Extraction Technology and Characters of Bioactive Substances in Foods

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Engineering and Technology".

Deadline for manuscript submissions: 10 April 2024 | Viewed by 9360

Special Issue Editors

Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso 2340000, Chile
Interests: bioactive molecules; food technology; enzymatic transformation; molecule extraction technology; fermentative process; antioxidants; recovery of agri-food waste; upcycling foods
Department of Chemical Engineering, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
Interests: bioactive molecules; food technology; enzymatic transformation; molecules extraction technology; separation processes
Chemical and Environmental Engineering Department, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
Interests: food engineering; food technology; bioavailabilty of nutrients; emerging technologies; modeling simulation and optimization of traditional food industry process.
Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Finis Terrae, Pedro de Valdivia 1509, Providencia, Santiago 7501015, Chile
Interests: food chemistry; Maillard reaction; food technology; bioactive molecules; polyphenols; bioseparation processes; bioaccessibility; nutrition for the elderly

Special Issue Information

Dear Colleagues,

The aging of the population and the development of NCDs in recent decades have led to a search for various strategies to improve quality of life. Among them, consuming healthy foods is considered beneficial for human health in aspects beyond nutrition, as evidenced by the presence of bioactive compounds. The benefits of bioactive compounds include, for example, their role in oxidative stress diseases, cancer, gastrointestinal health, and cardiovascular health, among others.

These compounds can be present in natural foods or added to processed foods. Knowledge of their characteristics (e.g., presence and content in different matrices, interactions with other macromolecules) would allow for establishing their potential benefit for the consumer; on the other hand, the development of new recovery techniques would allow for generating efficient processes both in the quantity and activity or properties of interest of compounds and, therefore, productive development of ingredients or food additives of significant added value.

Thus, this Special Issue of Foods focuses on establishing the characteristics of bioactive compounds in different foods, as well as new recovery strategies from food or their fractions. The issue will provide an overview of the status and future perspectives of use of these compounds and techniques in the food and ingredient industries and in research.

Dr. Carmen Soto-Maldonado
Dr. Andrés Moure
Dr. Cristian Ramírez
Dr. Ma Salomé Mariotti
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactive compounds
  • healthy foods
  • food technology
  • extraction techniques
  • new technologies

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

32 pages, 6635 KiB  
Article
Mango Peels as an Industrial By-Product: A Sustainable Source of Compounds with Antioxidant, Enzymatic, and Antimicrobial Activity
by Nika Kučuk, Mateja Primožič, Petra Kotnik, Željko Knez and Maja Leitgeb
Foods 2024, 13(4), 553; https://doi.org/10.3390/foods13040553 - 11 Feb 2024
Viewed by 1735
Abstract
Plant waste materials are important sources of bioactive compounds with remarkable health-promoting benefits. In particular, industrial by-products such as mango peels are sustainable sources of bioactive substances, with antioxidant, enzymatic, and antimicrobial activity. Appropriate processing is essential to obtain highly bioactive compounds for [...] Read more.
Plant waste materials are important sources of bioactive compounds with remarkable health-promoting benefits. In particular, industrial by-products such as mango peels are sustainable sources of bioactive substances, with antioxidant, enzymatic, and antimicrobial activity. Appropriate processing is essential to obtain highly bioactive compounds for further use in generating value-added products for the food industry. The objective of the study was to investigate and compare the biological activity of compounds from fresh and dried mango peels obtained by different conventional methods and unconventional extraction methods using supercritical fluids (SFE). The highest total phenolic content (25.0 mg GAE/g DW) and the total content of eight phenolic compounds (829.92 µg/g DW) determined by LC-MS/MS were detected in dried mango peel extract obtained by the Soxhlet process (SE). SFE gave the highest content of proanthocyanidins (0.4 mg PAC/g DW). The ethanolic ultrasonic process (UAE) provided the highest antioxidant activity of the product (82.4%) using DPPH radical scavenging activity and total protein content (2.95 mg protein/g DW). Overall, the dried mango peels were richer in bioactive compounds (caffeic acid, chlorogenic acid, gallic acid, catechin, and hesperidin/neohesperidin), indicating successful preservation during air drying. Furthermore, outstanding polyphenol oxidase, superoxide dismutase (SOD), and lipase activities were detected in mango peel extracts. This is the first study in which remarkable antibacterial activities against the growth of Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) were evaluated by determining the microbial growth inhibition rate after 12 and 24 h incubation periods for mango peel extracts obtained by different methods. Ethanolic SE and UAE extracts from dried mango peels resulted in the lowest minimum inhibitory concentrations (MIC90) for all bacterial species tested. Mango peels are remarkable waste products that could contribute to the sustainable development of exceptional products with high-added value for various applications, especially as dietary supplements. Full article
(This article belongs to the Special Issue Extraction Technology and Characters of Bioactive Substances in Foods)
Show Figures

