Safety and Nutrition: From Livestock to Meat Products

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Meat".

Deadline for manuscript submissions: closed (31 December 2023) | Viewed by 4543

Special Issue Editors

College of Food Science, Sichuan Agricultural University, Ya’an, China
Interests: meat nutrition; food control; livestock
Special Issues, Collections and Topics in MDPI journals
College of Food Science, Sichuan Agricultural University, Ya’an, China
Interests: meat safety; meat nutrition; food control

Special Issue Information

Dear Colleagues,

The safety and nutrition of meat products is mainly attributed to genes, feeding, processing, etc. Briefly, the moisture, lipid, protein, and other nutrients in livestock are significantly affected by the factors of genes and feeding. Further, these nutritious substances in raw meat materials and their changes significantly affect the characteristic flavor, texture, and properties, as well as safety and nutrition during cold chain transportation, chill storage, and thermal processing. How can different genes or feedings affect the main nutrients in raw meats? How can these changes in nutrients further affect the qualities of safety and nutrition in meat at different cold chain transportations or chill storage methods? Finally, how can these changes in nutrients further affect the qualities of safety and nutrition in meat products under different processing methods? This helps us to understand the whole-course quality control of safety and nutrition in meat products.

Prof. Dr. Zhengfeng Fang
Dr. Teng Hui
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • gene control
  • feeding control
  • nutrients changes
  • safety
  • flavor
  • texture
  • color
  • processing properties
  • functional components
  • processing hazardous substances
  • digestion properties

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 1747 KiB  
Article
Dietary Supplementation with Rutin Alters Meat Quality, Fatty Acid Profile, Antioxidant Capacity, and Expression Levels of Genes Associated with Lipid Metabolism in Breast Muscle of Qingyuan Partridge Chickens
by Yuanfei Li, Huadi Mei, Yanchen Liu, Zhenming Li, Hammad Qamar, Miao Yu and Xianyong Ma
Foods 2023, 12(12), 2302; https://doi.org/10.3390/foods12122302 - 07 Jun 2023
Cited by 7 | Viewed by 1386
Abstract
Consumer demand for tasty and quality meat has been quickly increasing. This study investigated how dietary supplemented rutin affects meat quality, muscle fatty acid profile, and antioxidant capacity in the Chinese indigenous Qingyuan partridge chicken. A cohort of 180 healthy 119-day-old chickens was [...] Read more.
Consumer demand for tasty and quality meat has been quickly increasing. This study investigated how dietary supplemented rutin affects meat quality, muscle fatty acid profile, and antioxidant capacity in the Chinese indigenous Qingyuan partridge chicken. A cohort of 180 healthy 119-day-old chickens was subjected to a randomized assignment into three groups, identified as the control, R200, and R400 groups, with respective supplementation of 0, 200, and 400 mg/kg of rutin. The results revealed insignificance in growth performance, namely, average daily gain, average daily feed intake, and feed-to-gain ratio, across the various treatment groups (p > 0.05). Nevertheless, dietary rutin supplementation increased (p < 0.05) breast muscle yield and intramuscular fat content in breast muscle and decreased (p < 0.05) drip loss in breast muscle. Rutin supplementation increased (p < 0.05) the content of high-density lipoprotein but decreased (p < 0.05) the contents of glucose, triglyceride, and total cholesterol in serum. Rutin supplementation increased (p < 0.05) the levels of DHA (C22:6n-3), total polyunsaturated fatty acids (PUFAs), n-3 PUFAs, decanoic acid (C10:0), the activity of Δ5 + Δ6 (22:6 (n − 3)/18:3 (n − 3)), and the ratio of PUFA/SFA in breast muscle but decreased (p < 0.05) the level of palmitoleic acid (C16:1n-7), the ratio of n-6/n-3 PUFAs, and the activity of Δ9 (16:1 (n − 7)/16:0). Rutin treatment also reduced (p < 0.05) the contents of malondialdehyde in serum and breast muscle, and increased (p < 0.05) the catalase activity and total antioxidant capacity in serum and breast muscle and the activity of total superoxide dismutase in serum. Additionally, rutin supplementation downregulated the expression of AMPKα and upregulated the expression of PPARG, FADS1, FAS, ELOVL7, NRF2, and CAT in breast muscle (p < 0.05). Convincingly, the results revealed that rutin supplementation improved meat quality, fatty acid profiles, especially n-3 PUFAs, and the antioxidant capacity of Qingyuan partridge chickens. Full article
(This article belongs to the Special Issue Safety and Nutrition: From Livestock to Meat Products)
Show Figures

