Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3562 KiB  
Article
The Role of Provenance for the Projected Growth of Juvenile European Beech under Climate Change
by Peter Petrík, Rüdiger Grote, Dušan Gömöry, Daniel Kurjak, Anja Petek-Petrik, Laurent J. Lamarque, Alena Sliacka Konôpková, Mohammad Mukarram, Harish Debta and Peter Fleischer, Jr.
Forests 2023, 14(1), 26; https://doi.org/10.3390/f14010026 - 23 Dec 2022
Cited by 5 | Viewed by 2698
Abstract
European beech is one of the most common tree species in Europe and is generally suggested to play even more of a prominent role in forestry in the future. It seems to have the potential to partially replace Norway spruce, as it is [...] Read more.
European beech is one of the most common tree species in Europe and is generally suggested to play even more of a prominent role in forestry in the future. It seems to have the potential to partially replace Norway spruce, as it is less sensitive to expected warmer and drier conditions. It is, however, not well known in which regions these new plantings would be particularly favourable and if specific provenances may be better adapted to the new conditions than others. Therefore, we estimated the potential early height growth under climate conditions in 2040–2060 for 20 beech provenances across a region covering the Czech Republic and Slovakia. This Central European region is expected to experience considerably drier and warmer conditions in the future. For this exercise, we implemented a new neural network model developed from height growth information obtained from the open-access BeechCOSTe52 database. The simulations are driven by past and future climate data obtained from the WorldClim database of historical climate data and future climate projections. Simulations revealed that provenances originating from drier regions performed on average significantly better than those from regions with good water supply. Moreover, provenances originating from drier regions had a particularly large advantage in the relatively arid regions of Central Czechia and Southern Slovakia. We can also confirm that all provenances showed a high phenotypic plasticity of height growth across the whole investigated region. Full article
(This article belongs to the Special Issue Impact of Climate Change on Tree Growth)
Show Figures

Figure 1

30 pages, 3691 KiB  
Review
Water in Wood: A Review of Current Understanding and Knowledge Gaps
by Emil Engelund Thybring, Maria Fredriksson, Samuel L. Zelinka and Samuel V. Glass
Forests 2022, 13(12), 2051; https://doi.org/10.3390/f13122051 - 02 Dec 2022
Cited by 16 | Viewed by 9788
Abstract
Wood-water interactions are central to the utilization of wood in our society since water affects many important characteristics of wood. This topic has been investigated for more than a century, but new knowledge continues to be generated as a result of improved experimental [...] Read more.
Wood-water interactions are central to the utilization of wood in our society since water affects many important characteristics of wood. This topic has been investigated for more than a century, but new knowledge continues to be generated as a result of improved experimental and computational methods. This review summarizes our current understanding of the fundamentals of water in wood and highlights significant knowledge gaps. Thus, the focus is not only on what is currently known but equally important, what is yet unknown. The review covers locations of water in wood; phase changes and equilibrium states of water in wood; thermodynamics of sorption; terminology including cell wall water (bound water), capillary water (free water), fiber saturation point, and maximum cell wall moisture content; shrinkage and swelling; sorption hysteresis; transport of water in wood; and kinetics of water vapor sorption in the cell wall. Full article
(This article belongs to the Special Issue Reviews on Structure and Physical and Mechanical Properties of Wood)
Show Figures

Graphical abstract

19 pages, 4741 KiB  
Article
Contribution of Dry Forests and Forest Products to Climate Change Adaptation in Tigray Region, Ethiopia
by Musse Tesfaye, Ashenafi Manaye, Berihu Tesfamariam, Zenebe Mekonnen, Shibire Bekele Eshetu, Katharina Löhr and Stefan Sieber
Forests 2022, 13(12), 2026; https://doi.org/10.3390/f13122026 - 29 Nov 2022
Viewed by 3084
Abstract
Despite their ecological importance, dry forests’ contribution to climate change adaptation is often neglected. Hence, this study was initiated to assess the socioeconomic contribution of dry forests to climate change adaptation in Tigray Region, Ethiopia. A mixed quantitative and qualitative research design was [...] Read more.
Despite their ecological importance, dry forests’ contribution to climate change adaptation is often neglected. Hence, this study was initiated to assess the socioeconomic contribution of dry forests to climate change adaptation in Tigray Region, Ethiopia. A mixed quantitative and qualitative research design was used to examine the role of dry forests in climate change adaptation. Household questionnaire survey, key informants, and a focus group discussion were used to collect data. The results indicated that 94% of all households visited a dry forest at least once a month to access the forest and forest products. While the dry forest income level varied significantly (p < 0.05), the overall dry forest income level contributed to 16.8% of the total household income. Dry forest income enabled the reduction of the area between the line of equality and the Lorenz curve by 21% in dry evergreen Afromontane Forest users, by 3.02% in Combretum–Terminalia woodland users, and by 3% in Acacia–Commiphora woodland users. Gender, occupation, wealth status, and distance from the forest to their homes are all factors that significantly affected Combretum–Terminalia woodland users’ income level. Among Acacia–Commiphora woodland users, the respondents’ age influenced the dry forest income level, whereas, among dry evergreen Afromontane Forest users, the family size of the household influenced the dry forest income level. The findings of this study could help policy makers understand the crucial role of dry forest income in the livelihood of the community and in climate change adaptation. Policymakers could reduce the pressure on dry forests by introducing policies that recognize the role of dry forest income in reducing poverty and income inequality and by establishing farmer cooperation in commercializing the non-timber forest products which support the long-term coping and adaptation strategy. Further research is needed to understand the increasing role of dry forest products in climate change adaptation over time and its contribution to the national economy at large. Full article
Show Figures

Figure 1

21 pages, 1741 KiB  
Review
Toward the Genetic Improvement of Drought Tolerance in Conifers: An Integrated Approach
by Paolo Baldi and Nicola La Porta
Forests 2022, 13(12), 2016; https://doi.org/10.3390/f13122016 - 29 Nov 2022
Cited by 5 | Viewed by 3064
Abstract
The constant rise in the global temperature and unpredictable shifts in precipitation patterns are two of the main effects of climate change. Therefore, there is an increasing amount of interest in the identification of tree species, provenances and genotypes capable of withstanding more [...] Read more.
The constant rise in the global temperature and unpredictable shifts in precipitation patterns are two of the main effects of climate change. Therefore, there is an increasing amount of interest in the identification of tree species, provenances and genotypes capable of withstanding more arid conditions and tolerating drought stress. In the present review, we focus our attention on generally more susceptible conifers and describe the different strategies that plants adopt to respond to drought stress. We describe the main approaches taken in studies of conifer adaptations to low water availability, the advantages and limitations of each, and the main results obtained with each of these approaches in the recent years. Then we discuss how the increasing amount of morphological, physiological and genetic data may find practical applications in forest management, and in particular in next-generation breeding programs. Finally, we provide some recommendations for future research. In particular, we suggest extending future studies to a broader selection of species and genera, increasing the number of studies on adult plants, in particular those on gene expression, and distinguishing between the different types of drought stress that a tree can withstand during its life cycle. The integration of data coming from different disciplines and approaches will be a key factor to increasing our knowledge about a trait as complex as drought resistance. Full article
(This article belongs to the Special Issue Tree Genetics: Molecular and Functional Characterization of Genes)
Show Figures

Figure 1

25 pages, 3558 KiB  
Article
The Macroeconomic Implications of the Transition of the Forestry Industry towards Bioeconomy
by Alin Emanuel Artene, Lucian-Ionel Cioca, Aura Emanuela Domil, Larisa Ivascu, Valentin Burca and Oana Bogdan
Forests 2022, 13(11), 1961; https://doi.org/10.3390/f13111961 - 21 Nov 2022
Cited by 3 | Viewed by 2100
Abstract
In a global economic system where essential resources are limited, demand is increasing and environmental degradation is more pronounced, the only viable option to ensure sustainable development is to create an environmentally friendly and efficient economy in order to produce more economic value [...] Read more.
In a global economic system where essential resources are limited, demand is increasing and environmental degradation is more pronounced, the only viable option to ensure sustainable development is to create an environmentally friendly and efficient economy in order to produce more economic value with the same or fewer resources. The aim of this paper is to provide insight into the macroeconomic implications determined by the transition to a forest bioeconomy, with a focus on the impact on the national gross value added. More specifically, this analysis assesses the relationship between the potential of the macroeconomic value creation on the forestry industry and the measures of progress on the transition towards sustainable forest management and long-term economic growth. The analysis refers to a period between 2013 and 2019, summing-up 133 observations, data that were reported by Eurostat for 23 European Union members. We propose a model that describes a construct of the potential of the value creation that can be generated by each country included in our sample, translated into an efficiency score determined using the Data Envelopment Analysis(DEA)methodology. The results highlighted that the evolution of economic, social, and environmental (ESG) context positively impacted the efficiency score. This positive evolution in time was mainly driven by the higher awareness of governments, companies, and people on the need for a transition to sustainable economic growth and sustainable forest management. Furthermore, this study highlights that the transition to sustainable economic growth implies negative changes to the cost structure of the economies, which lead to higher operational costs and lower gross value added. Moreover, our study provides more insight, from an econometric methodology perspective, regarding the synergy effect as determined by the transformation of business models in the forestry sector towards sustainable forest management. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

11 pages, 2362 KiB  
Article
A Dynamical Model Based on the Chapman–Richards Growth Equation for Fitting Growth Curves for Four Pine Species in Northern Mexico
by Joao Marcelo Brazao Protazio, Marcos Almeida Souza, Jose Ciro Hernández-Díaz, Jonathan G. Escobar-Flores, Carlos Antonio López-Sánchez, Artemio Carrillo-Parra and Christian Wehenkel
Forests 2022, 13(11), 1866; https://doi.org/10.3390/f13111866 - 08 Nov 2022
Cited by 2 | Viewed by 2755
Abstract
Tree growth models describe the growth and development of forest ecosystems by considering how the dimensions of each simulated tree change within a certain time. These models have commonly used three growth parameters that describe various biological processes and behaviours, considering a sigmoid [...] Read more.
Tree growth models describe the growth and development of forest ecosystems by considering how the dimensions of each simulated tree change within a certain time. These models have commonly used three growth parameters that describe various biological processes and behaviours, considering a sigmoid growth function: (i) the upper asymptote (θ1), which is the maximal yield indicated by a final dimension (such as the maximal stem diameter); (ii) the maximum specific growth rate (θ2), defined as the slope of the tangent at the inflexion point; and (iii) the time elapsed (θ3), defined by the intercept of this tangent with the abscissas. To the best of our knowledge, however, associations between the three parameters have not been documented for tree species. Using diameter growth data from pine trees located in typical mixed and uneven-aged pine-oak forests in the Sierra Madre Occidental, Mexico, our study aims were: (i) to quantify the putative associations between the three growth parameters and (ii) to test the accuracy of a proposed Hybrid Chapman-Richards growth model based on associations between the three growth parameters, but including only one single parameter, relative to the widely used Generalized Algebraic Difference Approach (GADA) based on the Chapman-Richards, Lundqvist and Hossfeld models and the Hybrid Weibull Model. For statistical comparison of the quality of the models, we used the mean relative percentage error, root mean square error, coefficient of determination and Akaike information criterion to assess the quality of the fit. Although the quality of the five growth models studied was similar, from a practical point of view, the proposed Hybrid Chapman-Richards Model (CR-H) is easier to apply than the other models and has a lower data collection and computational cost. The parameter of CR-H can be easily obtained, by measuring just the dominant trees, especially in coniferous forests with irregular ages. Moreover, in contrast to the Chapman-Richards-GADA factor χ0, when θ2 is assumed to be site-specific, the CR-H has always a closed-form solution. Full article
(This article belongs to the Special Issue Spatial Distribution and Growth Dynamics of Tree Species)
Show Figures

