Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1744 KiB  
Article
Promising New Material for Food Packaging: An Active and Intelligent Carrageenan Film with Natural Jaboticaba Additive
by Luisa Bataglin Avila, Elis Regina Correa Barreto, Caroline Costa Moraes, Marcilio Machado Morais and Gabriela Silveira da Rosa
Foods 2022, 11(6), 792; https://doi.org/10.3390/foods11060792 - 09 Mar 2022
Cited by 13 | Viewed by 2778
Abstract
This research focused on the development of active and intelligent films based on a carrageenan biopolymer incorporated with jaboticaba peels extract (JPE). The bioactive extract was obtained by maceration extraction and showed high concentrations of total phenolic content (TP), total anthocyanin (TA), cyanidin-3-glucoside [...] Read more.
This research focused on the development of active and intelligent films based on a carrageenan biopolymer incorporated with jaboticaba peels extract (JPE). The bioactive extract was obtained by maceration extraction and showed high concentrations of total phenolic content (TP), total anthocyanin (TA), cyanidin-3-glucoside (Cn-3-Glu), antioxidant activity (AA), and microbial inhibition (MI) against E. coli, being promising for use as a natural additive in food packaging. The carrageenan films were produced using the casting technique, incorporating different concentrations of JPE, and characterized. The results of the thickness and Young’s modulus of the film increased in the films supplemented with JPE and the addition of the extract showed a decrease in elongation capacity and tensile strength, in water vapor permeability, and a lower rate of swelling in the water. In addition, the incorporation of JPE into the polymeric matrix promotes a change in the color of the films when compared to the control film and improves the opacity property. This is a positive effect as the material has a UV-vis light barrier which is interesting for food packaging. The increase in the active potential of the films was directly proportional to the concentration of JPE. The films results showed visible changes from purple to brown when in contact with different pH, which means that films have an intelligent potential. Accordingly, this novel carrageenan based-film incorporated with JPE could be a great strategy to add natural additives into packaging material to obtain an active potential and also an indicator for monitoring food in intelligent packaging. Full article
(This article belongs to the Special Issue Intelligent Packagings for Food Products)
Show Figures

Figure 1

14 pages, 862 KiB  
Review
Biogenic Amines in Meat and Meat Products: A Review of the Science and Future Perspectives
by Maria Schirone, Luigi Esposito, Federica D’Onofrio, Pierina Visciano, Maria Martuscelli, Dino Mastrocola and Antonello Paparella
Foods 2022, 11(6), 788; https://doi.org/10.3390/foods11060788 - 09 Mar 2022
Cited by 39 | Viewed by 7241
Abstract
Biogenic amines (BAs) can be found in a wide range of meat and meat products, where they are important as an index for product stability and quality, but also for their impact on public health. This review analyzes the scientific evidence gathered so [...] Read more.
Biogenic amines (BAs) can be found in a wide range of meat and meat products, where they are important as an index for product stability and quality, but also for their impact on public health. This review analyzes the scientific evidence gathered so far on the presence and role of biogenic amines in meat and meat products, also considering the effect of technological conditions on BAs accumulation or decrease. The data provided can be useful for developing solutions to control BAs formation during the shelf-life, for example by novel starters for dry cured products, as well as by packaging technologies and materials for fresh meats. Further research, whose trends are reviewed in this paper, will fill the knowledge gaps, and allow us to protect such perishable products along the distribution chain and in the home environment. Full article
(This article belongs to the Special Issue Biogenic Amines in Raw and Processed Foods: Detection and Control)
Show Figures