Figure 1

11 pages, 926 KiB  
Article
The Potential of Using Cochayuyo (Durvillaea incurvata) Extract Obtained by Ultrasound-Assisted Extraction to Fight against Aging-Related Diseases
by Nicolás Muñoz-Molina, Javier Parada, Mario Simirgiotis and Romina Montecinos-González
Foods 2024, 13(2), 269; https://doi.org/10.3390/foods13020269 - 15 Jan 2024
Viewed by 646
Abstract
The world’s population is in a demographical transition, with an increase in the number of older adults and prevalence of diseases related to aging. This study evaluated in vitro the potential of using Durvillaea incurvata extract (extracted using ultrasound-assisted extraction) to inhibit key [...] Read more.
The world’s population is in a demographical transition, with an increase in the number of older adults and prevalence of diseases related to aging. This study evaluated in vitro the potential of using Durvillaea incurvata extract (extracted using ultrasound-assisted extraction) to inhibit key enzymes associated with the development of age-related diseases. Our results show that an extract extracted via ultrasound-assisted extracted, as well as an extract conventional extracted from Durvillaea incurvata, presented antidiabetes potential by exhibiting inhibitory activity against α-glucosidase (91.8 ± 1.0% and 93.8 ± 0.3%, respectively, at 500 µg/mL) and α-amylase (42.2 ± 1.4% and 61.9 ± 0.9%, respectively, at 1500 µg/mL) enzymes related to starch digestion and postprandial glycemic response. Also, the extracts showed inhibitory activity against the enzymes acetylcholinesterase (51.5% and 50.8%, respectively, at 500 µg/mL) and butyrylcholinesterase (32.8% and 34.4%, respectively, at 0.5 mg/mL), the biomarkers associated with Alzheimer’s disease, and angiotensin-converting enzyme (98.7 ± 7.4% and 93.0 ± 3.4%, respectively, at 2.0 mg/mL), which is key in the regulation of vascular tone and blood pressure and helps to prevent the development of hypertension. In conclusion, the extract of Durvillaea incurvata obtained from ultrasound-assisted extraction has the potential to prevent the development of age-related pathologies such as diabetes, Alzheimer’s disease, and hypertension. Full article
(This article belongs to the Special Issue Extraction Technology and Characters of Bioactive Substances in Foods)
Show Figures

Figure 1

20 pages, 4136 KiB  
Article
In Silico-Assisted Isolation of trans-Resveratrol and trans-ε-Viniferin from Grapevine Canes and Their Sustainable Extraction Using Natural Deep Eutectic Solvents (NADES)
by Mats Kiene, Malte Zaremba, Hendrik Fellensiek, Edwin Januschewski, Andreas Juadjur, Gerold Jerz and Peter Winterhalter
Foods 2023, 12(22), 4184; https://doi.org/10.3390/foods12224184 - 20 Nov 2023
Cited by 2 | Viewed by 1664
Abstract
Grapevine canes are an important source of bioactive compounds, such as stilbenoids. This study aimed to evaluate an in silico method, based on the Conductor-like Screening Model for Real Solvents (COSMO-RS) to isolate stilbenoids from a grapevine cane extract by offline heart-cut high-performance [...] Read more.
Grapevine canes are an important source of bioactive compounds, such as stilbenoids. This study aimed to evaluate an in silico method, based on the Conductor-like Screening Model for Real Solvents (COSMO-RS) to isolate stilbenoids from a grapevine cane extract by offline heart-cut high-performance countercurrent chromatography (HPCCC). For the following extraction of resveratrol and ε-viniferin from grapevine canes, natural deep eutectic solvents (NADES) were used as an environmentally friendly alternative to the traditionally used organic solvents. In order to evaluate a variety of combinations of hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs) for the targeted extraction of stilbenoids, COSMO-RS was applied. In particular, ultrasonic-assisted extraction using a solvent mixture of choline chloride/1,2-propanediol leads to higher extraction yields of resveratrol and ε-viniferin. COSMO-RS calculations for NADES extraction combined with HPCCC biphasic solvent system calculations are a powerful combination for the sustainable extraction, recovery, and isolation of natural products. This in silico-supported workflow enables the reduction of preliminary experimental tests required for the extraction and isolation of natural compounds. Full article
(This article belongs to the Special Issue Extraction Technology and Characters of Bioactive Substances in Foods)
Show Figures

