Bioactive Polysaccharide from Plant Foods: Structures, Physicochemical Properties and Functionalities

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Plant Foods".

Deadline for manuscript submissions: closed (31 March 2024) | Viewed by 18961

Special Issue Editor


E-Mail Website
Guest Editor
School of Food Science and Engineering, South China University of Technology, Guangzhou, China
Interests: polysaccharides; exploration of potential resources; physicochemical characterization; novel extraction or modification method; structural-functional relationship elucidation; functional properties; interaction between polysacchardie and non-saccharide substances; bioactive effect to human health

Special Issue Information

Dear Colleagues,

Plant foods usually contain a variety of polysaccharides, such as pectin, cellulose, hemicellulose, inulin, carrageenan, starch, gum Arabic, etc. These polysaccharides play numerous roles in food, such as starch is commonly used as a source to provide human energy, pectin and carrageenan are often used as gels to make food gel, Arabic gum is used as emulsifier to prepare emulsion, inulin has the physiological activity of lowering blood sugar. Polysaccharides are nature of natural occurring and biocompatible, catering the people’s demand of “label-clean” food additives and receiving increasing attention. Utilizing natural polysaccharide or its derivatives to replace synthetic food additives is a hot research topic at present. More works are needed to explore new potential resources of polysaccharides and expand its application field. Most of the plant polysaccharide are complex heteropolysaccharide comprised of multiple monosaccharides and non-saccharide substance (protein, phenol., etc.). The elucidation of structure-functional is difficult and needed our attention. The interaction between polysaccharides and polysaccharide with other non-saccharide substance are important to improve the functionality of polysaccharide by synthetic effect.

Prof. Dr. Shujuan Yu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant polysaccharide
  • extraction technologies
  • modification
  • interaction
  • physicochemical characterization
  • structure-functional relationship
  • bioactive effect
  • new applications
  • food additives

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 9635 KiB  
Article
The Degree of Inulin Polymerization Is Important for Short-Term Amelioration of High-Fat Diet (HFD)-Induced Metabolic Dysfunction and Gut Microbiota Dysbiosis in Rats
by Amin Ariaee, Hannah R. Wardill, Anthony Wignall, Clive A. Prestidge and Paul Joyce
Foods 2024, 13(7), 1039; https://doi.org/10.3390/foods13071039 - 28 Mar 2024
Viewed by 831
Abstract
Inulin, a non-digestible polysaccharide, has gained attention for its prebiotic properties, particularly in the context of obesity, a condition increasingly understood as a systemic inflammatory state linked to gut microbiota composition. This study investigates the short-term protective effects of inulin with different degrees [...] Read more.
Inulin, a non-digestible polysaccharide, has gained attention for its prebiotic properties, particularly in the context of obesity, a condition increasingly understood as a systemic inflammatory state linked to gut microbiota composition. This study investigates the short-term protective effects of inulin with different degrees of polymerization (DPn) against metabolic health deterioration and gut microbiota alterations induced by a high-fat diet (HFD) in Sprague Dawley rats. Inulin treatments with an average DPn of 7, 14, and 27 were administered at 1 g/kg of bodyweight to HFD-fed rats over 21 days. Body weight, systemic glucose levels, and proinflammatory markers were measured to assess metabolic health. Gut microbiota composition was analyzed through 16S rRNA gene sequencing. The results showed that inulin27 significantly reduced total weight gain and systemic glucose levels, suggesting a DPn-specific effect on metabolic health. The study also observed shifts in gut microbial populations, with inulin7 promoting several beneficial taxa from the Bifidobacterium genera, whilst inducing a unique microbial composition compared to medium-chain (DPn 14) and long-chain inulin (DPn: 27). However, the impact of inulin on proinflammatory markers and lipid metabolism parameters was not statistically significant, possibly due to the short study duration. Inulin with a higher DPn has a more pronounced effect on mitigating HFD-induced metabolic health deterioration, whilst inulin7 is particularly effective at inducing healthy microbial shifts. These findings highlight the benefits of inulin as a dietary adjuvant in obesity management and the importance of DPn in optimizing performance. Full article
Show Figures

