Insights on the Health Benefits and Functional Potential of Food Bioactive Compounds

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Nutrition".

Deadline for manuscript submissions: 31 May 2024 | Viewed by 9294

Special Issue Editor


E-Mail Website
Guest Editor
Department of Galenic Pharmacy and Food Technology, Universitad Complutense de Madrid, Madrid, Spain
Interests: bioactive compound extraction; metabolic syndrome; bioactive polysaccharides; phenolic compounds; biological rhythms; mushrooms
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Interest in research on ‘functional food’ has increased in recent decades due to the increase in chronic diseases and the social awareness of the strong correlation between diet and health. In order to contribute to reducing the risk of these conditions and to alleviate some signs and symptoms, a plethora of food and natural matrices have been investigated to develop novel alternatives. In this context, green and advanced extraction technologies are usually utilized to obtain enriched fractions or isolated bioactive compounds, as well as specific methodologies to characterize the extracts and to determine their biological activities in vitro and in vivo. Among the tested properties, some of the most widely studied ones must be highlighted: antioxidant, anti-inflammatory, anti-proliferative, hypolipidemic, hypocholesterolemic, hypoglycemic, antihypertensive, antimicrobial, prebiotic, etc.

The aim of this Special Issue is to investigate the latest findings and insights related to the health benefits and functional potential of food bioactive compounds, including extraction technologies, characterization of sources and extracts, and bioactivity testing through in vitro, animal and clinical trials. Furthermore, future challenges and perspectives must also be addressed.

Dr. Diego Morales
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactive compounds
  • antioxidant
  • anti-inflammatory
  • hypocholesterolemia
  • antiproliferation 
  • antihypertension 
  • prebiotic 
  • antidiabetic 
  • functional food 
  • microbiota

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 1263 KiB  
Article
Combination of Fenugreek and Quinoa Husk as Sources of Steroidal and Triterpenoid Saponins: Bioactivity of Their Co-Extracts and Hydrolysates
by Emma Cantero-Bahillo, Joaquín Navarro del Hierro, María de las Nieves Siles-Sánchez, Laura Jaime, Susana Santoyo and Diana Martin
Foods 2024, 13(4), 562; https://doi.org/10.3390/foods13040562 - 12 Feb 2024
Viewed by 853
Abstract
Saponins, both steroidal and triterpenoid, exhibit distinct bioactivities. However, they are not commonly found together in natural sources; instead, sources tend to be rich in one type or another and mainly in the form of saponins rather than the sapogenin aglycones. Developing co-extracts [...] Read more.
Saponins, both steroidal and triterpenoid, exhibit distinct bioactivities. However, they are not commonly found together in natural sources; instead, sources tend to be rich in one type or another and mainly in the form of saponins rather than the sapogenin aglycones. Developing co-extracts containing both saponin or sapogenin types would be a strategy to harness their respective bioactivities, yielding multibioactive extracts. Therefore, this study evaluates the bioactivity (hypolipidemic, antioxidant, and anti-inflammatory activities) of co-extracts from fenugreek seeds (steroidal-rich saponins) and quinoa husk (triterpenoid-rich saponins), co-extracted at varying proportions, alongside their respective sapogenin-rich hydrolysates. Pancreatic lipase inhibition increased with fenugreek content in co-extracts, especially in sapogenin-rich variants. The latter substantially interfered with cholesterol bioaccessibility (90% vs. 15% in sapogenin-rich extracts). Saponin-rich co-extracts exhibited reduced cytokine release with increased fenugreek content, while sapogenin-rich counterparts showed greater reductions with higher quinoa husk content. Limited cellular antioxidant activities were observed in all extracts, with improved post-hydrolysis bioactivity. Therefore, simultaneous co-extraction of steroidal and triterpenoid sources, such as fenugreek and quinoa husk, as well as their subsequent hydrolysis, are innovative strategies for obtaining multibioactive natural extracts. Full article
Show Figures