Graphical abstract

15 pages, 2774 KiB  
Article
Green Extraction of Antioxidant Fractions from Humulus lupulus Varieties and Microparticle Production via Spray-Drying
by Tania Ferreira-Anta, María Dolores Torres, Jose Manuel Vilarino, Herminia Dominguez and Noelia Flórez-Fernández
Foods 2023, 12(20), 3881; https://doi.org/10.3390/foods12203881 - 23 Oct 2023
Viewed by 910
Abstract
The formulation of polymeric microparticles to encapsulate bioactive compounds from two hop varieties (Nugget and Perle) using sequential green extraction processes was performed. The technologies used were ultrasound-assisted extraction (UAE) and pressurized hot water (PHW) extraction. Liquid phases were analyzed for total phenolic [...] Read more.
The formulation of polymeric microparticles to encapsulate bioactive compounds from two hop varieties (Nugget and Perle) using sequential green extraction processes was performed. The technologies used were ultrasound-assisted extraction (UAE) and pressurized hot water (PHW) extraction. Liquid phases were analyzed for total phenolic content (~2%), antioxidant activity (IC50, DPPH: 3.68 (Nugget); 4.46 (Perle) g/L, TEAC (~4–5%), FRAP (~2–3%), and reducing power (~4%)), protein content (~1%), oligosaccharide content (~45%), and for structural features. The fractions obtained from UAE were selected to continue with the drying process, achieving the maximum yield at 120 °C (Perle) and 130 °C (Nugget) (~77%). Based on these results, the formulation of polymeric microparticles using mannitol as the carrier was performed with these fractions. The production yield (~65%), particle size distribution (Perle: 250–750 µm and Nugget: ~100 µm), and rheological features (30–70 mPa s at 0.1 s−1) were the parameters evaluated. The UAE extracts from hop samples processed using a sustainable aqueous treatment allowed the formulation of microparticles with a suitable yield, and morphological and viscosity properties adequate for potential food and non-food applications. Full article
(This article belongs to the Special Issue Extraction Technology and Characters of Bioactive Substances in Foods)
Show Figures

Figure 1

11 pages, 793 KiB  
Article
Selective Recovery of Polyphenols from Discarded Blueberries (Vaccinium corymbosum L.) Using Hot Pressurized Liquid Extraction Combined with Isopropanol as an Environmentally Friendly Solvent
by Nils Leander Huamán-Castilla, Cecilia Copa-Chipana, Luis Omar Mamani-Apaza, Olivia Magaly Luque-Vilca, Clara Nely Campos-Quiróz, Franz Zirena-Vilca and María Salomé Mariotti-Celis
Foods 2023, 12(19), 3694; https://doi.org/10.3390/foods12193694 - 08 Oct 2023
Cited by 1 | Viewed by 1525
Abstract
The use of water–ethanol mixtures in hot pressurized liquid extraction (HPLE) to recover phenolic compounds from agro-industrial waste has been successfully investigated. However, the unresolved challenge of reducing solvent costs associated with the process hinders the scaling of this eco-friendly technology. This study [...] Read more.
The use of water–ethanol mixtures in hot pressurized liquid extraction (HPLE) to recover phenolic compounds from agro-industrial waste has been successfully investigated. However, the unresolved challenge of reducing solvent costs associated with the process hinders the scaling of this eco-friendly technology. This study evaluated the use of isopropanol as an alternative, lower-cost solvent for recovering polyphenols from discarded blueberries through the HPLE process. HPLE was carried out using water–isopropanol mixtures (0, 15 and 30%) at 70, 100, and 130 °C. The total polyphenol content (TPC), antioxidant capacity (DPPH and ORAC), glucose and fructose contents, and polyphenol profile of the extracts were determined. HPLE extracts obtained using high isopropanol concentrations (30%) and high temperatures (130 °C) presented the highest TPC (13.57 mg GAE/gdw) and antioxidant capacity (IC50: 9.97 mg/mL, ORAC: 246.47 µmol ET/gdw). Moreover, the use of 30% water–isopropanol resulted in higher yields of polyphenols and removal of reducing sugars compared to atmospheric extraction with water–acetone (60%). The polyphenolic profiles of the extracts showed that flavanols and phenolic acids were more soluble at high concentrations of isopropanol (30%). Contrarily, flavonols and stilbenes were better recovered with 15% isopropanol and pure water. Therefore, isopropanol could be a promising solvent for the selective recovery of different bioactive compounds from discarded blueberries and other agro-industrial residues. Full article
(This article belongs to the Special Issue Extraction Technology and Characters of Bioactive Substances in Foods)
Show Figures