Figure 1

16 pages, 2496 KiB  
Article
Linking Bacterial Rhizosphere Communities of Two Pioneer Species, Brachystegia boehmii and B. spiciformis, to the Ecological Processes of Miombo Woodlands
by Camilo B. S. António, Chinedu Obieze, João Jacinto, Ivete S. A. Maquia, Tara Massad, José C. Ramalho, Natasha S. Ribeiro, Cristina Máguas, Isabel Marques and Ana I. Ribeiro-Barros
Forests 2022, 13(11), 1840; https://doi.org/10.3390/f13111840 - 04 Nov 2022
Cited by 1 | Viewed by 1850
Abstract
Miombo is the most extensive ecosystem in southern Africa, being strongly driven by fire, climate, herbivory, and human activity. Soils are major regulating and supporting services, sequestering nearly 50% of the overall carbon and comprising a set of yet unexploited functions. In this [...] Read more.
Miombo is the most extensive ecosystem in southern Africa, being strongly driven by fire, climate, herbivory, and human activity. Soils are major regulating and supporting services, sequestering nearly 50% of the overall carbon and comprising a set of yet unexploited functions. In this study, we used next-generation Illumina sequencing to assess the patterns of bacterial soil diversity in two pioneer Miombo species, Brachystegia boehmii and Brachystegia spiciformis, along a fire gradient, in ferric lixisol and cambic arenosol soils. In total, 21 phyla, 51 classes, 98 orders, 193 families, and 520 genera were found, revealing a considerably high and multifunctional diversity with a strong potential for the production of bioactive compounds and nutrient mobilization. Four abundant genera characterized the core microbiome among plant species, type of soils, or fire regime: Streptomyces, Gaiella, Chthoniobacter, and Bacillus. Nevertheless, bacterial networks revealed a higher potential for mutualistic interactions and transmission of chemical signals among phylotypes from low fire frequency sites than those from high fire frequency sites. Ecological networks also revealed the negative effects of frequent fires on the complexity of microbial communities. Functional predictions revealed the core “house-keeping” metabolisms contributing to the high bacterial diversity found, suggesting its importance to the functionality of this ecosystem. Full article
Show Figures

Figure 1

20 pages, 4767 KiB  
Article
Water Retention Characteristics of Mineral Forest Soils in Finland: Impacts for Modeling Soil Moisture
by Samuli Launiainen, Antti-Jussi Kieloaho, Antti-Jussi Lindroos, Aura Salmivaara, Hannu Ilvesniemi and Juha Heiskanen
Forests 2022, 13(11), 1797; https://doi.org/10.3390/f13111797 - 29 Oct 2022
Cited by 2 | Viewed by 2447
Abstract
Soil hydraulic properties are central for soil quality and affect forest productivity and the impacts of climate change on forests. The water retention characteristics (WRC) of mineral forest soils in Finland are not well known, and practical tools to predict them for hydrological, [...] Read more.
Soil hydraulic properties are central for soil quality and affect forest productivity and the impacts of climate change on forests. The water retention characteristics (WRC) of mineral forest soils in Finland are not well known, and practical tools to predict them for hydrological, biogeochemical and forest models are lacking. We statistically analyzed mineral forest soils WRC from over 130 sites in Finland, focusing on the humus layer and main root zone (0–19 cm depth). We showed that mineral forest soils can be grouped into five WRC classes that are well predictable from soil bulk density, organic matter content and clay fraction. However, the majority of the forest soils are hydrologically rather similar. We found that neither topsoil maps nor any combination of open geospatial data were able to predict WRC. Thus, in the absence of site-specific soil data, parameterizing WRC as a function of forest site fertility type was proposed. We demonstrated the approach in soil moisture modeling at a small forest headwater catchment and showed that the soil moisture response to weather conditions is jointly affected by WRC, stand attributes and topography. We showed that drought risks are highest for dense mature forests at nutrient-poor, coarse-textured sites and lower for young stands on peatlands and lowland herb-rich sites with groundwater influence. The results improve hydrological predictions for Finnish forests, and the open dataset can contribute to the larger synthesis and development of boreal forest soil pedo-transfer functions. Full article
(This article belongs to the Special Issue Forest Management, Hydrology and Biogeochemistry Modelling)
Show Figures

Figure 1

11 pages, 4930 KiB  
Article
Forest Management, Barred Owls, and Wildfire in Northern Spotted Owl Territories
by Monica L. Bond, Tonja Y. Chi, Curtis M. Bradley and Dominick A. DellaSala
Forests 2022, 13(10), 1730; https://doi.org/10.3390/f13101730 - 20 Oct 2022
Cited by 2 | Viewed by 2745
Abstract
The Northern Spotted Owl (Strix occidentalis caurina) (NSO) was listed as federally threatened in 1992 due to widespread logging of its old-growth forest habitat. The NSO recovery plan in 2011 elevated competition with Barred Owls (Strix varia) (BO) and [...] Read more.
The Northern Spotted Owl (Strix occidentalis caurina) (NSO) was listed as federally threatened in 1992 due to widespread logging of its old-growth forest habitat. The NSO recovery plan in 2011 elevated competition with Barred Owls (Strix varia) (BO) and wildfires as primary NSO threats based partly on the assumption that severely burned forests were no longer NSO nesting and roosting habitat. We quantified amount of logging before and/or after wildfire and opportunistic detections of BOs within two home range scales (0.8 and 2.09 km) at 105 NSO sites that experienced severe wildfire from 2000–2017. Logging affected 87% of severely burned NSO sites, with BO recorded at 22% of burned-and-logged sites. Most (60%) severely burned NSO sites had evidence of logging both before and after fires while only 12% of severely burned sites had no logging or BO detections, indicating rarity of NSO territories subjected to severe fire without the compounding stressors of logging and invasive BOs. We recommend changes to NSO habitat modeling that assume nesting and roosting habitat is no longer viable if severely burned, and to the U.S. Fish and Wildlife Service’s practice of granting incidental take permits for NSOs in logging operations within severely burned owl sites. Full article
(This article belongs to the Special Issue The Extinction Crisis: How Bad, What Can Be Done?)
Show Figures

Figure 1

25 pages, 3125 KiB  
Article
Critical Aspects of People’s Participation in Community-Based Forest Management from the Case of Van Panchayat in Indian Himalaya
by Kazuyo Nagahama, Satoshi Tachibana and Randeep Rakwal
Forests 2022, 13(10), 1667; https://doi.org/10.3390/f13101667 - 11 Oct 2022
Cited by 1 | Viewed by 2283
Abstract
The importance of community-based forest management (hereafter, CBFM) is drawing attention to forest policies in finding solutions for deforestation and importantly to also understand the basis of people’s involvement. Focusing on the latter, the study presented here targets a regional CBFM (Van (forest) [...] Read more.
The importance of community-based forest management (hereafter, CBFM) is drawing attention to forest policies in finding solutions for deforestation and importantly to also understand the basis of people’s involvement. Focusing on the latter, the study presented here targets a regional CBFM (Van (forest) Panchayat; hereafter, VP) at the village level in Uttarakhand, India and looks into characteristics and critical aspect of people’s participation. Participatory observations were conducted in four selected villages, followed by structured interviews with 113 of a total of 131 households and semi-structured interviews with additional 28 female villagers. Some specific findings were (a) the VP members were mostly involved in forest-related activities, e.g., plantation, forest patrols, (b) a greater use of firewood by the management committee (hereafter, MC) where most members were from the higher-caste, and (c) most of the VP forest users were women; however, few women members were involved in decision-making, as they were mostly fixed members and they had not voluntarily chosen their positions. In the above context, it implied a limited participation of women in the decision-making process, i.e., no or little involvement in the management plan by the main VP forest users. Results concluded three stages of local peoples’ participation in forest management: “participation in activities”, “participation in decision-making” and “participation in management plan creation”. In summary, what our study shows is that participation by the VP members in CBFM activities was easy. The most difficult aspect related to the participation of female members was the decision-making process in each VPMC investigated. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

25 pages, 2759 KiB  
Review
Twelve Years into Genomic Selection in Forest Trees: Climbing the Slope of Enlightenment of Marker Assisted Tree Breeding
by Dario Grattapaglia
Forests 2022, 13(10), 1554; https://doi.org/10.3390/f13101554 - 23 Sep 2022
Cited by 24 | Viewed by 5008
Abstract
Twelve years have passed since the early outlooks of applying genomic selection (GS) to forest tree breeding, initially based on deterministic simulations, soon followed by empirical reports. Given its solid projections for causing a paradigm shift in tree breeding practice in the years [...] Read more.
Twelve years have passed since the early outlooks of applying genomic selection (GS) to forest tree breeding, initially based on deterministic simulations, soon followed by empirical reports. Given its solid projections for causing a paradigm shift in tree breeding practice in the years to come, GS went from a hot, somewhat hyped, topic to a fast-moving area of applied research and operational implementation worldwide. The hype cycle curve of emerging technologies introduced by Gartner Inc. in 1995, models the path a technology takes in terms of expectations of its value through time. Starting with a sudden and excessively positive “peak of inflated expectations” at its introduction, a technology that survives the “valley of disappointment” moves into maturity to climb the “slope of enlightenment”, to eventually reach the “plateau of productivity”. Following the pioneering steps of GS in animal breeding, we have surpassed the initial phases of the Gartner hype cycle and we are now climbing the slope of enlightenment towards a wide application of GS in forest tree breeding. By merging modern high-throughput DNA typing, time-proven quantitative genetics and mixed-model analysis, GS moved the focus away from the questionable concept of dissecting a complex, polygenic trait in its individual components for breeding advancement. Instead of trying to find the needle in a haystack, i.e., the “magic” gene in the complex and fluid genome, GS more efficiently and humbly “buys the whole haystack” of genomic effects to predict complex phenotypes, similarly to an exchange-traded fund that more efficiently “buys the whole market”. Tens of studies have now been published in forest trees showing that GS matches or surpasses the performance of phenotypic selection for growth and wood properties traits, enhancing the rate of genetic gain per unit time by increasing selection intensity, radically reducing generation interval and improving the accuracy of breeding values. Breeder-friendly and cost-effective SNP (single nucleotide polymorphism) genotyping platforms are now available for all mainstream plantation forest trees, but methods based on low-pass whole genome sequencing with imputation might further reduce genotyping costs. In this perspective, I provide answers to why GS will soon become the most efficient and effective way to carry out advanced tree breeding, and outline a simple pilot demonstration project that tree breeders can propose in their organization. While the fundamental properties of GS in tree breeding are now solidly established, strategic, logistics and financial aspects for the optimized adoption of GS are now the focus of attentions towards the plateau of productivity in the cycle, when this new breeding method will become fully established into routine tree improvement. Full article
Show Figures

Graphical abstract

15 pages, 6091 KiB  
Article
A Small Target Forest Fire Detection Model Based on YOLOv5 Improvement
by Zhenyang Xue, Haifeng Lin and Fang Wang
Forests 2022, 13(8), 1332; https://doi.org/10.3390/f13081332 - 20 Aug 2022
Cited by 58 | Viewed by 6227
Abstract
Forest fires are highly unpredictable and extremely destructive. Traditional methods of manual inspection, sensor-based detection, satellite remote sensing and computer vision detection all have their obvious limitations. Deep learning techniques can learn and adaptively extract features of forest fires. However, the small size [...] Read more.
Forest fires are highly unpredictable and extremely destructive. Traditional methods of manual inspection, sensor-based detection, satellite remote sensing and computer vision detection all have their obvious limitations. Deep learning techniques can learn and adaptively extract features of forest fires. However, the small size of the forest fire target in the long-range-captured forest fire images causes the model to fail to learn effective information. To solve this problem, we propose an improved forest fire small-target detection model based on YOLOv5. This model requires cameras as sensors for detecting forest fires in practical applications. First, we improved the Backbone layer of YOLOv5 and adjust the original Spatial Pyramid Pooling-Fast (SPPF) module of YOLOv5 to the Spatial Pyramid Pooling-Fast-Plus (SPPFP) module for a better focus on the global information of small forest fire targets. Then, we added the Convolutional Block Attention Module (CBAM) attention module to improve the identifiability of small forest fire targets. Second, the Neck layer of YOLOv5 was improved by adding a very-small-target detection layer and adjusting the Path Aggregation Network (PANet) to the Bi-directional Feature Pyramid Network (BiFPN). Finally, since the initial small-target forest fire dataset is a small sample dataset, a migration learning strategy was used for training. Experimental results on an initial small-target forest fire dataset produced by us show that the improved structure in this paper improves mAP@0.5 by 10.1%. This demonstrates that the performance of our proposed model has been effectively improved and has some application prospects. Full article
(This article belongs to the Special Issue Advances in Forest Fire and Other Detection Systems)
Show Figures