Graphical abstract

14 pages, 3976 KiB  
Article
Glycated Casein by TGase-Type Exerts Protection Potential against DSS-Induced Colitis via Inhibiting TLR4/NF-κB Signaling Pathways in C57BL/6J Mice
by Hui Chu, Weiling Liu, Cong Zhao, Tong Yin, Jia Shi and Wei Zhang
Foods 2023, 12(18), 3431; https://doi.org/10.3390/foods12183431 - 14 Sep 2023
Viewed by 953
Abstract
Glycation by transglutaminase (TGase)-type could effectively improve the structure and functional properties of proteins. However, the influence on intestinal inflammation or the underlying mechanisms has not been investigated. The goal of this research was to compare the bioactivities between glycated casein generated from [...] Read more.
Glycation by transglutaminase (TGase)-type could effectively improve the structure and functional properties of proteins. However, the influence on intestinal inflammation or the underlying mechanisms has not been investigated. The goal of this research was to compare the bioactivities between glycated casein generated from the TGase-catalyzed reaction and oligochitosan as well as casein using a mouse model of dextran sulfate sodium (DSS)-induced intestinal inflammation to examine the protective effects and the underlying mechanism of glycated casein on intestinal inflammation. Eight groups of C57BL/6 mice were randomly assigned in this study: Control group: standard diet for 35 days; Model group: standard diet for 28 days and then colitis induction; Pretreated groups: different levels (200, 400, 800 mg/kg BW) of casein or glycated casein for 28 days before colitis induction. The mice were drinking water containing a 3% DSS solution for seven days of mice to cause colitis. The results indicated that glycated casein and casein at 200–800 mg/kg BW all relieved DSS-induced weight loss, reduced disease activity index (DAI) score, alleviated colon length shortening, weakened the destruction of colonic mucosal structure, decreased serum LPS, and MPO, IL-1β, IL-6 and TNF-α levels in serum and colon, as well as regulated the expression of proteins involved in the TLR4/NF-κB signaling pathway in a concentration-dependent manner. Glycated caseinate showed a better protective effect against DSS-induced colitis than casein, highlighting that the TGase-type glycation of proteins as a potential functional food ingredient might be a helpful method for gut health. Full article
Show Figures

Figure 1

14 pages, 1553 KiB  
Article
Pressurized Liquid (PLE) Truffle Extracts Have Inhibitory Activity on Key Enzymes Related to Type 2 Diabetes (α-Glucosidase and α-Amylase)
by Eva Tejedor-Calvo, Diego Morales, Laura Morillo, Laura Vega, Mercedes Caro, Fhernanda Ribeiro Smiderle, Marcello Iacomini, Pedro Marco and Cristina Soler-Rivas
Foods 2023, 12(14), 2724; https://doi.org/10.3390/foods12142724 - 17 Jul 2023
Viewed by 1092
Abstract
An optimized PLE method was applied to several truffle species using three different solvent mixtures to obtain bioactive enriched fractions. The pressurized water extracts contained mainly (1 → 3),(1 → 6)-β-D-glucans, chitins, and heteropolymers with galactose and mannose in their structures. The ethanol [...] Read more.
An optimized PLE method was applied to several truffle species using three different solvent mixtures to obtain bioactive enriched fractions. The pressurized water extracts contained mainly (1 → 3),(1 → 6)-β-D-glucans, chitins, and heteropolymers with galactose and mannose in their structures. The ethanol extracts included fatty acids and fungal sterols and others such as brassicasterol and stigmasterol, depending on the species. They also showed a different fatty acid lipid profile depending on the solvent utilized and species considered. Ethanol:water extracts showed interesting lipids and many phenolic compounds; however, no synergic extraction of compounds was noticed. Some of the truffle extracts were able to inhibit enzymes related to type 2 diabetes; pressurized water extracts mainly inhibited the α-amylase enzyme, while ethanolic extracts were more able to inhibit α-glucosidase. Tuber brumale var. moschatum and T. aestivum var. uncinatum extracts showed an IC50 of 29.22 mg/mL towards α-amylase and 7.93 mg/mL towards α-glucosidase. Thus, use of the PLE method allows o bioactive enriched fractions to be obtained from truffles with antidiabetic properties. Full article
Show Figures

Graphical abstract

18 pages, 4711 KiB  
Article
Glycomacropeptide Protects against Inflammation and Oxidative Stress, and Promotes Wound Healing in an Atopic Dermatitis Model of Human Keratinocytes
by Pamela Gallegos-Alcalá, Mariela Jiménez, Daniel Cervantes-García, Laura Elena Córdova-Dávalos, Irma Gonzalez-Curiel and Eva Salinas
Foods 2023, 12(10), 1932; https://doi.org/10.3390/foods12101932 - 09 May 2023
Cited by 2 | Viewed by 1822
Abstract
Keratinocytes are actively implicated in the physiopathology of atopic dermatitis (AD), a skin allergy condition widely distributed worldwide. Glycomacropeptide (GMP) is a milk-derived bioactive peptide generated during cheese making processes or gastric digestion. It has antiallergic and skin barrier restoring properties when it [...] Read more.
Keratinocytes are actively implicated in the physiopathology of atopic dermatitis (AD), a skin allergy condition widely distributed worldwide. Glycomacropeptide (GMP) is a milk-derived bioactive peptide generated during cheese making processes or gastric digestion. It has antiallergic and skin barrier restoring properties when it is orally administered in experimental AD. This study aimed to evaluate the effect of GMP on the inflammatory, oxidative, proliferative, and migratory responses of HaCaT keratinocytes in an in vitro AD model. GMP protected keratinocytes from death and apoptosis in a dose dependent manner. GMP at 6.3 and 25 mg/mL, respectively, reduced nitric oxide by 50% and 83.2% as well as lipid hydroperoxides by 27.5% and 45.18% in activated HaCaT cells. The gene expression of TSLP, IL33, TARC, MDC, and NGF was significantly downregulated comparably to control by GMP treatment in activated keratinocytes, while that of cGRP was enhanced. Finally, in an AD microenvironment, GMP at 25 mg/mL stimulated HaCaT cell proliferation, while concentrations of 0.01 and 0.1 mg/mL promoted the HaCaT cell migration. Therefore, we demonstrate that GMP has anti-inflammatory and antioxidative properties and stimulates wound closure on an AD model of keratinocytes, which could support its reported bioactivity in vivo. Full article
Show Figures

