Relative Sea-Level Rise

A special issue of Geosciences (ISSN 2076-3263). This special issue belongs to the section "Climate".

Deadline for manuscript submissions: closed (30 November 2023) | Viewed by 9164

Special Issue Editors


E-Mail Website
Guest Editor
Consultant, Woods Hole Oceanographic Institution, Falmouth, MA 02543, USA
Interests: climate change; ocean acidification; karst hydrogeology; sea level change; scientific diving

E-Mail Website
Guest Editor
Istituto Di Geologia Ambientale E Geoingegneria (IGAG) CNR, 00185 Rome, Italy
Interests: coastal geomorphology; relative sea level change; sea flooding risk for the future
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Mathematics and Geosciences, University of Trieste, 34127 Trieste, TS, Italy
Interests: sea level change; rocky coast geomorphology; coastal karst morphology; carthography
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Sea level rise is one of the major consequences of climate change and it is already affecting coastal communities and ecosystems around the world. However, the current rate of sea-level rise is not the same everywhere. Vertical tectonic movements and mantle dynamic topography also contribute to increase the variability in RSL change in space and time. Furthermore, a strong contributor to regional sea-level variability also, on much shorter time scales, is thermal expansion in temperate sea, caused by density changes due to temperature increase. If combined and added to global sea-level projections for 2100, GIA, vertical tectonic motions, thermosteric expansion, and ocean dynamics can cause large regional differences in the behavior of all of the world’s coasts. In this Special Issue, we aim at discussing geomorphological and geophysical data and models that currently highlight the problems in coastal vulnerability expected in 2100. Our vision for this Special Issue is to integrate traditional research methods with the use of scientific diving. The study will be focused on the relative sea-level change, utilizing, as markers, archaeological proxy, tidal notches, and beach rock measurements, plus any other viable sea-level marker, with the aim of calculating the sea-level rise during the last millennia. This Special Issue, therefore, aims to present recent advances on relative sea-level rise and projections for the future

Dr. Giorgio Caramanna
Dr. Fabrizio Antonioli
Dr. Stefano Furlani
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Geosciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sea level rise
  • coastal geomorphology
  • future projections
  • geoarchaeology
  • scuba dive instrumental sea-level measurements
  • scientific diving
  • glacial and hydro-isostatic adjustment
  • (neo) tectonics

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 5137 KiB  
Article
Holocene Sea Level Recorded by Beach Rocks at Ionian Coasts of Apulia (Italy)
by Giuseppe Mastronuzzi, Francesco De Giosa, Gianluca Quarta, Mauro Pallara, Giovanni Scardino, Giovanni Scicchitano, Cosmo Peluso, Carmine Antropoli, Claudio Caporale and Maurizio Demarte
Geosciences 2023, 13(7), 194; https://doi.org/10.3390/geosciences13070194 - 27 Jun 2023
Viewed by 1093
Abstract
Beach rocks are located along many coasts of the Mediterranean basin. The early diagenesis environment and the mean sea level along the shoreline make these landforms useful in the reconstruction of relative sea-level changes and, in particular, as SLIPs (sea-level index points). The [...] Read more.
Beach rocks are located along many coasts of the Mediterranean basin. The early diagenesis environment and the mean sea level along the shoreline make these landforms useful in the reconstruction of relative sea-level changes and, in particular, as SLIPs (sea-level index points). The beach rocks surveyed along the Ionian coast of Apulia were found to be well preserved at three specific depth ranges: 6–9 m, 3–4 m, and from the foreshore to about 1.20 m. Morpho-bathymetric and dive surveys were performed to assess both the geometries and the extension of the submerged beach rocks. Samples were collected at these different depths in the localities of Lido Torretta, Campomarino di Maruggio, San Pietro in Bevagna, and Porto Cesareo. Bivalve shells were identified and isolated from the beach rock samples collected at a depth of 7 m; AMS dating provided a calibrated age of about 7.8 ka BP. Their morphology and petrological features, along with the time constraints, enabled us to (i) reconstruct the local sea-level curve during the Holocene, (ii) corroborate acquired knowledge of the relative sea-level history, and (iii) identify possible local vertical land movement (VLM). Full article
(This article belongs to the Special Issue Relative Sea-Level Rise)
Show Figures