Figure 1

19 pages, 3239 KiB  
Article
Assessing Structural Complexity of Individual Scots Pine Trees by Comparing Terrestrial Laser Scanning and Photogrammetric Point Clouds
by Noora Tienaho, Tuomas Yrttimaa, Ville Kankare, Mikko Vastaranta, Ville Luoma, Eija Honkavaara, Niko Koivumäki, Saija Huuskonen, Jari Hynynen, Markus Holopainen, Juha Hyyppä and Ninni Saarinen
Forests 2022, 13(8), 1305; https://doi.org/10.3390/f13081305 - 16 Aug 2022
Cited by 3 | Viewed by 2498
Abstract
Structural complexity of trees is related to various ecological processes and ecosystem services. To support management for complexity, there is a need to assess the level of structural complexity objectively. The fractal-based box dimension (Db) provides a holistic measure of the [...] Read more.
Structural complexity of trees is related to various ecological processes and ecosystem services. To support management for complexity, there is a need to assess the level of structural complexity objectively. The fractal-based box dimension (Db) provides a holistic measure of the structural complexity of individual trees. This study aimed to compare the structural complexity of Scots pine (Pinus sylvestris L.) trees assessed with Db that was generated with point cloud data from terrestrial laser scanning (TLS) and aerial imagery acquired with an unmanned aerial vehicle (UAV). UAV imagery was converted into point clouds with structure from motion (SfM) and dense matching techniques. TLS and UAV measured Db-values were found to differ from each other significantly (TLS: 1.51 ± 0.11, UAV: 1.59 ± 0.15). UAV measured Db-values were 5% higher, and the range was wider (TLS: 0.81–1.81, UAV: 0.23–1.88). The divergence between TLS and UAV measurements was found to be explained by the differences in the number and distribution of the points and the differences in the estimated tree heights and number of boxes in the Db-method. The average point density was 15 times higher with TLS than with UAV (TLS: 494,000, UAV 32,000 points/tree), and TLS received more points below the midpoint of tree heights (65% below, 35% above), while UAV did the opposite (22% below, 78% above). Compared to the field measurements, UAV underestimated tree heights more than TLS (TLS: 34 cm, UAV: 54 cm), resulting in more boxes of Db-method being needed (4–64%, depending on the box size). Forest structure (two thinning intensities, three thinning types, and a control group) significantly affected the variation of both TLS and UAV measured Db-values. Still, the divergence between the two approaches remained in all treatments. However, TLS and UAV measured Db-values were consistent, and the correlation between them was 75%. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

15 pages, 3238 KiB  
Article
Effect of Wild Boar (Sus scrofa) Rooting on Soil Characteristics in a Deciduous Forest Affected by Sedimentation
by Natalia Pitta-Osses, Csaba Centeri, Ádám Fehér and Krisztián Katona
Forests 2022, 13(8), 1234; https://doi.org/10.3390/f13081234 - 03 Aug 2022
Cited by 4 | Viewed by 2684
Abstract
Forest soils are shaped by various processes, like runoff, erosion, sedimentation and bioturbation. A better understanding of the interactions between abiotic and biotic soil-forming processes, including wild boar (Sus scrofa) rooting (i.e., subsurface foraging), enhances adequate management of forest ecosystems. We [...] Read more.
Forest soils are shaped by various processes, like runoff, erosion, sedimentation and bioturbation. A better understanding of the interactions between abiotic and biotic soil-forming processes, including wild boar (Sus scrofa) rooting (i.e., subsurface foraging), enhances adequate management of forest ecosystems. We hypothesized that intense soil sedimentation influences wild boar rooting occurrence and that wild boars modify the outcome of the sedimentation process by redistributing soil layers. This study was conducted in the Babat Valley, Hungary. We estimated the availability of sedimented and non-sedimented patches and the occurrence of boar rooting. Surveys and samplings were done along transects, over consecutive months, where the impact of rooting on the physical and chemical characteristics of soil was measured by comparing them between control and rooted sites. We found that non-sedimented, steep areas were preferred areas for rooting. Sedimentation processes have a higher impact on soil chemical characteristics and soil layer composition than wild boar rooting. We conclude that mitigation of soil degradation can be more effective by reducing adverse abiotic processes rather than wild boar population control. Full article
Show Figures

Figure 1

16 pages, 1688 KiB  
Article
Recreational Visit to Suburban Forests during the COVID-19 Pandemic: A Case Study of Taiwan
by Yung-Chih Chen, Frank C. Tsai, Ming-Jer Tsai and Wan-Yu Liu
Forests 2022, 13(8), 1181; https://doi.org/10.3390/f13081181 - 25 Jul 2022
Cited by 3 | Viewed by 2094
Abstract
COVID-19 global pandemic has caused massive disruption of travel behaviors along with other aspects of human life, such as social distancing, staying at home, and avoiding crowds. People substituted outdoor activities for indoor activities, and the forest environment has become a popular alternative. [...] Read more.
COVID-19 global pandemic has caused massive disruption of travel behaviors along with other aspects of human life, such as social distancing, staying at home, and avoiding crowds. People substituted outdoor activities for indoor activities, and the forest environment has become a popular alternative. Taiwan has a high population density, but it had few COVID-19 confirmed cases in 2020 during the first wave of the COVID-19 pandemic. No forest areas have been closed due to the COVID-19 outbreak. In light of this generally increased demand for suburban forests for recreational uses, the current COVID-19 pandemic situation poses specific challenges regarding forest use, management, and policy. This study integrates visitation numbers of the popular forest recreation area and selects the unblocking index and social distancing index as the COVID-19 index to capture the impacts of forest recreation area on the COVID-19 outbreak in Taiwan. The results show both COVID-19 indices have high explanatory power for suburban forest visitation and both have a significant impact on the number of visitors. Although the number of visitors to suburban forests decreased during the COVID-19 pandemic alert, it bounced when the COVID-19 outbreak was under control. This study provides a brief overview of management implications for recreational visits during COVID-19. We posed an early warning to forest managers for greater revenge traveling post-COVID-19. Full article
(This article belongs to the Special Issue Nature-Based Tourism and Nature Conservation Activation by Tourism)
Show Figures

Figure 1

15 pages, 17579 KiB  
Article
A National Map of Snag Hazard to Reduce Risk to Wildland Fire Responders
by Karin L. Riley, Christopher D. O’Connor, Christopher J. Dunn, Jessica R. Haas, Richard D. Stratton and Benjamin Gannon
Forests 2022, 13(8), 1160; https://doi.org/10.3390/f13081160 - 22 Jul 2022
Cited by 2 | Viewed by 2062
Abstract
Falling trees and tree fragments are one of the top five causes of fatalities for wildland fire responders. In six out of ten recent years, at least one fatality from a tree strike has occurred while a fire responder was on duty, and [...] Read more.
Falling trees and tree fragments are one of the top five causes of fatalities for wildland fire responders. In six out of ten recent years, at least one fatality from a tree strike has occurred while a fire responder was on duty, and others were injured. We used TreeMap, a national map of forest characteristics, including individual tree height, diameter, and status (live or dead), to generate a map of snag hazard for forested areas of the continental U.S. at 30 × 30 m resolution. Snag hazard was classified into categories of low, moderate, high, or extreme based on snag density and height. Within-class accuracy was as high at 86%, suggesting that the Snag Hazard map can help wildland fire managers identify and avoid exposing fire responders to hazardous conditions. Accuracy was higher outside recently disturbed areas (88%) than inside (79%), perhaps reflecting strong spatial patterns and heterogeneity of mortality within disturbed areas. The Snag Hazard map is a frequently requested product from the Forest Service’sRisk Management Assistance Group. The goal of RMA is to provide analytics to decision makers and fire leadership to facilitate risk-informed decision-making to improve safety, effectiveness, and outcomes. We present a case study showing how the Snag Hazard 2016 map was used to inform fire responders during an active wildfire incident in California during the 2020 fire season. Full article
(This article belongs to the Special Issue Decision Support System Development of Wildland Fire)
Show Figures

Figure 1

23 pages, 3866 KiB  
Article
Culturable Endophytic Fungi in Fraxinus excelsior and Their Interactions with Hymenoscyphus fraxineus
by Marek Barta, Katarína Pastirčáková, Radovan Ostrovský, Marek Kobza and Miriam Kádasi Horáková
Forests 2022, 13(7), 1098; https://doi.org/10.3390/f13071098 - 13 Jul 2022
Cited by 6 | Viewed by 2316
Abstract
The species diversity of culturable endophytic fungi was studied in the leaves and twigs of symptomatic and asymptomatic Fraxinus excelsior trees. Endophytic mycobiota was dominated by Ascomycota species, with Pleosporales (44.17%) and Diaporthales (23.79%) endophytes being the most frequently observed in the tree [...] Read more.
The species diversity of culturable endophytic fungi was studied in the leaves and twigs of symptomatic and asymptomatic Fraxinus excelsior trees. Endophytic mycobiota was dominated by Ascomycota species, with Pleosporales (44.17%) and Diaporthales (23.79%) endophytes being the most frequently observed in the tree samples. The number of endophytic isolates and species richness varied depending on the sampling date (May and October) and tissue location. Of the 54 species identified based on ITS sequences, 14 were classified as dominant. The most frequently isolated species were Diaporthe eres, followed by Alternaria alternata, Dothiorella gregaria, and Fraxinicola fraxini. The inhibitory effect of 41 species (75 isolates) of endophytes on the radial growth of a Hymenoscyphus fraxineus isolate was studied under in vitro conditions (dual cultures). The radial growth of H. fraxineus was the most inhibited by four endophytic fungi from twigs (Fusarium lateritium, Didymella aliena, Didymella macrostoma, and Dothiorella gregaria). The inhibitory effect of the four isolates was also studied under in planta conditions. The isolates artificially inoculated into the trunks of ash trees reduced the length of necroses formed by H. fraxineus co-inoculated in the same trunks. This effect depended on the isolate, and the inhibition was most prominent only on trunks inoculated with F. lateritium and D. aliena. Although the total length of necrotic lesions formed by the H. fraxineus infection was shorter in the ash trunks co-inoculated with the endophytes, the difference was not significant. Full article
(This article belongs to the Special Issue Biodiversity and Ecology of Organisms Associated with Woody Plants)
Show Figures

Figure 1

14 pages, 1897 KiB  
Article
Psychological Well-Being and Nature Relatedness
by Olga Grabowska-Chenczke, Sandra Wajchman-Świtalska and Marcin Woźniak
Forests 2022, 13(7), 1048; https://doi.org/10.3390/f13071048 - 02 Jul 2022
Cited by 11 | Viewed by 5222
Abstract
The way people perceive contact with nature may impact their environmental attitudes and psychological well-being (WB). Nature relatedness (NR) refers to the affective, cognitive, and experiential aspects of individuals’ connection to nature. The aim of the presented research concentrates on the assessment of [...] Read more.
The way people perceive contact with nature may impact their environmental attitudes and psychological well-being (WB). Nature relatedness (NR) refers to the affective, cognitive, and experiential aspects of individuals’ connection to nature. The aim of the presented research concentrates on the assessment of the relationship between well-being, self-control and connectedness with the natural environment. The data was collected via online questionnaire between March and April 2022. In the study, we combined descriptive statistics with analysis of variance. We also quantitatively assessed correlations between major components of NR scale and psychological WB across men’ and women’ inquires. The results showed that there is a statistically significant relationship between the general index of NR and overall psychological WB. Furthermore, correlation between specific aspects of NR and WB subscales were also observed. These interactions are considerable among both men and women. We have also identified a major correlation between NR and self-control, which indicates the link between the way a person approaches oneself and natural environment. Finally, the analysis provides evidence that women are on average more related to nature, although the men may benefit more from this kind of relationship. Further gender differences could be observed in terms of nature-relatedness perspective component, general self-control, score and overall NR score These relationships are highly vital among men while irrelevant among women. Full article
(This article belongs to the Special Issue Forest and Other Natural Landscapes and Human Health)
Show Figures

Figure 1

17 pages, 5801 KiB  
Article
Towards Continuous Stem Water Content and Sap Flux Density Monitoring: IoT-Based Solution for Detecting Changes in Stem Water Dynamics
by Shahla Asgharinia, Martin Leberecht, Luca Belelli Marchesini, Nicolas Friess, Damiano Gianelle, Thomas Nauss, Lars Opgenoorth, Jim Yates and Riccardo Valentini
Forests 2022, 13(7), 1040; https://doi.org/10.3390/f13071040 - 01 Jul 2022
Cited by 7 | Viewed by 2840
Abstract
Taking advantage of novel IoT technologies, a new multifunctional device, the “TreeTalker”, was developed to monitor real-time ecophysical and biological parameters of individual trees, as well as climatic variables related to their surrounding environment, principally, air temperature and air relative humidity. Here, IoT [...] Read more.
Taking advantage of novel IoT technologies, a new multifunctional device, the “TreeTalker”, was developed to monitor real-time ecophysical and biological parameters of individual trees, as well as climatic variables related to their surrounding environment, principally, air temperature and air relative humidity. Here, IoT applied to plant ecophysiology and hydrology aims to unravel the vulnerability of trees to climatic stress via a single tree assessment at costs that enable massive deployment. We present the performance of the TreeTalker to elucidate the functional relation between the stem water content in trees and respective internal/external (stem hydraulic activity/abiotic) drivers. Continuous stem water content records are provided by an in-house-designed capacitance sensor, hosted in the reference probe of the TreeTalker sap flow measuring system, based on the transient thermal dissipation (TTD) method. In order to demonstrate the capability of the TreeTalker, a three-phase experimental process was performed including (1) sensor sensitivity analysis, (2) sensor calibration, and (3) long-term field data monitoring. A negative linear correlation was demonstrated under temperature sensitivity analysis, and for calibration, multiple linear regression was applied on harvested field samples, explaining the relationship between the sample volumetric water content and the sensor output signal. Furthermore, in a field scenario, TreeTalkers were mounted on adult Fagus sylvatica L. and Quercus petraea L. trees, from June 2020 to October 2021, in a beech-dominated forest near Marburg, Germany, where they continuously monitored sap flux density and stem volumetric water content (stem VWC). The results show that the range of stem VWC registered is highly influenced by the seasonal variability of climatic conditions. Depending on tree characteristics, edaphic and microclimatic conditions, variations in stem VWC and reactions to atmospheric events occurred. Low sapwood water storage occurs in response to drought, which illustrates the high dependency of trees on stem VWC under water stress. Consistent daily variations in stem VWC were also clearly detectable. Stem VWC constitutes a significant portion of daily transpiration (using TreeTalkers, up to 4% for the beech forest in our experimental site). The diurnal–nocturnal pattern of stem VWC and sap flow revealed an inverse relationship. Such a finding, still under investigation, may be explained by the importance of water recharge during the night, likely due to sapwood volume changes and lateral water distribution rather than by a vertical flow rate. Overall, TreeTalker demonstrated the potential of autonomous devices for monitoring sap density and relative stem VWC in the field of plant ecophysiology and hydrology. Full article
Show Figures