Graphical abstract

14 pages, 3648 KiB  
Article
Feeding Aquilaria sinensis Leaves Modulates Lipid Metabolism and Improves the Meat Quality of Goats
by Li Min, Gang Wang, Xiong Tong, Huaigu Yang, Hao Sun, Zhifei Zhang, Bin Xu, Dagang Li, Sheng Zhang and Guanghong Li
Foods 2023, 12(3), 560; https://doi.org/10.3390/foods12030560 - 27 Jan 2023
Cited by 2 | Viewed by 1505
Abstract
Aquilaria (A.) sinensis is a medicinal plant widely grown in tropical South China. Given the abundant pruning waste of its leaves, the use of A. sinensis leaves is valuable. In this study, goats were fed a diet containing 20% A. sinensis [...] Read more.
Aquilaria (A.) sinensis is a medicinal plant widely grown in tropical South China. Given the abundant pruning waste of its leaves, the use of A. sinensis leaves is valuable. In this study, goats were fed a diet containing 20% A. sinensis leaves. Compared with the basal diet, feeding A. sinensis leaves to goats did not affect growth performance but considerably reduced the feeding cost. Strikingly, feeding A. sinensis leaves resulted in a significant decrease in the blood cholesterol levels (2.11 vs. 1.49 mmol/L, p = 0.01) along with a significant increase in the high-density lipoprotein levels (1.42 vs. 1.82 mmol/L, p = 0.01). There was also a tendency to lower the content of low-density lipoprotein levels in goats (0.78 vs. 0.45 mmol/L, p = 0.09). Furthermore, metabolomics analysis demonstrated that the reduction in cholesterol levels occurred in both the serum (0.387-fold change) and muscle (0.382-fold change) of goats during A. sinensis leaf feeding. The metabolic responses to feeding A. sinensis leaves suggest that the activation of lipolysis metabolism might happen in goats. These observed changes would be conducive to improving animal health and meat quality, ultimately benefiting human health. Full article
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 358 KiB  
Review
Use of Strawberry Tree (Arbutus unedo) as a Source of Functional Fractions with Biological Activities
by Diego Morales
Foods 2022, 11(23), 3838; https://doi.org/10.3390/foods11233838 - 28 Nov 2022
Cited by 7 | Viewed by 2211
Abstract
Arbutus unedo, commonly named ‘strawberry tree’ (ST), is a Mediterranean native plant that represents a relevant source of biologically active fractions and compounds. ST fruits, traditionally used with culinary and medicinal purposes, along with other components (leaves, roots, honeys, etc.), have been [...] Read more.
Arbutus unedo, commonly named ‘strawberry tree’ (ST), is a Mediterranean native plant that represents a relevant source of biologically active fractions and compounds. ST fruits, traditionally used with culinary and medicinal purposes, along with other components (leaves, roots, honeys, etc.), have been subjected to varied extraction procedures to obtain enriched and bioactive products. This work reviewed the scientific literature, searching for studies that evaluated the potential health implications of ST fractions and attending to the tested biological activities (antioxidant, antiproliferative, hypoglycemic, immune-modulatory, antihypertensive, antimicrobial, etc.), the part of the tree, the experimental model, the specific bioactive compounds and the selected extraction protocol. Furthermore, the strengths and weaknesses of the current state of the published evidence were critically analysed. Although in vitro results demonstrated the potential of ST fractions, further research is encouraged in order to obtain in vivo evidence (animal and clinical studies), assess additional activities (hypocholesterolemic, microbiome-modulatory), maximize the use of advanced extraction technologies, purify and isolate specific bioactive compounds and broaden the analysis investigating phenolic and non-phenolic molecules and their bioavailability. Full article
Show Figures

Graphical abstract

Back to TopTop