Hydrogels with Appropriate/Tunable Properties for Biomedical Applications

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Applications".

Deadline for manuscript submissions: closed (10 July 2023) | Viewed by 42778

Special Issue Editors

Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Institute of Medical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Interests: biomaterials; hydrogel; wound treatment
Special Issues, Collections and Topics in MDPI journals
College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Interests: hydrogel; double-network hydrogel; smart materials; biomedical materials; flexible sensor and tissue adhesive
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Interests: adhesive; hydrogel; sealant; tumor treatment

Special Issue Information

Dear Colleagues, 

Initially, hydrogels attracted attention from biomaterial scientists mainly due to their porosity, high water ratio, and soft consistency, which closely simulates natural living tissue. In addition to those, more properties have been and are being developed to increase their potential in biomedical applications. Those include high mechanical strength, controllable degradation, bio-adhesion property, stimulation responsiveness, and so on.

Although a lot has been done to endow hydrogel different properties, it seems that excessive attention has been paid to increasing the 'intensity' of their different properties, for example, developing bioadhesive hydrogel with extremely high adhesion strength and designing tough hydrogels with solid bulk properties. A proper property is more vital for a certain application. A moderate but not high adhesion strength for bioadhesive-based wound dressing will allow the re-change or re-exposure of wounds more easily. For hydrogel scaffolds, a proper degradation speed that matches tissue healing speed will lead to a better outcome. For applications in different tissues, hydrogels are needed with various but not only high mechanical strength. Additionally,stretchable, light-responsive, and conductive hydrogels are appreciated in flexible and smart devices.

Fabricating hydrogels with appropriate/tunable properties is vital to expanding hydrogels’ applications in the biomedical field. Hence, within this topic, we aim to share up-to-date advances in developing hydrogels with different properties for biomedical applications. Not only hydrogels with extremely ‘strong’ properties but also those with appropriate/tunable ones are welcomed in this topic. It is believed that developing hydrogels with appropriate properties fitting to a specific application will accelerate the clinical translation of hydrogels.

Dr. Yazhong Bu
Dr. Yanyu Yang
Dr. Feifei Sun
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • functional hydrogel
  • biomedical application
  • adhesive
  • smart hydrogel
  • medical device
  • health diagnosis

Published Papers (17 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 4531 KiB  
Article
Development of Blended Biopolymer-Based Photocatalytic Hydrogel Beads for Adsorption and Photodegradation of Dyes
by Seung Hyeon Weon, Jiwoo Han, Yong-Keun Choi, Saerom Park and Sang Hyun Lee
Gels 2023, 9(8), 630; https://doi.org/10.3390/gels9080630 - 05 Aug 2023
Cited by 4 | Viewed by 1432
Abstract
Blended biopolymer-based photocatalytic hydrogel beads were synthesized by dissolving the biopolymers in 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]), adding TiO2, and reconstituting the beads with ethanol. The incorporation of modifying biopolymer significantly enhanced the adsorption capacity of the cellulose/TiO2 beads. Cellulose/carrageenan/TiO2 beads [...] Read more.
Blended biopolymer-based photocatalytic hydrogel beads were synthesized by dissolving the biopolymers in 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]), adding TiO2, and reconstituting the beads with ethanol. The incorporation of modifying biopolymer significantly enhanced the adsorption capacity of the cellulose/TiO2 beads. Cellulose/carrageenan/TiO2 beads exhibited a 7.0-fold increase in adsorption capacity for methylene blue (MB). In contrast, cellulose/chitosan/TiO2 beads showed a 4.8-fold increase in adsorption capacity for methyl orange (MO) compared with cellulose/TiO2 beads. In addition, cellulose/TiO2 microbeads were prepared through the sol–gel transition of the [Emim][Ac]-in-oil emulsion to enhance photodegradation activity. These microbeads displayed a 4.6-fold higher adsorption capacity and 2.8-fold higher photodegradation activity for MB than the millimeter-sized beads. Furthermore, they exhibited superior dye removal efficiencies for various dyes such as Congo red, MO, MB, crystal violet, and rhodamine B, surpassing the performance of larger beads. To expand the industrial applicability of the microbeads, biopolymer/TiO2 magnetic microbeads were developed by incorporating Fe2O3. These magnetic microbeads outperformed millimeter-sized beads regarding the efficiency and time required for MB removal from aqueous solutions. Furthermore, the physicochemical properties of magnetic microbeads can be easily controlled by adjusting the type of biopolymer modifier, the TiO2 and magnetic particle content, and the ratio of each component based on the target molecule. Therefore, biopolymer-based photocatalytic magnetic microbeads have great potential not only in environmental fields but also in biomedical fields. Full article
Show Figures