Figure 1

22 pages, 5376 KiB  
Article
Wood Preservation Practices and Future Outlook: Perspectives of Experts from Finland
by Jami Järvinen, Hüseyin Emre Ilgın and Markku Karjalainen
Forests 2022, 13(7), 1044; https://doi.org/10.3390/f13071044 - 01 Jul 2022
Cited by 14 | Viewed by 3237
Abstract
This paper examined wood preservation practices and outlook considering climate change from the perspective of Finnish experts through interviews. Key findings highlighted that: (1) pressure impregnated wood will continually evolve and secure its market, and it seems worthy of developing modified wood products, [...] Read more.
This paper examined wood preservation practices and outlook considering climate change from the perspective of Finnish experts through interviews. Key findings highlighted that: (1) pressure impregnated wood will continually evolve and secure its market, and it seems worthy of developing modified wood products, especially with the increasing attention to recyclability and lifecycle concepts; (2) demand for highly processed surface treatment products is high; (3) opportunities for more sustainable and environmentally friendly wood preservation methods, and thus production volume will increase in the future; (4) increasing mold problems in Finland due to climate change make surface treatment more important than ever; (5) demands for fire protection treatments are increasing, but fire testing fees and processes have slowed product development; (6) although the possibility of the spread of termites triggered by global warming to Finland seems to be a future scenario, this issue needs to be considered in products exported to hot countries; and (7) preservatives have become more critical to protect untreated wood from the adverse effects of climate change. It is believed that this study will help accelerate the transition of innovative and environmentally friendly wood treatments on the Finnish market, thereby promoting the use of wood in the building construction industry. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

46 pages, 4818 KiB  
Review
Review of Wood Modification and Wood Functionalization Technologies
by Samuel L. Zelinka, Michael Altgen, Lukas Emmerich, Nathanael Guigo, Tobias Keplinger, Maija Kymäläinen, Emil E. Thybring and Lisbeth G. Thygesen
Forests 2022, 13(7), 1004; https://doi.org/10.3390/f13071004 - 26 Jun 2022
Cited by 51 | Viewed by 8780
Abstract
Wood modifications are becoming popular as a way to enhance the performance of wood, either to make it more durable, improve the performance of wood, or give it new functionality as a multifunctional or smart material. While wood modifications have been examined since [...] Read more.
Wood modifications are becoming popular as a way to enhance the performance of wood, either to make it more durable, improve the performance of wood, or give it new functionality as a multifunctional or smart material. While wood modifications have been examined since the early 1900s, the topic has become a dominant area of study in wood science over the past decade. This review summarizes recent advances and provides future perspective on a selection of wood modifications, i.e., the methods that are currently commercialized (acetylation, furfurylation, and thermal modification), a rediscovered ancient practice (charring), a family of polymerization modifications that have so far made it to the pilot scale, and examples of novel wood-based functional materials explored at laboratory scale. Full article
(This article belongs to the Special Issue Reviews on Structure and Physical and Mechanical Properties of Wood)
Show Figures

Figure 1

31 pages, 4562 KiB  
Review
Recent Advances in Forest Insect Pests and Diseases Monitoring Using UAV-Based Data: A Systematic Review
by André Duarte, Nuno Borralho, Pedro Cabral and Mário Caetano
Forests 2022, 13(6), 911; https://doi.org/10.3390/f13060911 - 10 Jun 2022
Cited by 39 | Viewed by 5649
Abstract
Unmanned aerial vehicles (UAVs) are platforms that have been increasingly used over the last decade to collect data for forest insect pest and disease (FIPD) monitoring. These machines provide flexibility, cost efficiency, and a high temporal and spatial resolution of remotely sensed data. [...] Read more.
Unmanned aerial vehicles (UAVs) are platforms that have been increasingly used over the last decade to collect data for forest insect pest and disease (FIPD) monitoring. These machines provide flexibility, cost efficiency, and a high temporal and spatial resolution of remotely sensed data. The purpose of this review is to summarize recent contributions and to identify knowledge gaps in UAV remote sensing for FIPD monitoring. A systematic review was performed using the preferred reporting items for systematic reviews and meta-analysis (PRISMA) protocol. We reviewed the full text of 49 studies published between 2015 and 2021. The parameters examined were the taxonomic characteristics, the type of UAV and sensor, data collection and pre-processing, processing and analytical methods, and software used. We found that the number of papers on this topic has increased in recent years, with most being studies located in China and Europe. The main FIPDs studied were pine wilt disease (PWD) and bark beetles (BB) using UAV multirotor architectures. Among the sensor types, multispectral and red–green–blue (RGB) bands were preferred for the monitoring tasks. Regarding the analytical methods, random forest (RF) and deep learning (DL) classifiers were the most frequently applied in UAV imagery processing. This paper discusses the advantages and limitations associated with the use of UAVs and the processing methods for FIPDs, and research gaps and challenges are presented. Full article
(This article belongs to the Special Issue Advanced Applications of UAV Remote Sensing in Forest Structure)
Show Figures

Figure 1

8 pages, 1713 KiB  
Article
Invasion of Emerald Ash Borer Agrilus planipennis and Ash Dieback Pathogen Hymenoscyphus fraxineus in Ukraine—A Concerted Action
by Kateryna Davydenko, Yuriy Skrylnyk, Oleksandr Borysenko, Audrius Menkis, Natalia Vysotska, Valentyna Meshkova, Åke Olson, Malin Elfstrand and Rimvys Vasaitis
Forests 2022, 13(5), 789; https://doi.org/10.3390/f13050789 - 19 May 2022
Cited by 9 | Viewed by 3661
Abstract
Emerald Ash Borer (EAB), Agrilus planipennis, is a beetle that originates from East Asia. Upon invasion to North America in the early 2000s, it killed untold millions of ash trees. In European Russia, EAB was first detected in Moscow in 2003 and [...] Read more.
Emerald Ash Borer (EAB), Agrilus planipennis, is a beetle that originates from East Asia. Upon invasion to North America in the early 2000s, it killed untold millions of ash trees. In European Russia, EAB was first detected in Moscow in 2003 and proved to have the potential to also kill native European ash (Fraxinus excelsior). The beetle has since spread in all geographic directions, establishing itself in eastern Ukraine by 2019 and possessing potential for further westward spread towards the EU. Apart from the approaching EAB, F. excelsior is currently threatened by the dieback disease (ADB) caused by the invasive ascomycete fungus Hymenoscyphus fraxineus. The infestation by EAB combined with ADB infection is expected to be more lethal than either of them alone, yet the potential consequences are unknown. To date, eastern Ukraine represents the geographic area in which both invasions overlap, thus providing the opportunity for related investigations. The aims of the study were to investigate: (i) the EAB expansion range in Ukraine, (ii) the relative susceptibility of F. excelsior and American ash (Fraxinus pennsylvanica) to EAB and ADB, and (iii) the combined effect/impact on ash condition imposed by both the pest and disease in the area subjected to the invasion. The results have demonstrated that (i) the invasion of EAB is currently expanding both in terms of newly infested trees and invaded geographic area; (ii) F. excelsior is more resistant to EAB than F. pennsylvanica, while F. excelsior is more susceptible to ADB than F. pennsylvanica; and (iii) the infection by ADB is likely to predispose F. excelsior to the infestation by EAB. It was concluded that inventory and mapping of surviving F. excelsior, affected by both ADB and EAB, is necessary to acquire genetic resources for the work on strategic, long-term restoration of F. excelsior in devastated areas, thereby tackling a possible invasion of EAB to the EU. Full article
(This article belongs to the Special Issue Management of Forest Pests and Diseases)
Show Figures

Figure 1

13 pages, 2700 KiB  
Article
Comparing Geography and Severity of Managed Wildfires in California and the Southwest USA before and after the Implementation of the 2009 Policy Guidance
by Jose M. Iniguez, Alexander M. Evans, Sepideh Dadashi, Jesse D. Young, Marc D. Meyer, Andrea E. Thode, Shaula J. Hedwall, Sarah M. McCaffrey, Stephen D. Fillmore and Rachel Bean
Forests 2022, 13(5), 793; https://doi.org/10.3390/f13050793 - 19 May 2022
Cited by 5 | Viewed by 3828
Abstract
Managed wildfires, i.e., naturally ignited wildfires that are managed for resource benefits, have the potential to reduce fuel loads, minimize the effects of future wildfires, and restore critical natural processes across many forest landscapes. In the United States, the 2009 federal wildland fire [...] Read more.
Managed wildfires, i.e., naturally ignited wildfires that are managed for resource benefits, have the potential to reduce fuel loads, minimize the effects of future wildfires, and restore critical natural processes across many forest landscapes. In the United States, the 2009 federal wildland fire policy guidance was designed to provide greater flexibility in the use of managed wildfires, but the effects of this policy on wildfires in the western US are not yet fully understood. Our goal was to compare managed and full suppression wildfires and to also analyze the differences between managed wildfires across space (Arizona/New Mexico and California) and time (before and after 2009) using four metrics for each wildfire: (1) distance to wilderness, (2) distance to the wildland–urban interface (WUI), (3) the percentage of area burned with high severity, and (4) the number of land management agencies. Across the study area, we found that managed wildfires were significantly closer to wilderness areas, were farther from the WUI, had a lower percentage of area that was burned at high severity, and had fewer agencies involved in managing the fire compared to full suppression wildfires. In California, managed wildfires occurred closer to wilderness and had a larger percentage of high-severity burn area compared to those in the southwest US (Arizona and New Mexico). Within each region, however, there were no significant geographic differences between managed wildfires before and after the implementation of the 2009 policy guidance. Despite the greater flexibility of the 2009 policy guidance, the basic geographic properties of managed wildfires in these two regions have not changed. As the climate warms and droughts intensify, the use of managed wildfires will need to expand during favorable weather conditions in order to address the threat of large and uncharacteristic wildfires to people and ecosystems. Full article
Show Figures

Figure 1

24 pages, 5058 KiB  
Article
The Historical Complexity of Tree Height Growth Dynamic Associated with Climate Change in Western North America
by Yassine Messaoud, Anya Reid, Nadezhda M. Tchebakova, Jack A. Goldman and Annika Hofgaard
Forests 2022, 13(5), 738; https://doi.org/10.3390/f13050738 - 09 May 2022
Cited by 1 | Viewed by 2466
Abstract
The effect of climate on tree growth has received increased interest in the context of climate change. However, most studies have been limited geographically and with respect to species. Here, sixteen tree species of western North America were used to investigate the response [...] Read more.
The effect of climate on tree growth has received increased interest in the context of climate change. However, most studies have been limited geographically and with respect to species. Here, sixteen tree species of western North America were used to investigate the response of trees to climate change. Forest inventory data from 36,944 stands established between 1600 and 1968 throughout western North America were summarized. The height growth (top height at a breast-height age of 50 years) of healthy dominant and co-dominant trees was related to annual and summer temperatures, the annual and summer Palmer Drought Severity Indexes (PDSIs), and the tree establishment date (ED). Climate-induced height growth patterns were then tested to determine links to the spatial environment (geographic locations and soil properties), the species’ range (coastal, interior, or both), and traits (shade tolerance and leaf form). Analysis was performed using a linear mixed model (total species) and a general linear model (species scale). Climate change was globally beneficial, except for Alaska yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach), and growth patterns were magnified for coastal-ranged, high-shade-tolerant, and broadleaf species, and mostly at the northernmost extents of these species’ ranges. Nevertheless, growth patterns were more complex with respect to soil properties. A growth decline for some species was observed at higher latitudes and elevations and was possibly related to increased cloudiness, precipitation, or drought (in interior areas). These results highlight the spatio-temporal complexity of the growth response to recent global climate change. Full article
(This article belongs to the Special Issue Forest Species Distribution and Diversity under Climate Change)
Show Figures