Figure 1

21 pages, 15066 KiB  
Article
Sea Caves and Other Landforms of the Coastal Scenery on Gozo Island (Malta): Inventory and New Data on Their Formation
by Stefano Furlani, Fabrizio Antonioli, Emanuele Colica, Sebastiano D’Amico, Stefano Devoto, Pietro Grego and Timmy Gambin
Geosciences 2023, 13(6), 164; https://doi.org/10.3390/geosciences13060164 - 02 Jun 2023
Cited by 2 | Viewed by 2279
Abstract
Sea caves are a type of cave formed primarily by the wave action of the sea. The coastal scenery of the Gozitan coast is very interesting in that sea caves and other coastal landforms, such as sea arches, develop at the sea level. [...] Read more.
Sea caves are a type of cave formed primarily by the wave action of the sea. The coastal scenery of the Gozitan coast is very interesting in that sea caves and other coastal landforms, such as sea arches, develop at the sea level. We mapped seventy-nine semi-submerged sea caves opening at the sea level, five completely submerged sea caves, seven sea arches, one sea stack, and one shelter around the coast of Gozo, mainly in the Western and Eastern parts of the island, due to favorable lithological and topographical conditions. Additionally, we surveyed the topography of the emerged part of nine sea caves using the iPhone build-in LiDAR sensor, and eight sea caves in the submerged part using SCUBA equipment. This inventory represents the most detailed example of a database of coastal caves and related forms in the Mediterranean, mainly sourced from a swimming survey along the entire island. Thanks to the combination of outputs of the above-water emerged and submerged surveys, we defined three types of semi-submerged sea caves: (i) box caves, (ii) joint caves, and (iii) complex caves. Moreover, we added a cave-like landform above the sea level on calcarenites called shelter, or a little extended notch deeply carved into the cliff. The shape mainly depends on the structural and lithological setting of sea cliffs. In the Western sector of the island, we also discovered the only sea cave in Gozo, measuring 122 m in length and 10 m in width, with its floor developing above the mean sea level. This cave base is of interest due to rounded landforms related to marine erosion. In the innermost part of the cave, there is also a beach with rounded pebble at an elevation of about 7 m asl. Considering the tectonic stability of the island, it could be possibly related to the MIS 5.5 highstand. Full article
(This article belongs to the Special Issue Relative Sea-Level Rise)
Show Figures