Figure 1

18 pages, 7614 KiB  
Article
Lecithin as an Effective Modifier of the Transport Properties of Variously Crosslinked Hydrogels
by Richard Heger, Natalia Zinkovska, Monika Trudicova, Martin Kadlec, Miloslav Pekar and Jiri Smilek
Gels 2023, 9(5), 367; https://doi.org/10.3390/gels9050367 - 27 Apr 2023
Cited by 2 | Viewed by 841
Abstract
Transport properties are one of the most crucial assets of hydrogel samples, influencing their main application potential, i.e., as drug carriers. Depending on the type of drug or the application itself, it is very important to be able to control these transport properties [...] Read more.
Transport properties are one of the most crucial assets of hydrogel samples, influencing their main application potential, i.e., as drug carriers. Depending on the type of drug or the application itself, it is very important to be able to control these transport properties in an appropriate manner. This study seeks to modify these properties by adding amphiphiles, specifically lecithin. Through its self-assembly, lecithin modifies the inner structure of the hydrogel, which affects its properties, especially the transport ones. In the proposed paper, these properties are studied mainly using various probes (organic dyes) to effectively simulate drugs in simple release diffusion experiments controlled by UV-Vis spectrophotometry. Scanning electron microscopy was used to help characterize the diffusion systems. The effects of lecithin and its concentrations, as well as the effects of variously charged model drugs, were discussed. Lecithin decreases the values of the diffusion coefficient independently of the dye used and the type of crosslinking. The ability to influence transport properties is better observed in xerogel samples. The results, complementing previously published conclusions, showed that lecithin can alter a hydrogel’s structure and therefore its transport properties. Full article
Show Figures

Figure 1

15 pages, 15740 KiB  
Article
Fabrication of Silk Hydrogel Scaffolds with Aligned Porous Structures and Tunable Mechanical Properties
by Zewu Jiang, Qingqing Sun, Qian Li and Xiaomeng Li
Gels 2023, 9(3), 181; https://doi.org/10.3390/gels9030181 - 24 Feb 2023
Cited by 3 | Viewed by 1666
Abstract
The effectiveness of cell culture and tissue regeneration largely depends on the structural and physiochemical characteristics of tissue-engineering scaffolds. Hydrogels are frequently employed in tissue engineering because of their high-water content and strong biocompatibility, making them the ideal scaffold materials for simulating tissue [...] Read more.
The effectiveness of cell culture and tissue regeneration largely depends on the structural and physiochemical characteristics of tissue-engineering scaffolds. Hydrogels are frequently employed in tissue engineering because of their high-water content and strong biocompatibility, making them the ideal scaffold materials for simulating tissue structures and properties. However, hydrogels created using traditional methods have low mechanical strength and a non-porous structure, which severely restrict their application. Herein, we successfully developed silk fibroin glycidyl methacrylate (SF-GMA) hydrogels with oriented porous structures and substantial toughness through directional freezing (DF) and in situ photo-crosslinking (DF-SF-GMA). The oriented porous structures in the DF-SF-GMA hydrogels were induced by directional ice templates and maintained after photo-crosslinking. The mechanical properties, particularly the toughness, of these scaffolds were enhanced compared to the traditional bulk hydrogels. Interestingly, the DF-SF-GMA hydrogels exhibit fast stress relaxation and variable viscoelasticity. The remarkable biocompatibility of the DF-SF-GMA hydrogels was further demonstrated in cell culture. Accordingly, this work reports a method to prepare tough SF hydrogels with aligned porous structures, which can be extensively applied to cell culture and tissue engineering. Full article
Show Figures