Figure 1

20 pages, 4445 KiB  
Article
An Ecological-Economic Approach to Assess Impacts of the Expansion of Eucalyptus Plantations in Agroforest Landscapes of Northern Ethiopia
by Dagm Abate, José G. Borges, Susete Marques and Vladimir Bushenkov
Forests 2022, 13(5), 686; https://doi.org/10.3390/f13050686 - 28 Apr 2022
Cited by 2 | Viewed by 2819
Abstract
The conversion of fertile croplands to Eucalyptus woodlots in Ethiopian highlands, due to its business attractiveness to smallholders, raises concerns related to food production, water resources, carbon and other ecosystem services. This study was therefore designed to examine land allocation and plantation management [...] Read more.
The conversion of fertile croplands to Eucalyptus woodlots in Ethiopian highlands, due to its business attractiveness to smallholders, raises concerns related to food production, water resources, carbon and other ecosystem services. This study was therefore designed to examine land allocation and plantation management decisions. Our emphasis was on the analysis of tradeoffs between the economic gains obtained from harvesting Eucalyptus timber and food production, carbon and water use. For that purpose, we considered a 1987 ha agroforest landscape in the Amhara region, Northern Ethiopia. With a planning horizon covering nine one-year periods, we developed and used nine Model I single objective linear programming (LP) models, and analyzed tradeoffs between objectives (e.g., land expectation value (LEV), Carbon, volume of ending inventory (VolEI), crop production and water use) using an LP-based Pareto frontier approach. The study revealed that the objective of maximizing the total economic gain from the sale of Eucalyptus wood poles favored a complete conversion of the available cropland into Eucalyptus woodlots. To meet the minimum annual crop production/consumption/requirements of households in the study area, the land under Eucalyptus should be limited to 1772 ha, with a sequestration potential of 1.5 to 1.57 × 107 kg yr−1 of carbon in the aboveground biomass. However, this land cover limit should be decreased to 921 ha so as to limit the total annual water use (for biomass production) below the amount available from rainfall (11,000 m3 ha−1 yr−1). Moreover, the study highlighted that maximizing the harvested wood volume or LEV would come at the cost of a decreased aboveground carbon stock and volume of ending inventory and higher total water use. It also provided alternative optimal Pareto-front points, among which decision makers will be able to select their preferred targets. The current study also showed the potential for the application of Pareto frontier approaches to support the development of effective ecological/economic management strategies and the design of land use policies in an Ethiopian context. Full article
(This article belongs to the Special Issue Multiple-Use and Ecosystem Services of Forests)
Show Figures

Figure 1

15 pages, 834 KiB  
Review
Cultivation Potential and Uses of Paulownia Wood: A Review
by Marcin Jakubowski
Forests 2022, 13(5), 668; https://doi.org/10.3390/f13050668 - 26 Apr 2022
Cited by 22 | Viewed by 8570
Abstract
This review aimed to determine the current state of research on the growth conditions and use pertaining to paulownia wood, mainly in European countries where paulownia has been introduced only relatively recently. Several studies carried out on Paulownia hybrids have shown significant differences [...] Read more.
This review aimed to determine the current state of research on the growth conditions and use pertaining to paulownia wood, mainly in European countries where paulownia has been introduced only relatively recently. Several studies carried out on Paulownia hybrids have shown significant differences in the growth dynamics of individual clones in their response to local environmental and climatic conditions. For example, dry biomass production yields in the second year of cultivation range from 1.5 t ha−1 to as much as 14 t ha1. This diversity has manifested itself not only in growth characteristics but also in the properties of the wood and the possibilities for its use. Despite having clear similarities to the genus Paulownia, the cultivation of species and hybrids under different conditions has produced varying results. The best growing conditions for this wood (that make economic sense) are in the Middle East and Southern Europe. These regions have accumulated the most experience because of the earlier establishment of the crop. Today, paulownia cultivation is dominated by hybrids with selected traits that are propagated mainly in vitro. The most commonly planted hybrids include the clones in vitro 112, Cotevisa 2 and Shan Tong. The growth results and production capacity in central European countries are lower compared to Southern Europe. Experiments on paulownia cultivation are still relatively young, mainly consisting of replicating the cultivation of hybrids developed in Asia or Southern Europe. However, agronomic procedures are being developed and reactions to local climatic conditions are being studied. It is likely that, in the next few years, the profitability of growing paulownia in these regions will become apparent. Full article
(This article belongs to the Special Issue Wood as Biomechanical Structure)
19 pages, 5872 KiB  
Article
Mangrove Forests in Ecuador: A Two-Decade Analysis
by Ramiro Morocho, Ivonne González, Tiago Osorio Ferreira and Xosé Luis Otero
Forests 2022, 13(5), 656; https://doi.org/10.3390/f13050656 - 23 Apr 2022
Cited by 9 | Viewed by 3971
Abstract
Mangroves are one of the most important ecosystems especially due to the services they provide, but in contrast are one of the most threatened by human activities at a global level. In Ecuador, mangrove forests are currently fragile and threatened due to the [...] Read more.
Mangroves are one of the most important ecosystems especially due to the services they provide, but in contrast are one of the most threatened by human activities at a global level. In Ecuador, mangrove forests are currently fragile and threatened due to the great anthropic pressure, which has largely reduced the area they occupy. However, there is already evidence that certain actions are contributing both to their conservation and the recovery of the lost mangrove area. In this study, we assessed the multitemporal dynamics of changes in mangrove cover in four coastal provinces of the country over a period of 20 years (1998–2018) based on remote sensing data analyzed using GIS tools. Our results showed that the area affected by mangrove forest destruction reached its maximum during the 1998–2010 period, when 4.56% (194.57 km2) of the mangrove forest was lost. This situation especially affected the provinces of El Oro and Guayas. The main cause for the loss of mangrove cover was the expansion of shrimp farms, followed by agriculture and construction. However, a slight recovery of ~2.9% has been observed, although loss remains constant. Mangrove ecosystem conservation policies, mainly applied to zones within protected areas; the establishment of use and custody agreements and the halt of shrimp farm expansion; the development of mangrove forests on areas with sediment deposits; and natural mangrove recovery processes are key factors for mangrove restoration. These results suggest that it is possible to continue restoring mangrove cover and thus maintain some of the main ecosystem services they provide for the benefit of humans. Full article
(This article belongs to the Special Issue Mangrove Wetland Restoration and Rehabilitation)
Show Figures

Figure 1

23 pages, 11601 KiB  
Article
Seed Dispersal Models for Natural Regeneration: A Review and Prospects
by Moonil Kim, Seonghun Lee, Songhee Lee, Koong Yi, Hyung-Sub Kim, Sanghoon Chung, Junmo Chung, Hyun Seop Kim and Tae Kyung Yoon
Forests 2022, 13(5), 659; https://doi.org/10.3390/f13050659 - 23 Apr 2022
Cited by 14 | Viewed by 6366
Abstract
Natural regeneration in forest management, which relies on artificial planting, is considered a desirable alternative to reforestation. However, there are large uncertainties regarding the natural regeneration processes, such as seed production, seed dispersal, and seedling establishment. Among these processes, seed dispersal by wind [...] Read more.
Natural regeneration in forest management, which relies on artificial planting, is considered a desirable alternative to reforestation. However, there are large uncertainties regarding the natural regeneration processes, such as seed production, seed dispersal, and seedling establishment. Among these processes, seed dispersal by wind must be modeled accurately to minimize the risks of natural regeneration. This study aimed to (1) review the main mechanisms of seed dispersal models, their characteristics, and their applications and (2) suggest prospects for seed dispersal models to increase the predictability of natural regeneration. With improving computing and observation systems, the modeling technique for seed dispersal by wind has continued to progress steadily from a simple empirical model to the Eulerian-Lagrangian model. Mechanistic modeling approaches with a dispersal kernel have been widely used and have attempted to be directly incorporated into spatial models. Despite the rapid development of various wind-dispersal models, only a few studies have considered their application in natural regeneration. We identified the potential attributes of seed dispersal modeling that cause high uncertainties and poor simulation results in natural regeneration scenarios: topography, pre-processing of wind data, and various inherent complexities in seed dispersal processes. We suggest that seed dispersal models can be further improved by incorporating (1) seed abscission mechanisms by wind, (2) spatiotemporally complex wind environments, (3) collisions with the canopy or ground during seed flight, and (4) secondary dispersal, long-distance dispersal, and seed predation. Interdisciplinary research linking climatology, biophysics, and forestry would help improve the prediction of seed dispersal and its impact on natural regeneration. Full article
(This article belongs to the Special Issue Ecological Forestry and Restoration)
Show Figures

Figure 1

25 pages, 6741 KiB  
Article
Climate Adaptation, Drought Susceptibility, and Genomic-Informed Predictions of Future Climate Refugia for the Australian Forest Tree Eucalyptus globulus
by Jakob B. Butler, Peter A. Harrison, René E. Vaillancourt, Dorothy A. Steane, Josquin F. G. Tibbits and Brad M. Potts
Forests 2022, 13(4), 575; https://doi.org/10.3390/f13040575 - 05 Apr 2022
Cited by 3 | Viewed by 2922
Abstract
Understanding the capacity of forest tree species to adapt to climate change is of increasing importance for managing forest genetic resources. Through a genomics approach, we modelled spatial variation in climate adaptation within the Australian temperate forest tree Eucalyptus globulus, identified putative [...] Read more.
Understanding the capacity of forest tree species to adapt to climate change is of increasing importance for managing forest genetic resources. Through a genomics approach, we modelled spatial variation in climate adaptation within the Australian temperate forest tree Eucalyptus globulus, identified putative climate drivers of this genomic variation, and predicted locations of future climate refugia and populations at-risk of future maladaptation. Using 812,158 SNPs across 130 individuals from 30 populations (i.e., localities) spanning the species’ natural range, a gradientForest algorithm found 1177 SNPs associated with locality variation in home-site climate (climate-SNPs), putatively linking them to climate adaptation. Very few climate-SNPs were associated with population-level variation in drought susceptibility, signalling the multi-faceted nature and complexity of climate adaptation. Redundancy analysis (RDA) showed 24% of the climate-SNP variation could be explained by annual precipitation, isothermality, and maximum temperature of the warmest month. Spatial predictions of the RDA climate vectors associated with climate-SNPs allowed mapping of genomically informed climate selective surfaces across the species’ range under contemporary and projected future climates. These surfaces suggest over 50% of the current distribution of E. globulus will be outside the modelled adaptive range by 2070 and at risk of climate maladaptation. Such surfaces present a new integrated approach for natural resource managers to capture adaptive genetic variation and plan translocations in the face of climate change. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

24 pages, 4570 KiB  
Article
Detecting Coastal Wetland Degradation by Combining Remote Sensing and Hydrologic Modeling
by Keqi He, Yu Zhang, Wenhong Li, Ge Sun and Steve McNulty
Forests 2022, 13(3), 411; https://doi.org/10.3390/f13030411 - 03 Mar 2022
Cited by 7 | Viewed by 4030
Abstract
Sea-level rise and climate change stresses pose increasing threats to coastal wetlands that are vital to wildlife habitats, carbon sequestration, water supply, and other ecosystem services with global significance. However, existing studies are limited in individual sites, and large-scale mapping of coastal wetland [...] Read more.
Sea-level rise and climate change stresses pose increasing threats to coastal wetlands that are vital to wildlife habitats, carbon sequestration, water supply, and other ecosystem services with global significance. However, existing studies are limited in individual sites, and large-scale mapping of coastal wetland degradation patterns over a long period is rare. Our study developed a new framework to detect spatial and temporal patterns of coastal wetland degradation by analyzing fine-scale, long-term remotely sensed Normalized Difference Vegetation Index (NDVI) data. Then, this framework was tested to track the degradation of coastal wetlands at the Alligator River National Wildlife Refuge (ARNWR) in North Carolina, United States, during the period from 1995 to 2019. We identified six types of coastal wetland degradation in the study area. Most of the detected degradation was located within 2 km from the shoreline and occurred in the past five years. Further, we used a state-of-the-art coastal hydrologic model, PIHM-Wetland, to investigate key hydrologic processes/variables that control the coastal wetland degradation. The temporal and spatial distributions of simulated coastal flooding and saltwater intrusion confirmed the location and timing of wetland degradation detected by remote sensing. The combined method also quantified the possible critical thresholds of water tables for wetland degradation. The remote sensing–hydrologic model integrated scheme proposed in this study provides a new tool for detecting and understanding coastal wetland degradation mechanisms. Our study approach can also be extended to other coastal wetland regions to understand how climate change and sea-level rise impact wetland transformations. Full article
Show Figures