Figure 1

25 pages, 5753 KiB  
Article
Factors Contributing to the Long-Term Sea Level Trends in the Iberian Peninsula and the Balearic and Canary Islands
by Manuel Vargas-Yáñez, Elena Tel, Marta Marcos, Francina Moya, Enrique Ballesteros, Cristina Alonso and M. Carmen García-Martínez
Geosciences 2023, 13(6), 160; https://doi.org/10.3390/geosciences13060160 - 31 May 2023
Cited by 1 | Viewed by 3430
Abstract
We present an attempt to estimate the long-term changes in Relative Sea Level (RSL), in addition to the different factors contributing to such trends on a local and regional scale, using a statistical linear model. The time series analysis corresponded to 17 tide-gauges, [...] Read more.
We present an attempt to estimate the long-term changes in Relative Sea Level (RSL), in addition to the different factors contributing to such trends on a local and regional scale, using a statistical linear model. The time series analysis corresponded to 17 tide-gauges, grouped in three different areas: the northern and western Atlantic coasts of the Iberian Peninsula, the Canary Islands, and the southern and eastern coasts of the Iberian Peninsula and Balearic Islands. The analysis was performed for two periods: 1948–2019, using tide-gauge data; and 1993–2019, using both tide-gauge and altimetry data for comparison. The trends for the period 1948–2019 ranged between 1.09 ± 0.14 (Canary Islands) and 2.05 ± 0.21 mm/yr for the northern and western Atlantic Iberian Peninsula. Altimetry data during the period 1993–2019 yielded quite homogeneous results for all the locations and regions, ranging between 2.7 ± 0.4 and 3.0 ± 0.3 mm/yr. In contrast, the results obtained from tide-gauge data for this recent period showed a large dispersion, very likely due to local effects, or perhaps even to levelling or instrumental errors. Nevertheless, when the results were averaged for each area, the observed trends were comparable to the altimetry results, with values of 2.3 ± 0.8, 2.7 ± 0.5, and 2.8 ± 0.8 mm/yr for the three regions of study. A stepwise forward linear regression was used to relate the observed RSL variability to the atmospheric forcing and the thermosteric and halosteric components of the sea level. Surprisingly, the thermosteric and halosteric contributions were not significantly correlated to the observed RSL in many cases; consequently, the steric, the total addition of mass, the mass of salt, and the freshwater contributions to the observed sea level trends could not be reliably estimated. This result seems to have been the consequence of the scarcity of temperature and salinity data; this hypothesis was confirmed, with the exception of the tide-gauge data for L’Estartit. This location is close to a well sampled region. In this case, the atmospheric variables and the thermosteric and halosteric terms accounted for 80% of the observed RSL variance, and the contributions of these terms could be estimated. The freshwater contribution for this location was between 1.3 and 1.4 mm/yr, consistent with recent estimations of the contributions of glaciers and Greenland and Antarctica Ice Sheets. These results highlight the importance of monitoring programs and routine sampling for the determination of the different factors contributing to the sea level variability. Full article
(This article belongs to the Special Issue Relative Sea-Level Rise)
Show Figures

Figure 1

28 pages, 14850 KiB  
Article
The Response of Sandstone Sea Cliffs to Holocene Sea-Level Rise by Means of Remote Sensing and Direct Surveys: The Case Study of Punta Licosa Promontory (Southern Italy)
by Maria Francesca Tursi, Antonio Minervino Amodio, Claudia Caporizzo, Silvio Del Pizzo, Francesco Giuseppe Figliomeni, Gaia Mattei, Claudio Parente, Carmen M. Rosskopf and Pietro P. C. Aucelli
Geosciences 2023, 13(4), 120; https://doi.org/10.3390/geosciences13040120 - 17 Apr 2023
Cited by 3 | Viewed by 1537
Abstract
Punta Licosa promontory is located in the northern part of the Cilento coast, in the southern Tyrrhenian basin. This promontory is bordered by sea cliffs connected to a wide shore platform sloping slightly towards the sea. This area has been considered stable at [...] Read more.
Punta Licosa promontory is located in the northern part of the Cilento coast, in the southern Tyrrhenian basin. This promontory is bordered by sea cliffs connected to a wide shore platform sloping slightly towards the sea. This area has been considered stable at least since Late Pleistocene, as testified by a series of evidence well known in the literature. The aim of this research is to reconstruct the main coastal changes that have occurred in this area since the middle Holocene by means of the literature data, aerial photo interpretation, satellite images, GPS measurements, direct underwater surveys, GIS elaborations of high-resolution DTMs, bathymetric data and high-resolution orthophotos taken by UAV. Particular attention was paid to the wide platform positioned between −7.2 ± 1.2 m MSL and the present MSL, this being the coastal landform interpreted as the main consequence of sea cliff retreat. The elevation of this landform was compared with the GIA models calculated for the southern Tyrrhenian area, allowing establishing that it was shaped during the last 7.6 ± 1.1 ky BP. Moreover, the interpretation of archaeological and geomorphological markers led to the reconstruction of the shoreline evolution of this coastal sector since 7.6 ky BP. This research evaluates the cliff retreat under the effect of Holocene RSL variation on Cilento promontories, located in the western Mediterranean and characterised by the presence of monophasic platforms, and the applied method can be considered more effective and less complex and expensive if compared to other effective approaches such as those based on the usage of cosmogenic nuclides. Full article
(This article belongs to the Special Issue Relative Sea-Level Rise)
Show Figures

Figure 1

Back to TopTop