Graphical abstract

17 pages, 8055 KiB  
Article
Effects of the Species and Growth Stage on the Antioxidant and Antifungal Capacities, Polyphenol Contents, and Volatile Profiles of Bamboo Leaves
by Hui Shen, Yan Wang, Pingping Shi, Hong Li, Yanan Chen, Tenggen Hu, Yuanshan Yu, Jinxiang Wang, Fang Yang, Haibo Luo and Lijuan Yu
Foods 2024, 13(3), 480; https://doi.org/10.3390/foods13030480 - 02 Feb 2024
Viewed by 766
Abstract
Bamboo leaves contain high concentrations of various biologically active compounds, such as polyphenols and volatiles, making them attractive as raw resources for antioxidant additives in the food industry. Here, we investigated the total phenolic content (TPC) and total flavonoid content (TFC) of four [...] Read more.
Bamboo leaves contain high concentrations of various biologically active compounds, such as polyphenols and volatiles, making them attractive as raw resources for antioxidant additives in the food industry. Here, we investigated the total phenolic content (TPC) and total flavonoid content (TFC) of four bamboo leaf extracts from two species (Phyllostachys edulis and Chimonocalamus delicatus) at two growth stages (first and second years). Antioxidant capacity was determined based on the radical-scavenging capacity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+). We also assessed the antifungal capacity based on mycelial growth inhibition of Colletotrichum musae (C. musae), Botrytis cinerea (B. cinereain), and Alternaria alternata (A. alternata). Pearson’s correlation coefficients showed that the TPC was significantly (p < 0.01) negatively correlated with the half-maximal inhibitory concentrations against DPPH and ABTS+, whereas the TFC was positively correlated with C. musae and B. cinereain growth inhibition, which suggest that TPC and TFC might be the major contributors to the antioxidant and antifungal capacities of bamboo leaves, respectively. The volatile organic compounds (VOCs) of bamboo leaves were also analyzed using gas chromatography–ion mobility spectrometry. The VOCs included twenty-four aldehydes, eleven alcohols, four furans, seven esters, fifteen terpenes, three ketones, one pyrazine, and thirty unidentified compounds. Principal component analysis, partial least squares discriminant analysis, and hierarchical cluster analysis were performed to assess the differences in the volatile profiles of the four bamboo leaf samples, from which 23 discriminatory VOCs with variable importance in the projection values > 1 were screened, and part of them were impacted by species or growth stage. These findings provide a theoretical foundation for the use of bamboo leaves. Full article
Show Figures

Graphical abstract

11 pages, 1880 KiB  
Article
Antioxidant Activities of Konjac Glucomannan Hydrolysates of Different Molecular Weights at Different Values of pH
by Phattanit Tripetch, Supaporn Lekhavat, Sakamon Devahastin, Naphaporn Chiewchan and Chaleeda Borompichaichartkul
Foods 2023, 12(18), 3406; https://doi.org/10.3390/foods12183406 - 12 Sep 2023
Cited by 3 | Viewed by 1085
Abstract
Konjac glucomannan (KGM) is a high-molecular-weight polysaccharide that was originally extracted from the corms (underground storage organs) of Amorphophallus konjac. KGM and its oligomers have been reported as dietary fibers that exhibit an array of health benefits. The depolymerization of KGM via [...] Read more.
Konjac glucomannan (KGM) is a high-molecular-weight polysaccharide that was originally extracted from the corms (underground storage organs) of Amorphophallus konjac. KGM and its oligomers have been reported as dietary fibers that exhibit an array of health benefits. The depolymerization of KGM via enzymatic hydrolysis at different conditions gives products of low viscosity and can be used for coating materials in microencapsulation. In the present study, konjac glucomannan hydrolysates (KGMHs) were produced by enzymatic hydrolysis using commercial mannanase at pH 4.5 at 70 °C for 5–120 min, then KGMHs’ molecular weight (Mw), Degree of Polymerization (DP) and their bioactivities were determined. A longer hydrolysis time resulted in KGMH of a lower DP. Oligoglucomannans (Mw < 10,000) could be obtained after hydrolysis for 20 min. The DP of KGMH rapidly decreased during an early stage of the hydrolysis (first 40 min); DP reached around 7 at the end of the hydrolysis. Antioxidant activities were determined by the DPPH radical scavenging and FRAP assays of KGMHs prepared at pH 4.5 and evaluated at pH 2.0–8.0 depending on pH. KGMH having lower Mw exhibited higher antioxidant activities. KGMHs having the smallest molecular weight (Mw = 419) exhibited the highest DPPH radical scavenging activity. Mw and pH have a greater impact on KGMHs’ bioactivities which can be useful information for KGMHs as functional ingredients. Full article
Show Figures