Graphical abstract

33 pages, 1671 KiB  
Article
UHPLC-ESI-QTOF-MS/MS Profiling of Phytochemicals from Araticum Fruit (Annona crassiflora Mart.) and Its Antioxidant Activity
by Henrique Silvano Arruda, Célio Fernando Figueiredo Angolini, Marcos Nogueira Eberlin, Glaucia Maria Pastore and Mario Roberto Marostica Junior
Foods 2023, 12(18), 3456; https://doi.org/10.3390/foods12183456 - 16 Sep 2023
Cited by 1 | Viewed by 1287
Abstract
Araticum is a native species of the Brazilian Cerrado with a high potential for exploitation. Several studies have stated that araticum is a rich source of phytochemicals with multifaceted biological actions. However, little information is available regarding the characterization of phytochemicals found in [...] Read more.
Araticum is a native species of the Brazilian Cerrado with a high potential for exploitation. Several studies have stated that araticum is a rich source of phytochemicals with multifaceted biological actions. However, little information is available regarding the characterization of phytochemicals found in the pulp of this fruit. In this context, this study aimed to carry out a comprehensive characterization of phytochemicals present in the araticum pulp using ultra-high-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer (UHPLC-ESI-QTOF-MS/MS). The antioxidant potential of araticum pulp was also evaluated. UHPLC-ESI-QTOF-MS/MS profiling of the phytochemicals allowed for the identification and annotation of 139 phytochemicals, including organic acids, jasmonates, iridoids, phenolic compounds, alkaloids, annonaceous acetogenins, fatty acid derivatives, and other compounds. Among them, 116 compounds have been found for the first time in araticum pulp. Phenolic compounds and their derivatives represented about 59% of the phytochemicals identified in the extract. Moreover, araticum pulp showed high total phenolic compound content and antioxidant activity. The majority of identified phytochemicals have been associated with key roles in the plant’s defense mechanisms against biotic and abiotic stress factors in the Cerrado environment. Furthermore, many of these phytochemicals found in the araticum pulp are already widely recognized for their beneficial effects on human health. Our findings showed that the araticum fruit contains different classes of phytochemicals that exert various biological activities, both in the plant itself and in humans. Full article
(This article belongs to the Special Issue Extraction Technology and Characters of Bioactive Substances in Foods)
Show Figures

Graphical abstract

13 pages, 1350 KiB  
Article
Cochayuyo (Durvillaea incurvata) Extracts: Their Impact on Starch Breakdown and Antioxidant Activity in Pasta during In Vitro Digestion
by Luz Verónica Pacheco, Javier Parada, José R. Pérez-Correa, María Salomé Mariotti-Celis and Mario Simirgiotis
Foods 2023, 12(18), 3326; https://doi.org/10.3390/foods12183326 - 05 Sep 2023
Cited by 1 | Viewed by 1030
Abstract
Seaweeds, notably cochayuyo (Durvillaea incurvata), are recognized for their rich macro- and micronutrient content, along with their inhibitory effects on the α-glucosidase enzyme. The present study aims to evaluate the effectiveness of this inhibition in actual starchy food products under in [...] Read more.
Seaweeds, notably cochayuyo (Durvillaea incurvata), are recognized for their rich macro- and micronutrient content, along with their inhibitory effects on the α-glucosidase enzyme. The present study aims to evaluate the effectiveness of this inhibition in actual starchy food products under in vitro gastrointestinal conditions. This study utilized freeze-dried cochayuyo, extracted using hot pressurized liquid extraction with 50% ethanol at 120 °C and 1500 psi. The inhibition mechanism of α-glucosidase was determined, and the polyphenol composition of the extract was analyzed using Ultra-High-Performance Liquid Chromatography. This study further evaluated the extract’s impact on starch digestibility, total phenolic content, and antioxidant capacity in pasta (noodles) as representative starchy food under gastrointestinal conditions. The results indicate that the α-glucosidase inhibition mechanism is of mixed type. Phenolic compounds, primarily tetraphloroethol, could contribute to this anti-enzymatic activity. The extract was observed to decrease starch digestibility, indicated by a lower rate constant (0.0158 vs. 0.0261 min−1) and digested starch at an infinite time (77.4 vs. 80.5 g/100 g). A significant increase (~1200 vs. ~390 µmol TROLOX/100 g) in antioxidant activity was also noted during digestion when the extract was used. Thus, this study suggests that the cochayuyo extract can reduce starch digestion and enhance antioxidant capacity under gastrointestinal conditions. Full article
(This article belongs to the Special Issue Extraction Technology and Characters of Bioactive Substances in Foods)
Show Figures

Graphical abstract

Back to TopTop