Figure 1

21 pages, 2592 KiB  
Article
Combustion of Aboveground Wood from Live Trees in Megafires, CA, USA
by Mark E. Harmon, Chad T. Hanson and Dominick A. DellaSala
Forests 2022, 13(3), 391; https://doi.org/10.3390/f13030391 - 27 Feb 2022
Cited by 8 | Viewed by 7269
Abstract
Biomass combustion is a major biogeochemical process, but uncertain in magnitude. We examined multiple levels of organization (twigs, branches, trees, stands, and landscapes) in large, severe forest fires to see how combustion rates for live aboveground woody parts varied with tree species, size, [...] Read more.
Biomass combustion is a major biogeochemical process, but uncertain in magnitude. We examined multiple levels of organization (twigs, branches, trees, stands, and landscapes) in large, severe forest fires to see how combustion rates for live aboveground woody parts varied with tree species, size, and fire severity in Ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and mixed conifer-dominated forests of the Sierra Nevada, California, USA. In high severity fire patches, most combustion loss was from branches < 2 cm diameter; in low to moderate severity patches, most was from bole charring. Combustion rates decreased as fire severity declined and with increasing tree size. Pinus species had little branch combustion, leading them to have ≈50% the combustion rate of other taxa. Combustion rates could be 100% for small branch segments and up to 57% for small tree aboveground woody biomass in high severity fire patches. However, combustion rates are very low overall at the stand (0.1%–3.2%) and landscape level (0.6%–1.8%), because large trees with low combustion rates comprise the majority of biomass, and high severity fire patches are less than half of the area burned. Our findings of low live wood combustion rates have important implications for policies related to wildfire emissions and forest management. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

19 pages, 3022 KiB  
Article
Fungal and Bacterial Communities in Tuber melanosporum Plantations from Northern Spain
by Celia Herrero de Aza, Sergio Armenteros, James McDermott, Stefano Mauceri, Jaime Olaizola, María Hernández-Rodríguez and Olaya Mediavilla
Forests 2022, 13(3), 385; https://doi.org/10.3390/f13030385 - 26 Feb 2022
Cited by 8 | Viewed by 4351
Abstract
Tuber melanosporum (Ascomycota, Pezizales) is an ectomycorrhizal fungus that produces highly appreciated hypogeous fruiting bodies called black truffles. The aim of this paper was to research the composition of ectomycorrhiza-associated fungal and bacterial communities in T. melanosporum oak plantations. Results of this paper [...] Read more.
Tuber melanosporum (Ascomycota, Pezizales) is an ectomycorrhizal fungus that produces highly appreciated hypogeous fruiting bodies called black truffles. The aim of this paper was to research the composition of ectomycorrhiza-associated fungal and bacterial communities in T. melanosporum oak plantations. Results of this paper showed the competitive effect of T. melanosporum on other fungal species, especially other mycorrhizal and pathogenic species. T. melanosporum was shown to be associated mainly with bacteria, some of them important for their properties as mycorrhizal helper bacteria. A dendrogram analysis of co-occurrence showed that T. melanosporum tended to co-occur with the following bacteria species: Singulisphaera limicola, Nannocistis excedens and Sporosarcina globispora. In addition, it was linked to fungal species such as Mortierella elongata, M. minutissima, Cryptococcus uzbekistanensis, C. chernovii and C. aerius. This study provides an exhaustive analysis of the diversity, structure and composition of fungal and bacterial communities associated with T. melanosporum to enhance understanding of the biology, composition and role of these communities in truffle plantations. Full article
(This article belongs to the Special Issue Forest Soil–Plant–Microorganisms Interactions)
Show Figures

Figure 1

27 pages, 3949 KiB  
Article
Experimental Characterization of Particulate and Gaseous Emissions from Biomass Burning of Six Mediterranean Species and Litter
by Enrica Nestola, Gregorio Sgrigna, Emanuele Pallozzi, Loredana Caccavale, Gabriele Guidolotti and Carlo Calfapietra
Forests 2022, 13(2), 322; https://doi.org/10.3390/f13020322 - 16 Feb 2022
Cited by 4 | Viewed by 3504
Abstract
Wildfires across the Mediterranean ecosystems are associated with safety concerns due to their emissions. The type of biomass determines the composition of particulate matter (PM) and gaseous compounds emitted during the fire event. This study investigated simulated fire events and analysed biomass samples [...] Read more.
Wildfires across the Mediterranean ecosystems are associated with safety concerns due to their emissions. The type of biomass determines the composition of particulate matter (PM) and gaseous compounds emitted during the fire event. This study investigated simulated fire events and analysed biomass samples of six Mediterranean species and litter in a combustion chamber. The main aims are the characterization of PM realized through scanning electron microscopy (SEM/EDX), the quantification of gaseous emissions through gas chromatography (GC-MS) and, consequently, identification of the species that are potentially more dangerous. For PM, three size fractions were considered (PM10, 2.5 and 1), and their chemical composition was used for particle source-apportionment. For gaseous components, the CO, CO2, benzene, toluene and xylene (BTXs) emitted were quantified. All samples were described and compared based on their peculiar particulate and gaseous emissions. The primary results show that (a) Acacia saligna was noticeable for the highest number of particles emitted and remarkable values of KCl; (b) tree species were related to the fine windblown particles as canopies intercept PM10 and reemit it during burning; (c) shrub species were related to the particles resuspended from soil; and (d) benzene and toluene were the dominant aromatic compounds emitted. Finally, the most dangerous species identified during burning were Acacia saligna, for the highest number of particles emitted, and Pistacia lentiscus for its high density of particles, the presence of anthropogenic markers, and the highest emissions of all gaseous compounds. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

27 pages, 1005 KiB  
Review
The Potential of Low-Cost 3D Imaging Technologies for Forestry Applications: Setting a Research Agenda for Low-Cost Remote Sensing Inventory Tasks
by James McGlade, Luke Wallace, Karin Reinke and Simon Jones
Forests 2022, 13(2), 204; https://doi.org/10.3390/f13020204 - 28 Jan 2022
Cited by 12 | Viewed by 3966
Abstract
Limitations with benchmark light detection and ranging (LiDAR) technologies in forestry have prompted the exploration of handheld or wearable low-cost 3D sensors (<2000 USD). These sensors are now being integrated into consumer devices, such as the Apple iPad Pro 2020. This study was [...] Read more.
Limitations with benchmark light detection and ranging (LiDAR) technologies in forestry have prompted the exploration of handheld or wearable low-cost 3D sensors (<2000 USD). These sensors are now being integrated into consumer devices, such as the Apple iPad Pro 2020. This study was aimed at determining future research recommendations to promote the adoption of terrestrial low-cost technologies within forest measurement tasks. We reviewed the current literature surrounding the application of low-cost 3D remote sensing (RS) technologies. We also surveyed forestry professionals to determine what inventory metrics were considered important and/or difficult to capture using conventional methods. The current research focus regarding inventory metrics captured by low-cost sensors aligns with the metrics identified as important by survey respondents. Based on the literature review and survey, a suite of research directions are proposed to democratise the access to and development of low-cost 3D for forestry: (1) the development of methods for integrating standalone colour and depth (RGB-D) sensors into handheld or wearable devices; (2) the development of a sensor-agnostic method for determining the optimal capture procedures with low-cost RS technologies in forestry settings; (3) the development of simultaneous localisation and mapping (SLAM) algorithms designed for forestry environments; and (4) the exploration of plot-scale forestry captures that utilise low-cost devices at both terrestrial and airborne scales. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

12 pages, 2357 KiB  
Article
Forest Structure and Composition Are Critical to Hurricane Mortality
by Jiaying Zhang, Tamara Heartsill-Scalley and Rafael L. Bras
Forests 2022, 13(2), 202; https://doi.org/10.3390/f13020202 - 28 Jan 2022
Cited by 9 | Viewed by 3008
Abstract
Hurricanes can cause severe damage to tropical forests. To understand the nature of hurricane impacts, we analyze and compare immediate effects from category-4 hurricane María in 2017 and category-3 hurricane Hugo in 1989 at Bisley Experimental Watersheds (BEW) in the Luquillo Experimental Forest, [...] Read more.
Hurricanes can cause severe damage to tropical forests. To understand the nature of hurricane impacts, we analyze and compare immediate effects from category-4 hurricane María in 2017 and category-3 hurricane Hugo in 1989 at Bisley Experimental Watersheds (BEW) in the Luquillo Experimental Forest, Puerto Rico. We show that hurricane María caused lower mortality than hurricane Hugo, even though hurricane María was a stronger event with higher sustained wind. The lower mortality was due to the combination of lower accumulated cyclone energy at the site and more wind-resistant forest structure and composition at the time of disturbance. We compare our study site with a nearby location that has the same forest type, Luquillo Forest Dynamics Plot (LFDP), and describe the similarities and differences of mortality and impact factors between the two sites during the two events. During hurricane Hugo, LFDP experienced much lower mortality than BEW, even though the accumulated cyclone energy at LFDP was higher. The difference in mortality was due to contrasting forest structure and composition of the two sites. Our results demonstrate that forest structure and composition at the time of the disturbance were more critical to hurricane-induced mortality at the two sites than accumulated cyclone energy. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

16 pages, 6018 KiB  
Article
Restoration Trajectories and Ecological Thresholds during Planted Urban Forest Successional Development
by K. J. Wallace, Bruce D. Clarkson and Bridgette Farnworth
Forests 2022, 13(2), 199; https://doi.org/10.3390/f13020199 - 27 Jan 2022
Cited by 4 | Viewed by 4828
Abstract
Successfully reconstructing functioning forest ecosystems from early-successional tree plantings is a long-term process that often lacks monitoring. Many projects lack observations of critical successional information, such as the restoration trajectory of key ecosystem attributes and ecological thresholds, which signal that management actions are [...] Read more.
Successfully reconstructing functioning forest ecosystems from early-successional tree plantings is a long-term process that often lacks monitoring. Many projects lack observations of critical successional information, such as the restoration trajectory of key ecosystem attributes and ecological thresholds, which signal that management actions are needed. Here, we present results from a 65 ha urban temperate rainforest restoration project in Aotearoa New Zealand, where trees have been planted annually on public retired pasture land, forming a 14 years chronosequence. In 25 plots (100 m2 each), we measured key ecosystem attributes that typically change during forest succession: native tree basal area, canopy openness, non-native herbaceous ground cover, leaf litter cover, ground fern cover, dead trees, and native tree seedling abundance and richness. We also monitored for the appearance of physiologically-sensitive plant guilds (moss, ferns, and epiphytes) that may be considered ecological indicators of succession. Linear regression models identified relationships between all but one of the key ecosystem attributes and forest age (years since planting). Further, using breakpoint analysis, we found that ecological thresholds occurred in many ecosystem attributes during their restoration trajectories: reduced canopy openness (99.8% to 3.4%; 9.6 years threshold), non-native herbaceous ground cover (100% to 0; 10.9 years threshold), leaf litter cover (0 to 95%; 10.8 years threshold), and increased tree deaths (0 to 4; 11 years threshold). Further, juvenile native plant recruitment increased (tree seedling abundance 0 to ~150 per 4 m2), tree seedling species richness (0 to 13 per 100 m2) and epiphytes colonized (0 to 3 individuals per 100 m2). These and other physiologically-sensitive plant guilds appeared around the 11 years mark, confirming their utility as ecological indicators during monitoring. Our results indicate that measurable, ecological thresholds occur during the restoration trajectories of ecosystem attributes, and they are predictable. If detected, these thresholds can inform project timelines and, along with use of ecological indicators, inform management interventions. Full article
(This article belongs to the Special Issue Urban Forestry and Ecological Restoration)
Show Figures