Graphical abstract

11 pages, 1668 KiB  
Article
Stiffness-Modulation of Collagen Gels by Genipin-Crosslinking for Cell Culture
by Seiichiro Ishihara, Haruna Kurosawa and Hisashi Haga
Gels 2023, 9(2), 148; https://doi.org/10.3390/gels9020148 - 10 Feb 2023
Cited by 5 | Viewed by 2680
Abstract
The stiffness of extracellular matrices (ECMs) is critical for cellular functions. Therefore, modulating the stiffness of ECMs in vitro is necessary to investigate the role of stiffness in cellular phenomena. Collagen gels are widely used for cell culture matrices in vitro. However, modulation [...] Read more.
The stiffness of extracellular matrices (ECMs) is critical for cellular functions. Therefore, modulating the stiffness of ECMs in vitro is necessary to investigate the role of stiffness in cellular phenomena. Collagen gels are widely used for cell culture matrices in vitro. However, modulation of the stiffness in collagen gels for cell culture is challenging owing to the limited knowledge of the method to increase the stiffness while maintaining low cytotoxicity. Here, we established a novel method to modulate collagen gel stiffness from 0.0292 to 12.5 kPa with low cytotoxicity. We prepared collagens with genipin, a low-cytotoxic crosslinker of amines, at different concentrations and successfully modulated the stiffness of the gels. In addition, on 10 mM genipin-mixed collagen gels (approximately 12.5 kPa), H1299 human lung cancer cells showed spreading morphology and nuclear localization of yes-associated protein (YAP), typical phenomena of cells on stiff ECMs. Mouse mesenchymal stromal cells on 10 mM genipin-mixed collagen gels differentiated to vascular smooth muscle cells. On the other hand, the cells on 0 mM genipin-mixed collagen gels (approximately 0.0292 kPa) differentiated to visceral smooth muscle cells. Our new method provides a novel way to prepare stiffness-modulated collagen gels with low cytotoxicity in cell culture. Full article
Show Figures

Graphical abstract

15 pages, 4638 KiB  
Article
Hydroxyapatite-Tethered Peptide Hydrogel Promotes Osteogenesis
by Hongwen Yu, Jiaqi Song, Xianpeng Zhang, Kuo Jiang, Hong Fan, Yibing Li, Yuanting Zhao, Shichang Liu, Dingjun Hao and Guanying Li
Gels 2022, 8(12), 804; https://doi.org/10.3390/gels8120804 - 08 Dec 2022
Cited by 4 | Viewed by 1774
Abstract
Hydroxyapatite (HAp) as natural bone composition is highly osteoinductive. To harvest its osteoinductivity in bone regenerative engineering, the HAp-supporting hydrogel is urgently needed to minimize inhomogeneous aggregation of HAp. Here, we developed a HAp-stabilizing hydrogel based on peptide self-assembly. FmocFFRR was efficient for [...] Read more.
Hydroxyapatite (HAp) as natural bone composition is highly osteoinductive. To harvest its osteoinductivity in bone regenerative engineering, the HAp-supporting hydrogel is urgently needed to minimize inhomogeneous aggregation of HAp. Here, we developed a HAp-stabilizing hydrogel based on peptide self-assembly. FmocFFRR was efficient for HAp-capping due to arginine-phosphate interaction. Tethering FmocFFRR on the HAp surface facilitated self-assembly to form FmocFFRR/HAp hybrid hydrogel, enabling stable dispersion of HAp in it. The molecular interactions between FmocFFRR and HAp particles were studied using microscopic and spectral characterizations. FmocFFRR/HAp hydrogel exhibited more enhanced mechanical properties than FmocFFRR. The biocompatibility of FmocFFRR/HAp hydrogel was verified using an ATP assay and live-dead staining assay. More importantly, FmocFFRR/HAp hydrogel not only enabled cell attachment on its surface, but also supported 3D cell culturing inside the hydrogel. Further, 3D culturing of MC3T3-E1 preosteoblasts inside FmocFFRR/HAp hydrogel significantly enhanced the expressions of osteogenesis markers, including alkaline phosphate (ALP), type-I collagen (COL1), and osteocalcin (OCN), demonstrating the promoting effect of osteoblast differentiation. These findings inspire its potential application in bone regenerative engineering. Full article
Show Figures

