 contain low-temperature-responsive elements. This study demonstrated that SlTAA5 expression was 2.22 times that of SlTAA3 in the roots, and SlTAA3 expression in the pistils was 83.58 times that in the stamens during the tomato flowering stage. Therefore, various members of the tomato FZY gene family are involved in regulating the development of tomato floral organs and are responsive to abiotic stresses, such as low temperature and weak light. Full article
Show Figures

Figure 1

20 pages, 4516 KiB  
Article
Estimation of Heterosis and the Combining Ability Effect for Yield and Its Attributes in Field Pea (Pisum sativum L.) Using PCA and GGE Biplots
by Amit Sharma, Rajesh Yadav, Ravika Sheoran, Deepak Kaushik, Tapan Kumar Mohanta, Kartik Sharma, Alpa Yadav, Parmdeep Singh Dhanda and Prashant Kaushik
Horticulturae 2023, 9(2), 256; https://doi.org/10.3390/horticulturae9020256 - 14 Feb 2023
Cited by 5 | Viewed by 2082
Abstract
Field pea (Pisum sativum L.) is a highly nutritious winter-season pulse crop. It is used as food, feed, and fodder and offers nutritional security to low-income people in developing countries. Different graphical approaches like Principal Component Analysis (PCA) and Genotype + Genotype [...] Read more.
Field pea (Pisum sativum L.) is a highly nutritious winter-season pulse crop. It is used as food, feed, and fodder and offers nutritional security to low-income people in developing countries. Different graphical approaches like Principal Component Analysis (PCA) and Genotype + Genotype × Environment (GGE) biplots were used along with the conventional line × tester to identify efficient parents, combining ability effects and distinct heterotic groups in field pea (Pisum sativum L.). The study used a line tester design (9 × 3) for seed yield and its associated traits. In the conventional analysis, lines Aman and HFP 715 and the tester GP02/1108, as well as crosses HFP 715 × GP02/1108, Aman × GP02/1108, and Pant P-243 × HFP 1426 showed the best GCA (General Combining Ability) and SCA (Specific Combining Ability) effects, respectively, for seed yield and its attributes. The σ2SCA > σ2GCA, and σ2D > σ2A in almost all the traits indicated control of non-additive gene effects. High manifestations of heterobeltiosis for seed yield were evidenced by the superiority of 24 out of 27 crosses over the better parent. The highest significant heterobeltiosis was observed in the cross HFP 715 × GP02/1108, followed by IPF 14-16 × GP02/1108, IPF 14-16 × HFP 1426, DDR-23 × HFP 1426, DDR-23 × GP02/1108, and Aman × GP02/1108 for yield and its attributes. The biplot techniques were used to analyze data and compare their results with conventional line × tester analysis. Overall, graphical analysis results were very similar to those of traditional analysis. Consequently, it can surely be assumed that these methods could be helpful in presenting data from field pea breeding experiments carried out with line × tester design. Full article
Show Figures

Figure 1

16 pages, 3250 KiB  
Article
BcAMT1;5 Mediates Nitrogen Uptake and Assimilation in Flowering Chinese Cabbage and Improves Plant Growth When Overexpressed in Arabidopsis
by Yunna Zhu, Lihua Zhong, Xinmin Huang, Wei Su, Houcheng Liu, Guangwen Sun, Shiwei Song and Riyuan Chen
Horticulturae 2023, 9(1), 43; https://doi.org/10.3390/horticulturae9010043 - 01 Jan 2023
Cited by 1 | Viewed by 1367
Abstract
Nitrogen (N) is a major limiting factor for plant growth and vegetable production. Understanding the regulatory mechanisms of N uptake, transport, and assimilation is key to improving N use efficiency in plants. Ammonium transporters (AMTs) play an important role in plant N metabolism. [...] Read more.
Nitrogen (N) is a major limiting factor for plant growth and vegetable production. Understanding the regulatory mechanisms of N uptake, transport, and assimilation is key to improving N use efficiency in plants. Ammonium transporters (AMTs) play an important role in plant N metabolism. In this study, we isolated an important AMT1 subfamily member (BcAMT1;5) with a highly conserved signatural AMT1 subfamily motif from flowering Chinese cabbage. Based on functional complementation in yeast mutant 31019b and overexpression of BcAMT1;5 in Arabidopsis, BcAMT1;5 is a functional AMT. Tissue expression analysis showed that BcAMT1;5 was mainly expressed in roots and showed multiple N regime transcript patterns to respond to varying nutritional conditions. This was up-regulated by N-deficiency and down-regulated by supplying NH4+. The glucuronidase (GUS) activities of BcAMT1;5pro::GUS showed a similar change in response to different N conditions. Overexpression of BcAMT1;5 accelerated the growth of transgenic seedlings, increased NH4+ net influxes, and enhanced the content and accumulation of NH4+ and NO3 at low N concentrations. Additionally, it increased the transcript levels of N assimilation-related genes in shoots. These results indicate that BcAMT1;5 may participate in N uptake and assimilation under various N conditions in flowering Chinese cabbage, but it was differed obviously from other AMT1s. Full article
Show Figures

Figure 1

Back to TopTop