Figure 1

11 pages, 1577 KiB  
Article
Laccase-Induced Gelation of Sugar Beet Pectin–Curcumin Nanocomplexes Enhanced by Genipin Crosslinking
by Jia-Wei Lin, Gui-Li Jiang, Cui-Xin Liang, Ye-Meng Li, Xing-Yi Chen, Xiao-Tong Zhang and Zhong-Sheng Tang
Foods 2023, 12(14), 2771; https://doi.org/10.3390/foods12142771 - 21 Jul 2023
Cited by 1 | Viewed by 921
Abstract
Research on the use of polysaccharides as hydrophobic bioactive carriers instead of proteins is still scarce. Sugar beet pectin (SBP) contains a small amount of protein and is a potential carrier for loading curcumin. In this work, SBP encapsulation, genipin crosslinking, and laccase-induced [...] Read more.
Research on the use of polysaccharides as hydrophobic bioactive carriers instead of proteins is still scarce. Sugar beet pectin (SBP) contains a small amount of protein and is a potential carrier for loading curcumin. In this work, SBP encapsulation, genipin crosslinking, and laccase-induced gelation were used to develop novel jelly food and improve the stability of curcumin without the incorporation of oil. By mixing the SBP solution (40 mg/mL) with curcumin powder (25 mg/mL SBP solution), an SBP–curcumin complex (SBP–Cur) was fabricated with a loading amount of 32 mg/g SBP, and the solubility of curcumin improved 116,000-fold. Fluorescence spectroscopy revealed that hydrophobic interactions drove the complexation of curcumin and SBP. Crosslinked by genipin (10 mM), SBP–Cur showed a dark blue color, and the gel strength of laccase-catalyzed gels was enhanced. Heating and UV radiation tests suggested that the genipin crosslinking and gelation strategies substantially improved the stability of curcumin. Because of the unique UV-blocking capacity of blue pigment, crosslinked samples retained 20% more curcumin than control samples. With the enhanced stability of curcumin, the crosslinked SBP–curcumin complexes could be a functional food ingredient used in functional drinks, baked food, and jelly food. Full article
Show Figures

Figure 1

15 pages, 2587 KiB  
Article
A New Functional Food Ingredient Obtained from Aloe ferox by Spray Drying
by Francesca Comas-Serra, Juan José Martínez-García, Alma Pérez-Alba, María de los Ángeles Sáenz-Esqueda, María Guadalupe Candelas-Cadillo, Antoni Femenia and Rafael Minjares-Fuentes
Foods 2023, 12(4), 850; https://doi.org/10.3390/foods12040850 - 16 Feb 2023
Cited by 3 | Viewed by 1682
Abstract
Aloe mucilages of Aloe ferox (A. ferox) and Aloe vera (A. vera) were spray-dried (SD) at 150, 160 and 170 °C. Polysaccharide composition, total phenolic compounds (TPC), antioxidant capacity and functional properties (FP) were determined. A. ferox polysaccharides were comprised [...] Read more.
Aloe mucilages of Aloe ferox (A. ferox) and Aloe vera (A. vera) were spray-dried (SD) at 150, 160 and 170 °C. Polysaccharide composition, total phenolic compounds (TPC), antioxidant capacity and functional properties (FP) were determined. A. ferox polysaccharides were comprised mainly of mannose, accounting for >70% of SD aloe mucilages; similar results were observed for A. vera. Further, an acetylated mannan with a degree of acetylation >90% was detected in A. ferox by 1H NMR and FTIR. SD increased the TPC as well as the antioxidant capacity of A. ferox measured by both ABTS and DPPH methods, in particular by ~30%, ~28% and ~35%, respectively, whereas in A. vera, the antioxidant capacity measured by ABTS was reduced (>20%) as a consequence of SD. Further, FP, such as swelling, increased around 25% when A. ferox was spray-dried at 160 °C, while water retention and fat adsorption capacities exhibited lower values when the drying temperature increased. The occurrence of an acetylated mannan with a high degree of acetylation, together with the enhanced antioxidant capacity, suggests that SD A. ferox could be a valuable alternative raw material for the development of new functional food ingredients based on Aloe plants. Full article
Show Figures