Figure 1

13 pages, 4375 KiB  
Article
Facile Construction of Hybrid Hydrogels with High Strength and Biocompatibility for Cranial Bone Regeneration
by Shuai Chang, Jiedong Wang, Nanfang Xu, Shaobo Wang, Hong Cai, Zhongjun Liu and Xing Wang
Gels 2022, 8(11), 745; https://doi.org/10.3390/gels8110745 - 17 Nov 2022
Cited by 5 | Viewed by 1804
Abstract
The significant efforts being made towards the utilization of artificial soft materials holds considerable promise for developing tissue engineering scaffolds for bone-related diseases in clinics. However, most of these biomaterials cannot simultaneously satisfy the multiple requirements of high mechanics, good compatibility, and biological [...] Read more.
The significant efforts being made towards the utilization of artificial soft materials holds considerable promise for developing tissue engineering scaffolds for bone-related diseases in clinics. However, most of these biomaterials cannot simultaneously satisfy the multiple requirements of high mechanics, good compatibility, and biological osteogenesis. In this study, an osteogenic hybrid hydrogel between the amine-functionalized bioactive glass (ABG) and 4-armed poly(ethylene glycol) succinimidyl glutarate-gelatin network (SGgel) is introduced to flexibly adhere onto the defective tissue and to subsequently guide bone regeneration. Relying on the rapid ammonolysis reaction between amine groups (-NH2) of gelatin and ABG components and N-hydroxysuccinimide (NHS)-ester of tetra-PEG-SG polymer, the hydrogel networks were formed within seconds, offering a multifunctional performance, including easy injection, favorable biocompatibility, biological and mechanical properties (compressive strength: 4.2 MPa; storage modulus: 104 kPa; adhesive strength: 56 kPa), which could facilitate the stem cell viability, proliferation, migration and differentiation into osteocytes. In addition, the integration between the SGgel network and ABG moieties within a nano-scale level enabled the hybrid hydrogel to form adhesion to tissue, maintain the durable osteogenesis and accelerate bone regeneration. Therefore, a robust approach to the simultaneously satisfying tough adhesion onto the tissue defects and high efficiency for bone regeneration on a mouse skull was achieved, which may represent a promising strategy to design therapeutic scaffolds for tissue engineering in clinical applications. Full article
Show Figures

Figure 1

21 pages, 7046 KiB  
Article
Modeling Tunable Fracture in Hydrogel Shell Structures for Biomedical Applications
by Gang Zhang, Hai Qiu, Khalil I. Elkhodary, Shan Tang and Dan Peng
Gels 2022, 8(8), 515; https://doi.org/10.3390/gels8080515 - 18 Aug 2022
Cited by 2 | Viewed by 1628
Abstract
Hydrogels are nowadays widely used in various biomedical applications, and show great potential for the making of devices such as biosensors, drug- delivery vectors, carriers, or matrices for cell cultures in tissue engineering, etc. In these applications, due to the irregular complex surface [...] Read more.
Hydrogels are nowadays widely used in various biomedical applications, and show great potential for the making of devices such as biosensors, drug- delivery vectors, carriers, or matrices for cell cultures in tissue engineering, etc. In these applications, due to the irregular complex surface of the human body or its organs/structures, the devices are often designed with a small thickness, and are required to be flexible when attached to biological surfaces. The devices will deform as driven by human motion and under external loading. In terms of mechanical modeling, most of these devices can be abstracted as shells. In this paper, we propose a mixed graph-finite element method (FEM) phase field approach to model the fracture of curved shells composed of hydrogels, for biomedical applications. We present herein examples for the fracture of a wearable biosensor, a membrane-coated drug, and a matrix for a cell culture, each made of a hydrogel. Used in combination with experimental material testing, our method opens a new pathway to the efficient modeling of fracture in biomedical devices with surfaces of arbitrary curvature, helping in the design of devices with tunable fracture properties. Full article
Show Figures

Figure 1

10 pages, 2343 KiB  
Article
Evaluation of the Accessibility of Molecules in Hydrogels Using a Scale of Spin Probes
by Iulia Matei, Ana-Maria Ariciu, Elena Irina Popescu, Sorin Mocanu, Alexandru Vincentiu Florian Neculae, Florenta Savonea and Gabriela Ionita
Gels 2022, 8(7), 428; https://doi.org/10.3390/gels8070428 - 08 Jul 2022
Cited by 5 | Viewed by 2002
Abstract
In this work, we explored by means of electron paramagnetic resonance (EPR) spectroscopy the accessibility of a series of spin probes, covering a scale of molecular weights in the range of 200–60,000 Da, in a variety of hydrogels: covalent network, ionotropic, interpenetrating polymer [...] Read more.
In this work, we explored by means of electron paramagnetic resonance (EPR) spectroscopy the accessibility of a series of spin probes, covering a scale of molecular weights in the range of 200–60,000 Da, in a variety of hydrogels: covalent network, ionotropic, interpenetrating polymer network (IPN) and semi-IPN. The covalent gel network consists of polyethylene or polypropylene chains linked via isocyanate groups with cyclodextrin, and the ionotropic gel is generated by alginate in the presence of Ca2+ ions, whereas semi-IPN and IPN gel networks are generated in a solution of alginate and chitosan by adding crosslinking agents, Ca2+ for alginate and glutaraldehyde for chitosan. It was observed that the size of the diffusing species determines the ability of the gel to uptake them. Low molecular weight compounds can diffuse into the gel, but when the size of the probes increases, the gel cannot uptake them. Spin-labelled Pluronic F127 cannot be encapsulated by any covalent gel, whereas spin-labelled albumin can diffuse in alginate gels and in most of the IPN networks. The EPR spectra also evidenced the specific interactions of spin probes inside hydrogels. The results suggest that EPR spectroscopy can be an alternate method to evaluate the mesh size of gel systems and to provide information on local interactions inside gels. Full article
Show Figures