Graphical abstract

20 pages, 3331 KiB  
Article
Upward Treeline Shifts in Two Regions of Subarctic Russia Are Governed by Summer Thermal and Winter Snow Conditions
by Andrey A. Grigoriev, Yulia V. Shalaumova, Sergey O. Vyukhin, Dmitriy S. Balakin, Vladimir V. Kukarskikh, Arina A. Vyukhina, Jesús Julio Camarero and Pavel A. Moiseev
Forests 2022, 13(2), 174; https://doi.org/10.3390/f13020174 - 24 Jan 2022
Cited by 5 | Viewed by 3129
Abstract
Climate warming impacts on alpine treeline dynamics. However, we still lack robust assessments of the long-term impacts of climate on tree recruitment at the treeline, particularly in remote areas such as the subarctic regions of Russia subjected to different climate influences. We expected [...] Read more.
Climate warming impacts on alpine treeline dynamics. However, we still lack robust assessments of the long-term impacts of climate on tree recruitment at the treeline, particularly in remote areas such as the subarctic regions of Russia subjected to different climate influences. We expected that the treelines in two regions may have different features and dynamics patterns. We analyzed climate variables and assessed treeline dynamics by quantifying recruitment using the tree rings of ca. 7000 trees of four species (Betula pubescens Ehrh. ssp. tortuosa, Pinus sylvestris L., Picea abies Ledeb. ssp. obovata, Larix gmelinii Rupr.) along 14 altitudinal transects (series of study plots). We compared the Khibiny Massif (Kola Peninsula) and the western Putorana Plateau, subjected to oceanic and continental influences, respectively. In both regions, summers became warmer, and winters became snowier during the past century. At the low part of the treeline ecotone, tree recruitment has slowly increased since the mid-18th century at the Putorana Plateau and the mid-19th century at the Khibiny but accelerated in the early 20th century at both regions and reached a maximum peak in the second half of the past century. Treeline encroachment intensified in the 1930s at the Khibiny and the 1950s at the Putorana Plateau. Trees encroached in the tundra leading to upward treeline shifts in the late 20th century. The slope exposure affected the rates of treeline shift with higher upward advances on southern-oriented slopes. Tree recruitment and early-winter precipitation were positively correlated. The differences in species composition, treeline altitude and influences of slope orientation on treeline dynamics can be explained primarily by differences in the degree of continentality. The abundance of saplings in both regions allows the future encroachment of trees into tundra and further treeline upward shifts to be forecast. Full article
Show Figures

Figure 1

14 pages, 1747 KiB  
Article
Development and Validation of a 36K SNP Array for Radiata Pine (Pinus radiata D.Don)
by Natalie Graham, Emily Telfer, Tancred Frickey, Gancho Slavov, Ahmed Ismael, Jaroslav Klápště and Heidi Dungey
Forests 2022, 13(2), 176; https://doi.org/10.3390/f13020176 - 24 Jan 2022
Cited by 10 | Viewed by 3357
Abstract
Radiata pine (Pinus radiata D.Don) is one of the world’s most domesticated pines and a key economic species in New Zealand. Thus, the development of genomic resources for radiata pine has been a high priority for both research and commercial breeding. Leveraging [...] Read more.
Radiata pine (Pinus radiata D.Don) is one of the world’s most domesticated pines and a key economic species in New Zealand. Thus, the development of genomic resources for radiata pine has been a high priority for both research and commercial breeding. Leveraging off a previously developed exome capture panel, we tested the performance of 438,744 single nucleotide polymorphisms (SNPs) on a screening array (NZPRAD01) and then selected 36,285 SNPs for a final genotyping array (NZPRAD02). These SNPs aligned to 15,372 scaffolds from the Pinus taeda L. v. 1.01e assembly, and 20,039 contigs from the radiata pine transcriptome assembly. The genotyping array was tested on more than 8000 samples, including material from archival progenitors, current breeding trials, nursery material, clonal lines, and material from Australia. Our analyses indicate that the array is performing well, with sample call rates greater than 98% and a sample reproducibility of 99.9%. Genotyping in two linkage mapping families indicated that the SNPs are well distributed across the 12 linkage groups. Using genotypic data from this array, we were also able to differentiate representatives of the five recognized provenances of radiata pine, Año Nuevo, Monterey, Cambria, Cedros and Guadalupe. Furthermore, principal component analysis of genotyped trees revealed clear patterns of population structure, with the primary axis of variation driven by provenance ancestry and the secondary axis reflecting breeding activities. This represents the first commercial use of genomics in a radiata pine breeding program. Full article
Show Figures

Figure 1

15 pages, 1303 KiB  
Review
Impacts of Climate Change on Blue Carbon Stocks and Fluxes in Mangrove Forests
by Daniel Michael Alongi
Forests 2022, 13(2), 149; https://doi.org/10.3390/f13020149 - 19 Jan 2022
Cited by 30 | Viewed by 7608
Abstract
Mangroves store blue carbon (693 Mg CORG ha−1) disproportionate to their small area, mainly (74%) in deep soil horizons. Global stock estimates for mangroves (5.23–8.63 Pg CORG) are equivalent to 15–24% of those in the tropical coastal ocean. [...] Read more.
Mangroves store blue carbon (693 Mg CORG ha−1) disproportionate to their small area, mainly (74%) in deep soil horizons. Global stock estimates for mangroves (5.23–8.63 Pg CORG) are equivalent to 15–24% of those in the tropical coastal ocean. Carbon burial in mangrove soils averages 184 g CORG m−2 a−1 with global estimates (9.6–15.8 Tg CORG a−1) reflecting their importance in carbon sequestration. Extreme weather events result in carbon stock losses and declines in carbon cycling and export. Increased frequency and ferocity of storms result in increasingly negative responses with increasing strength. Increasing temperatures result in increases in carbon stocks and cycling up to a critical threshold, while positive/negative responses will likely result from increases/decreases in rainfall. Forest responses to sea-level rise (SLR) and rising CO2 are species- and site-specific and complex due to interactive effects with other drivers (e.g., temperature, salinity). The SLR critical threshold is ≈ 6 mm a−1 indicating survival only under very low-low CO2 emissions scenarios. Under low coastal squeeze, landward migration could result in sequestration and CO2 losses of 1.5 and −1.1 Pg C with net stock gains and losses (−0.3 to +0.5 Pg C) and CO2 losses (−3.4 Pg) under high coastal squeeze. Full article
Show Figures

Figure 1

18 pages, 2388 KiB  
Review
Structural Stability of Urban Trees Using Visual and Instrumental Techniques: A Review
by Camila S. F. Linhares, Raquel Gonçalves, Luis M. Martins and Sofia Knapic
Forests 2021, 12(12), 1752; https://doi.org/10.3390/f12121752 - 11 Dec 2021
Cited by 12 | Viewed by 4145
Abstract
This review focuses on tree health assessment in urban forest, specifically on the methodologies commonly used to detect levels, dimensions, and location of wood deterioration. The acknowledged benefits to the urban forestry area from the application of assessment techniques are also addressed. A [...] Read more.
This review focuses on tree health assessment in urban forest, specifically on the methodologies commonly used to detect levels, dimensions, and location of wood deterioration. The acknowledged benefits to the urban forestry area from the application of assessment techniques are also addressed. A summary is presented of the different methodologies, such as visual analyses, acoustic tomography, and digital wood inspection drill, with the underlined importance of the biodeterioration of wood by fungi and termites. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

25 pages, 6054 KiB  
Article
Simulating the Effects of Thinning Events on Forest Growth and Water Services Asks for Daily Analysis of Underlying Processes
by Rasoul Yousefpour and Marc Djahangard
Forests 2021, 12(12), 1729; https://doi.org/10.3390/f12121729 - 08 Dec 2021
Cited by 2 | Viewed by 2822
Abstract
Forest growth function and water cycle are affected by climatic conditions, making climate-sensitive models, e.g., process-based, crucial to the simulation of dynamics of forest and water interactions. A rewarded and widely applied model for forest growth analysis and management, 3PG, is a physiological [...] Read more.
Forest growth function and water cycle are affected by climatic conditions, making climate-sensitive models, e.g., process-based, crucial to the simulation of dynamics of forest and water interactions. A rewarded and widely applied model for forest growth analysis and management, 3PG, is a physiological process-based forest stand model that predicts growth. However, the model runs on a monthly basis and uses a simple soil-water module. Therefore, we downscale the temporal resolution to operate daily, improve the growth modifiers and add a responsive hydrological sub-model to represents the key features of a snow routine, a detailed soil-water model and a separated soil-evaporation calculation. Thereby, we aim to more precisely analyze the effects of thinning events on forest productivity and water services. The novel calibrated 3PG-Hydro model was validated in Norway spruce sites in Southern Germany and confirmed improvements in building forest processes (evapotranspiration) and predicting forest growth (biomass, diameter, volume), as well as water processes and services (water recharge). The model is more sensitive to forest management measures and variability in soil water by (1) individualization of each site’s soil, (2) simulation of percolation and runoff processes, (3) separation of transpiration and evapotranspiration to predict good evapotranspiration even if high thinning is applied, (4) calculation in daily time steps to better simulate variation and especially drought and (5) an improved soil-water modifier. The new 3PG-Hydro model can, in general, better simulate forest growth (stand volume, average diameter), as well as details of soil and water processes after thinning events. The novel developments add complexity to the model, but the additions are crucial and relevant, and the model remains an easy-to-handle forest simulation tool. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

25 pages, 15548 KiB  
Article
The Contribution of Trees Outside of Forests to Landscape Carbon and Climate Change Mitigation in West Africa
by David L. Skole, Jay H. Samek, Moussa Dieng and Cheikh Mbow
Forests 2021, 12(12), 1652; https://doi.org/10.3390/f12121652 - 28 Nov 2021
Cited by 6 | Viewed by 3350
Abstract
While closed canopy forests have been an important focal point for land cover change monitoring and climate change mitigation, less consideration has been given to methods for large scale measurements of trees outside of forests. Trees outside of forests are an important but [...] Read more.
While closed canopy forests have been an important focal point for land cover change monitoring and climate change mitigation, less consideration has been given to methods for large scale measurements of trees outside of forests. Trees outside of forests are an important but often overlooked natural resource throughout sub-Saharan Africa, providing benefits for livelihoods as well as climate change mitigation and adaptation. In this study, the development of an individual tree cover map using very high-resolution remote sensing and a comparison with a new automated machine learning mapping product revealed an important contribution of trees outside of forests to landscape tree cover and carbon stocks in a region where trees outside of forests are important components of livelihood systems. Here, we test and demonstrate the use of allometric scaling from remote sensing crown area to provide estimates of landscape-scale carbon stocks. Prominent biomass and carbon maps from global-scale remote sensing greatly underestimate the “invisible” carbon in these sparse tree-based systems. The measurement of tree cover and carbon in these landscapes has important application in climate change mitigation and adaptation policies. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Graphical abstract

17 pages, 1961 KiB  
Article
Effects of Early, Small-Scale Nitrogen Addition on Germination and Early Growth of Scots Pine (Pinus sylvestris) Seedlings and on the Recruitment of the Root-Associated Fungal Community
by David Castro, Andreas N. Schneider, Mattias Holmlund, Torgny Näsholm, Nathaniel R. Street and Vaughan Hurry
Forests 2021, 12(11), 1589; https://doi.org/10.3390/f12111589 - 18 Nov 2021
Cited by 3 | Viewed by 2648
Abstract
Scots pine (Pinus sylvestris L.) is one of the most economically important species to the Swedish forest industry, and cost-efficient planting methods are needed to ensure successful reestablishment after harvesting forest stands. While the majority of clear-cuts are replanted with pre-grown seedlings, [...] Read more.
Scots pine (Pinus sylvestris L.) is one of the most economically important species to the Swedish forest industry, and cost-efficient planting methods are needed to ensure successful reestablishment after harvesting forest stands. While the majority of clear-cuts are replanted with pre-grown seedlings, direct seeding can be a viable option on poorer sites. Organic fertilizer has been shown to improve planted seedling establishment, but the effect on direct seeding is less well known. Therefore, at a scarified (disc trencher harrowed) clear-cut site in northern Sweden, we evaluated the effect of early, small-scale nitrogen addition on establishment and early recruitment of fungi from the disturbed soil community by site-planted Scots pine seeds. Individual seeds were planted using a moisture retaining germination matrix containing 10 mg nitrogen in the form of either arginine phosphate or ammonium nitrate. After one growing season, we collected seedlings and assessed the fungal community of seedling roots and the surrounding soil. Our results demonstrate that early, small-scale N addition increases seedling survival and needle carbon content, that there is rapid recruitment of ectomycorrhizal fungi to the roots and rhizosphere of the young seedlings and that this rapid recruitment was modified but not prevented by N addition. Full article
(This article belongs to the Special Issue Tree Host – Microbial Interactions)
Show Figures