Graphical abstract

12 pages, 1598 KiB  
Article
Purification, Characterization and Bioactivity of Different Molecular-Weight Fractions of Polysaccharide Extracted from Litchi Pulp
by Xiaoqin Zou, Jiaxin Cai, Jiaxi Xiao, Mingwei Zhang, Xuchao Jia, Lihong Dong, Kun Hu, Yang Yi, Ruifen Zhang and Fei Huang
Foods 2023, 12(1), 194; https://doi.org/10.3390/foods12010194 - 01 Jan 2023
Cited by 3 | Viewed by 1721
Abstract
Litchi polysaccharides are a kind of macromolecular polymers with various biological activities and a wide range of molecular weights. In this study, two separate fractions, with average molecular weights of 378.67 kDa (67.33%) and 16.96 kDa (6.95%), which were referred to as LP1 [...] Read more.
Litchi polysaccharides are a kind of macromolecular polymers with various biological activities and a wide range of molecular weights. In this study, two separate fractions, with average molecular weights of 378.67 kDa (67.33%) and 16.96 kDa (6.95%), which were referred to as LP1 and LP2, respectively, were separated using an ultrafiltration membrane. Their physicochemical properties, and immunomodulatory and prebiotic activity were compared. The results revealed that LP2 contained more neutral sugar, arabinose, galactose and rhamnose, but less uronic acid, protein, mannose and glucose than LP1. Compared with LP1, LP2 possessed higher solubility and lower apparent viscosity. LP2 exhibited stronger stimulation on macrophage secretion of NO, TNF-α and IL-6, as well as better proliferation of Lactobacillus plantarum, Leuconostoc mesenteroides, Lactobacillus casei and Bifidobacterium adolescentis. These results suggest that an ultrafiltration membrane might be used to prepare a highly-active polysaccharide fraction from litchi pulp that may be used for food or drug development. Full article
Show Figures

Figure 1

19 pages, 3072 KiB  
Article
Encapsulation Efficiency and Functional Stability of Cinnamon Essential Oil in Modified β-cyclodextrins: In Vitro and In Silico Evidence
by Kegang Wu, Tong Zhang, Xianghua Chai, Xuejuan Duan, Dong He, Hongpeng Yu, Xiaoli Liu and Zhihua Tao
Foods 2023, 12(1), 45; https://doi.org/10.3390/foods12010045 - 22 Dec 2022
Cited by 6 | Viewed by 2062
Abstract
Essential oils (EOs) have good natural antioxidant and antimicrobial properties; however, their volatility, intense aroma, poor aqueous solubility, and chemical instability limit their applications in the food industry. The encapsulation of EOs in β-cyclodextrins (β-CDs) is a widely accepted strategy [...] Read more.
Essential oils (EOs) have good natural antioxidant and antimicrobial properties; however, their volatility, intense aroma, poor aqueous solubility, and chemical instability limit their applications in the food industry. The encapsulation of EOs in β-cyclodextrins (β-CDs) is a widely accepted strategy for enhancing EO applications. The complexation of cinnamon essential oil (CEO) with five types of β-CDs, containing different substituent groups (β-CD with primary hydroxyl, Mal-β-CD with maltosyl, CM-β-CD with carboxymethyl, HP-β-CD with hydroxypropyl, and DM-β-CD with methyl), inclusion process behaviors, volatile components, and antioxidant and antibacterial activities of the solid complexes were studied. The CEOs complexed with Mal-β-CD, CM-β-CD, and β-CD were less soluble than those complexed with DM-β-CD and HP-β-CD. Molecular docking confirmed the insertion of the cinnamaldehyde benzene ring into various β-CD cavities via hydrophobic interactions and hydrogen bonds. GC-MS analysis revealed that HP-β-CD had the greatest adaptability to cinnamaldehyde. The CEO encapsulated in β-, Mal-β-, and CM-β-CD showed lower solubility but better control-release characteristics than those encapsulated in DM- and HP-β-CD, thereby increasing their antioxidant and antibacterial activities. This study demonstrated that β-, Mal-β-, and CM-β-CD were suitable alternatives for the encapsulation of CEO to preserve its antioxidant and antibacterial activities for long-time use. Full article
Show Figures