Graphical abstract

12 pages, 4898 KiB  
Article
A Highly Mechanical, Conductive, and Cryophylactic Double Network Hydrogel for Flexible and Low-Temperature Tolerant Strain Sensors
by Quan Diao, Hongyan Liu and Yanyu Yang
Gels 2022, 8(7), 424; https://doi.org/10.3390/gels8070424 - 07 Jul 2022
Cited by 9 | Viewed by 2041
Abstract
Due to their stretchability, conductivity, and good biocompatibility, hydrogels have been recognized as potential materials for flexible sensors. However, it is still challenging for hydrogels to meet the conductivity, mechanical strength, and freeze-resistant requirements in practice. In this study, a chitosan-poly (acrylic acid-co-acrylamide) [...] Read more.
Due to their stretchability, conductivity, and good biocompatibility, hydrogels have been recognized as potential materials for flexible sensors. However, it is still challenging for hydrogels to meet the conductivity, mechanical strength, and freeze-resistant requirements in practice. In this study, a chitosan-poly (acrylic acid-co-acrylamide) double network (DN) hydrogel was prepared by immersing the chitosan-poly (acrylic acid-co-acrylamide) composite hydrogel into Fe2(SO4)3 solution. Due to the formation of an energy-dissipative chitosan physical network, the DN hydrogel possessed excellent tensile and compression properties. Moreover, the incorporation of the inorganic salt endowed the DN hydrogel with excellent conductivity and freeze-resistance. The strain sensor prepared using this DN hydrogel displayed remarkable sensitivity and reliability in detecting stretching and bending deformations. In addition, this DN hydrogel sensor also worked well at a lower temperature (−20 °C). The highly mechanical, conductive, and freeze-resistant DN hydrogel revealed a promising application in the field of wearable devices. Full article
Show Figures

Graphical abstract

14 pages, 4668 KiB  
Article
Synthesis and Hydrogelation of Star-Shaped Graft Copolypetides with Asymmetric Topology
by Thi Ha My Phan, Yu-Hsun Yang, Yi-Jen Tsai, Fang-Yu Chung, Tooru Ooya, Shiho Kawasaki and Jeng-Shiung Jan
Gels 2022, 8(6), 366; https://doi.org/10.3390/gels8060366 - 09 Jun 2022
Cited by 1 | Viewed by 1872
Abstract
To study the self-assembly and hydrogel formation of the star-shaped graft copolypeptides with asymmetric topology, star-shaped poly(L-lysine) with various arm numbers were synthesized by using asymmetric polyglycerol dendrimers (PGDs) as the initiators and 1,1,3,3-tetramethylguanidine (TMG) as an activator for OH groups, [...] Read more.
To study the self-assembly and hydrogel formation of the star-shaped graft copolypeptides with asymmetric topology, star-shaped poly(L-lysine) with various arm numbers were synthesized by using asymmetric polyglycerol dendrimers (PGDs) as the initiators and 1,1,3,3-tetramethylguanidine (TMG) as an activator for OH groups, followed by deprotection and grafting with indole or phenyl group on the side chain. The packing of the grafting moiety via non-covalent interactions not only facilitated the polypeptide segments to adopt more ordered conformations but also triggered the spontaneous hydrogelation. The hydrogelation ability was found to be correlated with polypeptide composition and topology. The star-shaped polypeptides with asymmetric topology exhibited poorer hydrogelation ability than those with symmetric topology due to the less efficient packing of the grafted moiety. The star-shaped polypeptides grafted with indole group on the side chain exhibited better hydrogelation ability than those grafted with phenyl group with the same arm number. This report demonstrated that the grafted moiety and polypeptide topology possessed the potential ability to modulate the polypeptide hydrogelation and hydrogel characteristics. Full article
Show Figures