Figure 1

16 pages, 1931 KiB  
Article
Effect of Dietary Supplementation of Lactiplantibacillus plantarum N-1 and Its Synergies with Oligomeric Isomaltose on the Growth Performance and Meat Quality in Hu Sheep
by Zhiqiang Zhou, Xinyi Xu, Dongmei Luo, Zhiwei Zhou, Senlin Zhang, Ruipeng He, Tianwu An and Qun Sun
Foods 2023, 12(9), 1858; https://doi.org/10.3390/foods12091858 - 29 Apr 2023
Cited by 3 | Viewed by 1285
Abstract
Probiotics have gained tremendous attention as an alternative to antibiotics, while synbiotics may exhibit a greater growth promoting effect than their counterpart probiotics due to the prebiotics’ promotion on the growth and reproduction of probiotics. The objective of this study was to investigate [...] Read more.
Probiotics have gained tremendous attention as an alternative to antibiotics, while synbiotics may exhibit a greater growth promoting effect than their counterpart probiotics due to the prebiotics’ promotion on the growth and reproduction of probiotics. The objective of this study was to investigate the influence of Lactiplantibacillus plantarum N-1 and its synbiotic with oligomeric isomaltose on the growth performance and meat quality of Hu sheep. Hu sheep (0–3 days old) were fed with water, probiotics of N-1, or synbiotics (N-1 and oligomeric isomaltose) daily in three pens for 60 days and regularly evaluated to measure growth performance and collect serum (five lambs per group). Longissimus thoracis (LT) and biceps brachii (BB) muscle tissues were collected for the analysis of pH value, color, texture, nutrients, mineral elements, amino acids, volatile compounds, and antioxidant capacity. The results showed that dietary supplementation of N-1 tended to improve growth performance and meat quality of Hu sheep, while the synergism of N-1 with oligomeric isomaltose significantly improved their growth performance and meat quality (p < 0.05). Both the dietary supplementation of N-1 and synbiotics (p < 0.05) increased the body weight and body size of Hu sheep. Synbiotic treatment reduced serum cholesterol and improved LT fat content by increasing the transcription level of fatty acid synthase to enhance fat deposition in LT, as determined via RT-qPCR analysis. Moreover, synbiotics increased zinc content and improved LT tenderness by decreasing shear force and significantly increased the levels of certain essential (Thr, Phe, and Met) and non-essential (Asp, Ser, and Tyr) amino acids of LT (p < 0.05). Additionally, synbiotics inhibited the production of carbonyl groups and TBARS in LT and thus maintained antioxidant stability. In conclusion, it is recommended that the use of synbiotics in livestock breeding be promoted to improve sheep production and meat quality. Full article
(This article belongs to the Special Issue Safety and Nutrition: From Livestock to Meat Products)
Show Figures

Figure 1

18 pages, 3813 KiB  
Article
Transcriptome-Wide Study Revealed That N6-Methyladenosine Participates in Regulation Meat Production in Goats
by Juhong Zou, Yujian Shen, Jianwei Zou, Jingsu Yu, Yuhang Jiang, Yanna Huang and Qinyang Jiang
Foods 2023, 12(6), 1159; https://doi.org/10.3390/foods12061159 - 09 Mar 2023
Cited by 1 | Viewed by 1148
Abstract
In mammals, skeletal muscle development is a complex biological process regulated by many factors. N6-methyladenosine (m6A) RNA modification plays an important role in many biological processes. However, the regulation of m6A on skeletal muscle growth and development in adult goats remains unclear. In [...] Read more.
In mammals, skeletal muscle development is a complex biological process regulated by many factors. N6-methyladenosine (m6A) RNA modification plays an important role in many biological processes. However, the regulation of m6A on skeletal muscle growth and development in adult goats remains unclear. In this study, Duan goats (DA) and Nubia goats (NBY), both female and 12 months old, were selected as the research objects, and m6A-Seq and RNA-Seq were mainly used to detect the difference of m6A modification and gene expression during the development of the longissimus dorsi (LD) muscle in the two breeds. The results showed that compared with DA, the meat production performance of NBY was better than that of DA, and the modification level of m6A was higher than that of DA in LD. The m6A-Seq of LD indicated m6A peaks were mainly enriched in the coding sequence (CDS) and stop codon. A total of 161 differentially methylated genes (DMGs) and 1294 differentially expressed genes (DEGs) were identified in two breeds. GO and KEGG analysis showed that DMGs were closely related to cellular metabolism, and most of DMGs were enriched in pathways related to energy metabolism, muscle growth and development, mainly MAPK signaling pathway, Wnt signaling pathway and CGMP-PKG signaling pathway. The DEGs were significantly enriched in actin binding, calcium ion binding, angiogenesis, and other biological processes, and most of them were enriched in PI3K-Akt and CGMP-PKG signaling pathways. Combined analysis of m6A-Seq and RNA-Seq data revealed a negative correlation between differentially methylated m6A levels and mRNA abundance, and mRNA expression of the gene with m6A peak near 3′UTR will decrease. In addition, 11 DMGs regulating cell differentiation, muscle growth and development were identified. This study displayed the m6A profiles and distribution patterns in the goat transcriptome, determined the potential role of m6A modification in muscle growth and provided a new reference for the further study of goat skeletal muscle development. Full article
(This article belongs to the Special Issue Safety and Nutrition: From Livestock to Meat Products)
Show Figures

Figure 1

Back to TopTop