Figure 1

19 pages, 3655 KiB  
Article
Determination of Riparian Vegetation Biomass from an Unmanned Aerial Vehicle (UAV)
by Alessandro Matese, Andrea Berton, Valentina Chiarello, Riccardo Dainelli, Carla Nati, Laura Pastonchi, Piero Toscano and Salvatore Filippo Di Gennaro
Forests 2021, 12(11), 1566; https://doi.org/10.3390/f12111566 - 12 Nov 2021
Cited by 4 | Viewed by 2549
Abstract
The need to rely on accurate information about the wood biomass available in riparian zones under management, inspired the land reclamation authority of southern Tuscany to develop a research based on the new remote sensing technologies. With this aim, a series of unmanned [...] Read more.
The need to rely on accurate information about the wood biomass available in riparian zones under management, inspired the land reclamation authority of southern Tuscany to develop a research based on the new remote sensing technologies. With this aim, a series of unmanned aerial vehicle (UAV) flight campaigns flanked by ground-data collection were carried out on 5 zones and 15 stream reaches belonging to 3 rivers and 7 creeks, being representative of the whole area under treatment, characterized by a heterogeneous spatial distribution of trees and shrubs of different sizes and ages, whose species’ mix is typical of this climatic belt. A careful preliminary analysis of the zones under investigation, based on the available local orthophotos, followed by a quick pilot inspection of the riverbank segments selected for trials, was crucial for choosing the test sites. The analysis of a dataset composed of both measured and remotely sensed acquired parameters allowed a system of four allometric models to be built for estimating the trees’ biomass. All four developed models showed good results, with the highest correlation found in the fourth model (Model 4, R2 = 0.63), which also presented the lowest RMSE (0.09 Mg). The biomass values calculated with Model 4 were in line with those provided by the land reclamation authority for selective thinning, ranging from 38.9 to 70.9 Mg ha−1. Conversely, Model 2 widely overestimated the actual data, while Model 1 and Model 3 offered intermediate results. The proposed methodology based on these new technologies enabled an accurate estimation of the wood biomass in a riverbank environment, overcoming the limits of a traditional ground monitoring and improving management strategies to benefit the river system and its ecosystems. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

23 pages, 10998 KiB  
Article
GIS-Based Aesthetic Appraisal of Short-Range Viewsheds of Coastal Dune and Forest Landscapes
by Arvydas Urbis, Ramūnas Povilanskas, Egidijus Jurkus, Julius Taminskas and Domantas Urbis
Forests 2021, 12(11), 1534; https://doi.org/10.3390/f12111534 - 07 Nov 2021
Cited by 5 | Viewed by 2709
Abstract
This paper demonstrates the possibilities of a Geographical Information System (GIS) for investigating and explicating the spatial variation of the short-range viewshed aesthetic appeal in a World Heritage coastal dune and forest area. The study pursues the following objectives: (1) develop and trial [...] Read more.
This paper demonstrates the possibilities of a Geographical Information System (GIS) for investigating and explicating the spatial variation of the short-range viewshed aesthetic appeal in a World Heritage coastal dune and forest area. The study pursues the following objectives: (1) develop and trial a GIS-based algorithm for computing the Aesthetic Appeal Index for a Short-Range Viewshed (ǣ); (2) deliver an output map showing the spatial variation of the computed ǣ values in the target territory and distribution of the zones with high scenic quality and potential aesthetic ecosystem services (PAES); and (3) assess management alternatives in zones with high PAES and high conservation value. This study combines two key innovative aspects. First, it integrates an objective digital map of habitats with subjective scenic preferences of coastal forest and dune landscapes based on psychophysical and cognitive perceptions of scenic beauty. Second, it applies a GIS-based algorithm to translate subjective scenic preferences to an output map of ǣ. The study’s main conclusion is that the combined aesthetic appraisal of the immediate and foreground viewshed of coastal forests and dunes, by applying a specially created GIS algorithm, allows an assessment of the scenic quality of this landscape reliably in statistical terms. Full article
(This article belongs to the Special Issue Forests Tourism and Recreation)
Show Figures

Graphical abstract

33 pages, 4052 KiB  
Article
Combining Landscape Fire Simulations with Stand-Level Growth Simulations to Assist Landowners in Building Wildfire-Resilient Landscapes
by Susana Barreiro, Akli Benali, João C. P. Rua, Margarida Tomé, José L. Santos and José M. C. Pereira
Forests 2021, 12(11), 1498; https://doi.org/10.3390/f12111498 - 29 Oct 2021
Cited by 6 | Viewed by 2252
Abstract
The wildfire regime in Portugal has been responsible for millions of hectares of burnt area, and Alvares parish is no exception. In 2017, a severe wildfire burnt 60% of its area. Land abandonment has been increasing since the mid 20th century, and a [...] Read more.
The wildfire regime in Portugal has been responsible for millions of hectares of burnt area, and Alvares parish is no exception. In 2017, a severe wildfire burnt 60% of its area. Land abandonment has been increasing since the mid 20th century, and a large fraction of the forest area belongs to quasi-absent landowners. This has given rise to large, almost unbroken expanses of undermanaged forests that, in combination with rugged topography, originates a landscape prone to large, intense wildfires. Thus, a change in landscape composition and structure capable of reducing flammability and promoting fuel discontinuity is urgently needed. A fire spread simulator and a forest growth simulator were combined to show the impact of improving management at landscape level. It was assumed that the probability of large wildfires may be reduced by setting aside forest area for the implementation of a fuel break network (FBN) and increasing the area under sustainable forest management. Three levels of management intensity were simulated by restricting the area of Quasi-absent non-industrial owners to 34.5%, 20.1%, and 8.5% of the Alvares forest area, in favor of increasing the area of active and semi-active non-industrial owners (current, moderate, and high management scenarios). Different FBN extents, representing four levels of network implementation priority were combined with the management levels, resulting in 12 scenarios. To evaluate the impact of fire, simulations assuming no-fire, no-FBN, and current management intensity were performed, whereas the impact of operation costs was assessed assuming reduced costs for silvicultural operations. Per hectare simulations were then scaled up to the parish level and volume harvested and net present values were used to compare the management improvement scenarios. Results showed that fire has major repercussions on forest income, but these impacts can be minimized. Intensifying forest management and implementing the first priority FBN segments originated substantial improvements in financial outcome from timber production, close to those obtained for the full FBN implementation. Results also evidenced contrasting contributions from industrial and non-industrial owners with the later evidencing unbalanced cash-flows derailing the possibility for interesting forest incomes. The coupling of fire and forest growth simulations can be an interesting approach to assess the impact of different management and policy scenarios and inform policies. Full article
(This article belongs to the Special Issue Engaging Land Owners to Reduce Wildfire Risk at Landscape Level)
Show Figures

Figure 1

15 pages, 1198 KiB  
Article
Fragmentation and Coordination of REDD+ Finance under the Paris Agreement Regime
by Dong-hwan Kim, Do-hun Kim, Hyun Seok Kim and Raehyun Kim
Forests 2021, 12(11), 1452; https://doi.org/10.3390/f12111452 - 25 Oct 2021
Cited by 3 | Viewed by 1756
Abstract
Under the Kyoto Protocol regime, various forms of financial support have been committed to helping the implementation of reducing emissions from deforestation and forest degradation, as well as fostering conservation, the sustainable management of forests, and the enhancement of forest carbon stocks (REDD+) [...] Read more.
Under the Kyoto Protocol regime, various forms of financial support have been committed to helping the implementation of reducing emissions from deforestation and forest degradation, as well as fostering conservation, the sustainable management of forests, and the enhancement of forest carbon stocks (REDD+) in developing countries. We analyzed the fragmentation of REDD+ finance and suggested methods for its coordination under the Paris Agreement regime. The fragmentation of REDD+ finance was observed, but it was lower than that of general official development assistance (ODA). However, we found that the trend of fragmentation in REDD+ financing is different from that of general ODA, with a few major donors occupying a large portion of the total size of committed REDD+ finance. Thus, it may not be appropriate to consider the fragmentation of REDD+ finance merely as an obstacle that needs to be decreased. Still, the total amount of REDD+ finance should be increased and adjusted for various donor–recipient relationships, in consideration of the REDD+ finance options in the Paris Agreement. Some REDD+ countries have made progress in national REDD+ and accomplished emission reductions. However, REDD+ finance needs to be stratified considering the progress of national REDD+. For such forms of cooperation, an information-sharing and monitoring system that collects information on ongoing REDD+ cooperation, the commitment and expenditure of REDD+ finance, and the support needs of REDD+ countries at a global level should be established. Multilateral organizations need to provide safeguarding functions for developing countries that are isolated from bilateral REDD+ finance. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

17 pages, 5586 KiB  
Article
Impact of Gene Flow and Introgression on the Range Wide Genetic Structure of Quercus robur (L.) in Europe
by Bernd Degen, Yulai Yanbaev, Malte Mader, Ruslan Ianbaev, Svetlana Bakhtina, Hilke Schroeder and Celine Blanc-Jolivet
Forests 2021, 12(10), 1425; https://doi.org/10.3390/f12101425 - 19 Oct 2021
Cited by 15 | Viewed by 3242
Abstract
As for most other temperate broadleaved tree species, large-scale genetic inventories of pedunculate oak (Quercus robur L.) have focused on the plastidial genome, which showed the impact of post-glacial recolonization and manmade seed transfer. However, how have pollen mediated gene flow and [...] Read more.
As for most other temperate broadleaved tree species, large-scale genetic inventories of pedunculate oak (Quercus robur L.) have focused on the plastidial genome, which showed the impact of post-glacial recolonization and manmade seed transfer. However, how have pollen mediated gene flow and introgression impacted the large-scale genetic structure? To answer these questions, we did a genetic inventory on 1970 pedunculate oak trees from 197 locations in 13 European countries. All samples were screened with a targeted sequencing approach on a set of 381 polymorphic loci (356 nuclear SNPs, 3 nuclear InDels, 17 chloroplast SNPs, and 5 mitochondrial SNPs). In a former analysis with additional 1763 putative Quercus petraea trees screened for the same gene markers we obtained estimates on the species admixture of all pedunculate oak trees. We identified 13 plastidial haplotypes, which showed a strong spatial pattern with a highly significant autocorrelation up to a range of 1250 km. Significant spatial genetic structure up to 1250 km was also observed at the nuclear loci. However, the differentiation at the nuclear gene markers was much lower compared to the organelle gene markers. The matrix of genetic distances among locations was partially correlated between nuclear and organelle genomes. Bayesian clustering analysis revealed the best fit to the data for a sub-division into two gene pools. One gene pool is dominating the west and the other is the most abundant in the east. The western gene pool was significantly influenced by introgression from Quercus petraea in the past. In Germany, we identified a contact zone of pedunculate oaks with different introgression intensity, likely resulting from different historical levels of introgression in glacial refugia or during postglacial recolonization. The main directions of postglacial recolonization were south to north and south to northwest in West and Central Europe, and for the eastern haplotypes also east to west in Central Europe. By contrast, the pollen mediated gene flow and introgression from Q. petraea modified the large-scale structure at the nuclear gene markers with significant west–east direction. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

9 pages, 1263 KiB  
Article
The Contribution of Roots, Mycorrhizal Hyphae, and Soil Free-Living Microbes to Soil Respiration and Its Temperature Sensitivity in a Larch Forest
by Naoki Makita, Roma Fujimoto and Azusa Tamura
Forests 2021, 12(10), 1410; https://doi.org/10.3390/f12101410 - 15 Oct 2021
Cited by 10 | Viewed by 2428
Abstract
Soil respiration plays a critical role in driving soil carbon (C) cycling in terrestrial forest ecosystems. However, evidence to demonstrate the response of roots, mycorrhizal hyphae, and soil free-living microbes of soil respiration and their temperature sensitivity (Q10) remains lacking. [...] Read more.
Soil respiration plays a critical role in driving soil carbon (C) cycling in terrestrial forest ecosystems. However, evidence to demonstrate the response of roots, mycorrhizal hyphae, and soil free-living microbes of soil respiration and their temperature sensitivity (Q10) remains lacking. Here, we used a root exclusion method to assess the contribution and response of root respiration (Rroot), mycorrhizal respiration (Rmyc), and (soil organic matter) SOM respiration (Rsom) to soil temperature in a larch forest. During the growing period, the contributions of Rroot, Rmyc, and Rsom to soil respiration were 42%, 6%, and 52%, respectively. The respiration rates of all components increased exponentially with increasing temperature. Based on these constitutive respiration rates with soil temperature, the Q10 values for Rroot, Rmyc, and Rsom were 3.84, 5.18, and 1.86, respectively. The results showed that the response to temperature change was different among roots, mycorrhizal hyphae, and microbes in the soil, while the temperature sensitivity of autotrophic respiration was higher than that of heterotrophic respiration. Importantly, the Rmyc at this site was extremely sensitive to temperature, although its overall emission was small. Mycorrhizal associations were identified as the key drivers of soil respiration and temperature sensitivity. A good understanding of the different soil CO2 efflux components will provide useful information for determining soil C fluxes and predicting soil C dynamics under changing environments. Full article
(This article belongs to the Special Issue Forest Soil Carbon and Climate Changes)
Show Figures

Figure 1

Back to TopTop