Figure 1

11 pages, 885 KiB  
Article
Enhancing the Emulsification and Photostability Properties of Pectin from Different Sources Using Genipin Crosslinking Technique
by Jiawei Lin, Hecheng Meng, Xiaobing Guo and Shujuan Yu
Foods 2022, 11(16), 2392; https://doi.org/10.3390/foods11162392 - 09 Aug 2022
Cited by 10 | Viewed by 1500
Abstract
Pectin is a potential polysaccharide-based emulsifier, but the stabilized emulsions suffer from insufficient emulsion stability. Therefore, modification is needed to enhance its emulsification performance to cater to practical applications. The genipin-crosslinking strategy was used in this work to modify pectin with different sources [...] Read more.
Pectin is a potential polysaccharide-based emulsifier, but the stabilized emulsions suffer from insufficient emulsion stability. Therefore, modification is needed to enhance its emulsification performance to cater to practical applications. The genipin-crosslinking strategy was used in this work to modify pectin with different sources and extraction conditions. Chemical composition analysis, molecular weight (Mw), and radius of gyration (Rg) measurement revealed that sugar beet pectin (SBP) has a more compact and flexible conformation than commercial citrus pectin (CP) and apple pectin (AP), indicated by the significantly (p < 0.05) larger Mw/Rg of SBP (18.1–11.3 kg/mol/nm) than CP (8.3 kg/mol/nm) and AP (8.0 kg/mol/nm). Crosslinking modification significantly increased the Mw, radius of gyration, and viscosity. This significantly (p < 0.05) improved the emulsifying stability (a smaller increase in droplets size) by the contribution of both thicker adsorbed hydrated layers at the oil-water interface with a stronger steric-hindrance effect and larger viscosity effect to slow down droplet collision. The formation of a blue-black substance from crosslinking reaction was able to block the UV radiation, which significantly improved the photostability of β-carotene-loaded emulsions. Altogether, genipin-crosslinking is feasible to modify pectin of different sources to enhance the emulsion stability and for use as a vehicle for delivering bioactive compounds. Full article
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 1429 KiB  
Review
The Mushroom Glucans: Molecules of High Biological and Medicinal Importance
by János Vetter
Foods 2023, 12(5), 1009; https://doi.org/10.3390/foods12051009 - 27 Feb 2023
Cited by 14 | Viewed by 4025
Abstract
Carbohydrates, including polysaccharide macromolecules, are the main constituents of the fungal cell wall. Among these, the homo- or heteropolymeric glucan molecules are decisive, as they not only protect fungal cells but also have broad, positive biological effects on the animal and human bodies. [...] Read more.
Carbohydrates, including polysaccharide macromolecules, are the main constituents of the fungal cell wall. Among these, the homo- or heteropolymeric glucan molecules are decisive, as they not only protect fungal cells but also have broad, positive biological effects on the animal and human bodies. In addition to the beneficial nutritional properties of mushrooms (mineral elements, favorable proteins, low fat and energy content, pleasant aroma, and flavor), they have a high glucan content. Folk medicine (especially in the Far East) used medicinal mushrooms based on previous experience. At the end of the 19th century, but mainly since the middle of the 20th century, progressively more scientific information has been published. Glucans from mushrooms are polysaccharides that contain sugar chains, sometimes of only one kind (glucose), sometimes having several monosaccharide units, and they have two (α and β) anomeric forms (isomers). Their molecular weights range from 104 to 105 Da, and rarely 106 Da. X-ray diffraction studies were the first to determine the triple helix configuration of some glucans. It seems that the existence and integrity of the triple helix structure are criteria for their biological effects. Different glucans can be isolated from different mushroom species, and several glucan fractions can be obtained. The biosynthesis of glucans takes place in the cytoplasm, the processes of initiation and then chain extension take place with the help of the glucan synthase enzyme complex (EC 2.4.1.34), and the sugar units are provided by sugar donor UDPG molecules. The two methods used today for glucan determination are the enzymatic and Congo red methods. True comparisons can only be made using the same method. Congo red dye reacts with the tertiary triple helix structure, and the resulting glucan content better reflects the biological value of glucan molecules. The biological effect of β-glucan molecules is proportional to the integrity of the tertiary structure. The glucan contents of the stipe exceed the values of the caps. The glucan levels of individual fungal taxa (including varieties) differ quantitatively and qualitatively. This review presents in more detail the glucans of lentinan (from Lentinula edodes), pleuran (from Pleurotus ostreatus), grifolan (from Grifola frondose), schizophyllan (from Schizophyllum commune), and krestin (from Trametes versicolor), along with their main biological effects. Full article
Show Figures

Figure 1

16 pages, 2117 KiB  
Review
Extraction, Structural Characterization, Biological Functions, and Application of Rice Bran Polysaccharides: A Review
by Bingjie Chen, Yongjin Qiao, Xiao Wang, Yi Zhang and Linglin Fu
Foods 2023, 12(3), 639; https://doi.org/10.3390/foods12030639 - 02 Feb 2023
Cited by 6 | Viewed by 3556
Abstract
Rice bran is a “treasure house of natural nutrition”. Even so, utilization of rice bran is often ignored, and this has resulted in the wastage of nutrients. Polysaccharides are one of the active substances in rice bran that have gained widespread attention for [...] Read more.
Rice bran is a “treasure house of natural nutrition”. Even so, utilization of rice bran is often ignored, and this has resulted in the wastage of nutrients. Polysaccharides are one of the active substances in rice bran that have gained widespread attention for their antioxidant, antitumor, immune-enhancing, antibacterial, and hypoglycemic properties. This review summarizes the extraction methods, structural characterization, bioactivity, and application of rice bran polysaccharides that have been developed and studied in recent years, laying a foundation for its development into foods and medicines. In addition, we also discuss the prospects for future research on rice bran polysaccharides. Full article
Show Figures

Figure 1

Back to TopTop