Graphical abstract

16 pages, 3138 KiB  
Article
Hydrogel Containing Solid Lipid Nanoparticles Loaded with Argan Oil and Simvastatin: Preparation, In Vitro and Ex Vivo Assessment
by Muhammad Farhan Ali Khan, Asim Ur.Rehman, Haidar Howari, Aiyeshah Alhodaib, Faiz Ullah, Zia ul Mustafa, Abdelhamid Elaissari and Naveed Ahmed
Gels 2022, 8(5), 277; https://doi.org/10.3390/gels8050277 - 29 Apr 2022
Cited by 24 | Viewed by 2852
Abstract
Transdermal hydrogels have the potential to improve therapeutic outcomes via enhancing bioavailability and reducing toxicity associated with oral delivery. The goal of the present study was to formulate and optimise argan oil loaded transdermal hydrogel containing lipid nanoparticles. The high pressure homogenization (HPH) [...] Read more.
Transdermal hydrogels have the potential to improve therapeutic outcomes via enhancing bioavailability and reducing toxicity associated with oral delivery. The goal of the present study was to formulate and optimise argan oil loaded transdermal hydrogel containing lipid nanoparticles. The high pressure homogenization (HPH) method was utilised to fabricate Simvastatin loaded solid lipid nanoparticles (SIM-SLNs) with precirol ATO 5 as a lipid core and Poloxamer 407 (P407) to stabilise the core. The optimised nanoformulation was characterised for its particle diameter, zeta potential, surface morphology, entrapment efficiency, crystallinity and molecular interaction. Furthermore, transdermal hydrogel was characterised for physical appearance, rheology, pH, bio adhesion, extrudability, spreadability and safety profile. In vitro and ex vivo assays were executed to gauge the potential of SLNs and argan oil for transdermal delivery. The mean particle size, zeta potential and polydispersity index (PDI) of the optimised nanoparticles were 205 nm, −16.6 mV and 0.127, respectively. Crystallinity studies and Fourier transform infrared (FTIR) analysis revealed no molecular interaction. The in vitro release model explains anomalous non-Fickian release of drug from matrix system. Ex vivo skin penetration studies conducted through a fluorescence microscope confirmed penetration of the formulation across the stratum corneum. Hydrogel plays a crucial role in controlling the burst release and imparting the effect of argan oil as hypolipidemic agent and permeation enhancer. Full article
Show Figures

Graphical abstract

13 pages, 2418 KiB  
Article
Functional Hydrogels with Chondroitin Sulfate Release Properties Regulate the Angiogenesis Behaviors of Endothelial Cells
by Haonan Wang, Qian Li, Yongchao Jiang and Xiaofeng Wang
Gels 2022, 8(5), 261; https://doi.org/10.3390/gels8050261 - 21 Apr 2022
Cited by 3 | Viewed by 2068
Abstract
Functional hydrogels with properties that mimic the structure of extracellular matrix (ECM) and regulate cell behaviors have drawn much attention in biomedical applications. Herein, gelatin-based hydrogels were designed and loaded with chondroitin sulfate (CS) to endow biological regulation on the angiogenesis behaviors of [...] Read more.
Functional hydrogels with properties that mimic the structure of extracellular matrix (ECM) and regulate cell behaviors have drawn much attention in biomedical applications. Herein, gelatin-based hydrogels were designed and loaded with chondroitin sulfate (CS) to endow biological regulation on the angiogenesis behaviors of endothelial cells (ECs). Manufactured hydrogels containing various amounts of CS were characterized via methods including mechanical tests, cytocompatibility, hemolysis, and angiogenesis assays. The results showed that the prepared hydrogels exhibited excellent mechanical stability, cytocompatibility, and hemocompatibility. Additionally, the angiogenesis behaviors of ECs were obviously promoted. However, excessive loading of CS would weaken the effect due to a higher proportion of occupation on the cell membrane. In conclusion, this investigation highlights the great potential of these hydrogels in treating ischemic diseases and accelerating tissue regeneration in terms of regulating the angiogenesis process via CS release. Full article
Show Figures

Figure 1

19 pages, 4770 KiB  
Article
High-Energy Photon Attenuation Properties of Lead-Free and Self-Healing Poly (Vinyl Alcohol) (PVA) Hydrogels: Numerical Determination and Simulation
by Theerasarn Pianpanit and Kiadtisak Saenboonruang
Gels 2022, 8(4), 197; https://doi.org/10.3390/gels8040197 - 22 Mar 2022
Cited by 3 | Viewed by 1895
Abstract
This work numerically determined high-energy photon shielding properties of self-healing poly(vinyl alcohol) (PVA) hydrogels containing lead-free, heavy-metal compounds, namely, bismuth oxide (Bi2O3), tungsten oxide (WO3), and barium sulfate (BaSO4), through XCOM software packages. In order [...] Read more.
This work numerically determined high-energy photon shielding properties of self-healing poly(vinyl alcohol) (PVA) hydrogels containing lead-free, heavy-metal compounds, namely, bismuth oxide (Bi2O3), tungsten oxide (WO3), and barium sulfate (BaSO4), through XCOM software packages. In order to understand the dependencies of the shielding properties of the hydrogels on filler contents and photon energies, the filler contents added to the hydrogels were varied from 0–40 wt.% and the photon energies were varied from 0.001–5 MeV. The results, which were verified for their reliability and correctness with those obtained from PHITS (Particle and Heavy Ion Transport code System), indicated that overall shielding performances, which included the mass attenuation coefficients (µm), the linear attenuation coefficient (µ), the half-value layer (HVL), and the lead equivalence (Pbeq), of the hydrogels improved with increasing filler contents but generally decreased with increasing photon energies. Among the three compounds investigated in this work, Bi2O3/PVA hydrogels exhibited the highest photon attenuation capabilities, determined at the same filler content and photon energy, mainly due to its highest atomic number of Bi and the highest density of Bi2O3 in comparison with other elements and compounds. Furthermore, due to possible reduction in self-healing and mechanical properties of the hydrogels with excessive filler contents, the least content of fillers providing a 10-mm sample with the required Pbeq value of 0.5 mmPb was investigated. The determination revealed that only the hydrogel containing at least 36 wt.% of Bi2O3 exhibited the Pbeq values greater than 0.5 mmPb for all photon energies of 0.05, 0.08, and 0.1 MeV (common X-ray energies in general nuclear facilities). The overall outcomes of the work promisingly implied the potential of PVA hydrogels to be used as novel and potent X-ray and gamma shielding materials with the additional self-healing and nonlead properties. Full article
Show Figures

Graphical abstract

12 pages, 51717 KiB  
Article
Mechanochemical Effect on Controlled Drug Release of Konjac Glucomannan Matrix Tablets during Dry Grinding
by Fuminori Okazaki, Yusuke Hattori, Tetsuo Sasaki and Makoto Otsuka
Gels 2022, 8(3), 181; https://doi.org/10.3390/gels8030181 - 15 Mar 2022
Cited by 4 | Viewed by 2225
Abstract
To design a controlled drug release preparation based on a safe natural material, a Konjac glucomannan (KGM) mixture containing 16.0 w/w% calcium hydroxide (Ca(OH)2) was ground in a planetary ball mill for 0–120 min. The mechanochemical effect on the physicochemical [...] Read more.
To design a controlled drug release preparation based on a safe natural material, a Konjac glucomannan (KGM) mixture containing 16.0 w/w% calcium hydroxide (Ca(OH)2) was ground in a planetary ball mill for 0–120 min. The mechanochemical effect on the physicochemical properties of the KGM ground product was investigated by Fourier-transform infrared spectroscopy (FT-IR), powder X-ray spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and drug release testing. The FT-IR spectra of the ground KGM indicated that the deacetylation reaction of KGM was accelerated in the Ca(OH)2-containing sols by mechanochemical energy, and the degree of deacetylation of KGM was dependent on the grinding time. The time required for tablet disintegration of the KGM matrix tablets containing theophylline increased as the grinding time increased; therefore, drug release was sustained. The Higuchi plots of the matrix tablets obtained from KGM ground for 60–120 min exhibited good linearity because they maintained their gel matrix tablet shape during the release test. However, KGM tablets ground for 0–30 min exhibited nonlinear curves, which were caused by tablet disintegration. This suggests that drug release from the KGM matrix tablet can be freely controlled by the degree of mechanochemical treatment. Full article
Show Figures

Figure 1

Review

Jump to: Research

16 pages, 1835 KiB  
Review
Applications and Mechanisms of Stimuli-Responsive Hydrogels in Traumatic Brain Injury
by Xingfan Li, Linyan Duan, Mingyue Kong, Xuejun Wen, Fangxia Guan and Shanshan Ma
Gels 2022, 8(8), 482; https://doi.org/10.3390/gels8080482 - 01 Aug 2022
Cited by 12 | Viewed by 3288
Abstract
Traumatic brain injury (TBI) is a global neurotrauma with high morbidity and mortality that seriously threatens the life quality of patients and causes heavy burdens to families, healthcare institutions, and society. Neuroinflammation and oxidative stress can further aggravate neuronal cell death, hinder functional [...] Read more.
Traumatic brain injury (TBI) is a global neurotrauma with high morbidity and mortality that seriously threatens the life quality of patients and causes heavy burdens to families, healthcare institutions, and society. Neuroinflammation and oxidative stress can further aggravate neuronal cell death, hinder functional recovery, and lead to secondary brain injury. In addition, the blood–brain barrier prevents drugs from entering the brain tissue, which is not conducive to the recovery of TBI. Due to their high water content, biodegradability, and similarity to the natural extracellular matrix (ECM), hydrogels are widely used for the delivery and release of various therapeutic agents (drugs, natural extracts, and cells, etc.) that exhibit beneficial therapeutic efficacy in tissue repair, such as TBI. Stimuli-responsive hydrogels can undergo reversible or irreversible changes in properties, structures, and functions in response to internal/external stimuli or physiological/pathological environmental stimuli, and further improve the therapeutic effects on diseases. In this paper, we reviewed the common types of stimuli-responsive hydrogels and their applications in TBI, and further analyzed the therapeutic effects of hydrogels in TBI, such as pro-neurogenesis, anti-inflammatory, anti-apoptosis, anti-oxidation, and pro-angiogenesis. Our study may provide strategies for the treatment of TBI by using stimuli-responsive hydrogels. Full article
Show Figures

Graphical abstract

15 pages, 2210 KiB  
Review
Advances of Stimulus-Responsive Hydrogels for Bone Defects Repair in Tissue Engineering
by Shuai Chang, Shaobo Wang, Zhongjun Liu and Xing Wang
Gels 2022, 8(6), 389; https://doi.org/10.3390/gels8060389 - 20 Jun 2022
Cited by 25 | Viewed by 2977
Abstract
Bone defects, as one of the most urgent problems in the orthopedic clinic, have attracted much attention from the biomedical community and society. Hydrogels have been widely used in the biomedical field for tissue engineering research because of their excellent hydrophilicity, biocompatibility, and [...] Read more.
Bone defects, as one of the most urgent problems in the orthopedic clinic, have attracted much attention from the biomedical community and society. Hydrogels have been widely used in the biomedical field for tissue engineering research because of their excellent hydrophilicity, biocompatibility, and degradability. Stimulus-responsive hydrogels, as a new type of smart biomaterial, have more advantages in sensing external physical (light, temperature, pressure, electric field, magnetic field, etc.), chemical (pH, redox reaction, ions, etc.), biochemical (glucose, enzymes, etc.) and other different stimuli. They can respond to stimuli such as the characteristics of the 3D shape and solid–liquid phase state, and exhibit special properties (injection ability, self-repair, shape memory, etc.), thus becoming an ideal material to provide cell adhesion, proliferation, and differentiation, and achieve precise bone defect repair. This review is focused on the classification, design concepts, and research progress of stimulus-responsive hydrogels based on different types of external environmental stimuli, aiming at introducing new ideas and methods for repairing complex bone defects. Full article
Show Figures

Figure 1

38 pages, 5734 KiB  
Review
Self-Assembling Peptide Hydrogels as Functional Tools to Tackle Intervertebral Disc Degeneration
by Cosimo Ligorio, Judith A. Hoyland and Alberto Saiani
Gels 2022, 8(4), 211; https://doi.org/10.3390/gels8040211 - 31 Mar 2022
Cited by 18 | Viewed by 7808
Abstract
Low back pain (LBP), caused by intervertebral disc (IVD) degeneration, is a major contributor to global disability. In its healthy state, the IVD is a tough and well-hydrated tissue, able to act as a shock absorber along the spine. During degeneration, the IVD [...] Read more.
Low back pain (LBP), caused by intervertebral disc (IVD) degeneration, is a major contributor to global disability. In its healthy state, the IVD is a tough and well-hydrated tissue, able to act as a shock absorber along the spine. During degeneration, the IVD is hit by a cell-driven cascade of events, which progressively lead to extracellular matrix (ECM) degradation, chronic inflammation, and pain. Current treatments are divided into palliative care (early stage degeneration) and surgical interventions (late-stage degeneration), which are invasive and poorly efficient in the long term. To overcome these limitations, alternative tissue engineering and regenerative medicine strategies, in which soft biomaterials are used as injectable carriers of cells and/or biomolecules to be delivered to the injury site and restore tissue function, are currently being explored. Self-assembling peptide hydrogels (SAPHs) represent a promising class of de novo synthetic biomaterials able to merge the strengths of both natural and synthetic hydrogels for biomedical applications. Inherent features, such as shear-thinning behaviour, high biocompatibility, ECM biomimicry, and tuneable physiochemical properties make these hydrogels appropriate and functional tools to tackle IVD degeneration. This review will describe the pathogenesis of IVD degeneration, list biomaterials requirements to attempt IVD repair, and focus on current peptide hydrogel materials exploited for this purpose. Full article
Show Figures

Figure 1

Back to TopTop