Graphical abstract

19 pages, 1179 KiB  
Article
Bio-Mapping Indicators and Pathogen Loads in a Commercial Broiler Processing Facility Operating with High and Low Antimicrobial Intervention Levels
by Juan F. De Villena, David A. Vargas, Rossy Bueno López, Daniela R. Chávez-Velado, Diego E. Casas, Reagan L. Jiménez and Marcos X. Sanchez-Plata
Foods 2022, 11(6), 775; https://doi.org/10.3390/foods11060775 - 08 Mar 2022
Cited by 17 | Viewed by 3017
Abstract
The poultry industry in the United States has traditionally implemented non-chemical and chemical interventions against Salmonella spp. and Campylobacter spp. on the basis of experience and word-of-mouth information shared among poultry processors. The effects of individual interventions have been assessed with microbiological testing [...] Read more.
The poultry industry in the United States has traditionally implemented non-chemical and chemical interventions against Salmonella spp. and Campylobacter spp. on the basis of experience and word-of-mouth information shared among poultry processors. The effects of individual interventions have been assessed with microbiological testing methods for Salmonella spp. and Campylobacter spp. prevalence as well as quantification of indicator organisms, such as aerobic plate counts (APC), to demonstrate efficacy. The current study evaluated the loads of both indicators and pathogens in a commercial chicken processing facility, comparing the “normal chemical”, with all chemical interventions turned-on, at typical chemical concentrations set by the processing plant versus low-chemical process (“reduced chemical”), where all interventions were turned off or reduced to the minimum concentrations considered in the facility’s HACCP system. Enumeration and prevalence of Salmonella spp. and Campylobacter spp. as well as indicator organisms (APC and Enterobacteriaceae—EB) enumeration were evaluated to compare both treatments throughout a 25-month sampling period. Ten locations were selected in the current bio-mapping study, including live receiving, rehanger, post eviscerator, post cropper, post neck breaker, post IOBW #1, post IOBW #2, prechilling, post chilling, and parts (wings). Statistical process control parameters for each location and processing schemes were developed for each pathogen and indicator evaluated. Despite demonstrating significant statistical differences between the normal and naked processes in Salmonella spp. counts (“normal” significantly lower counts than the “reduced” at each location except for post-eviscerator and post-cropper locations), the prevalence of Salmonella spp. after chilling is comparable on both treatments (~10%), whereas for Campylobacter spp. counts, only at the parts’ location was there significant statistical difference between the “normal chemical” and the “reduced chemical”. Therefore, not all chemical intervention locations show an overall impact on Salmonella spp. or Campylobacter spp., and certain interventions can be turned off to achieve the same or better microbial performance if strategic intervention locations are enhanced. Full article
(This article belongs to the Special Issue Foodborne Pathogens and Food Safety)
Show Figures

Figure 1

6 pages, 205 KiB  
Editorial
Valorization of Olive By-Products: Innovative Strategies for Their Production, Treatment and Characterization
by Cosima D. Calvano and Antonia Tamborrino
Foods 2022, 11(6), 768; https://doi.org/10.3390/foods11060768 - 08 Mar 2022
Cited by 13 | Viewed by 1963
Abstract
Presently, olive oil production signifies a valuable economic income for Mediterranean countries, where approximately 98% of the world’s production is established [...] Full article
14 pages, 3947 KiB  
Article
Discrimination of the Red Jujube Varieties Using a Portable NIR Spectrometer and Fuzzy Improved Linear Discriminant Analysis
by Zuxuan Qi, Xiaohong Wu, Yangjian Yang, Bin Wu and Haijun Fu
Foods 2022, 11(5), 763; https://doi.org/10.3390/foods11050763 - 07 Mar 2022
Cited by 17 | Viewed by 2171
Abstract
In order to quickly, nondestructively, and effectively distinguish red jujube varieties, based on the combination of fuzzy theory and improved LDA (iLDA), fuzzy improved linear discriminant analysis (FiLDA) algorithm was proposed to classify near-infrared reflectance (NIR) spectra of red jujube samples. FiLDA shows [...] Read more.
In order to quickly, nondestructively, and effectively distinguish red jujube varieties, based on the combination of fuzzy theory and improved LDA (iLDA), fuzzy improved linear discriminant analysis (FiLDA) algorithm was proposed to classify near-infrared reflectance (NIR) spectra of red jujube samples. FiLDA shows performs better than iLDA in dealing with NIR spectra containing noise. Firstly, the portable NIR spectrometer was employed to gather the NIR spectra of five kinds of red jujube, and the initial NIR spectra were pretreated by standard normal variate transformation (SNV), multiplicative scatter correction (MSC), Savitzky-Golay smoothing (S-G smoothing), mean centering (MC) and Savitzky-Golay filter (S-G filter). Secondly, the high-dimensional spectra were processed for dimension reduction by principal component analysis (PCA). Then, linear discriminant analysis (LDA), iLDA and FiLDA were applied to extract features from the NIR spectra, respectively. Finally, K nearest neighbor (KNN) served as a classifier for the classification of red jujube samples. The highest classification accuracy of this identification system for red jujube, by using FiLDA and KNN, was 94.4%. These results indicated that FiLDA combined with NIR spectroscopy was an available method for identifying the red jujube varieties and this method has wide application prospects. Full article
Show Figures

Figure 1

44 pages, 2586 KiB  
Review
Advancements in Biodegradable Active Films for Food Packaging: Effects of Nano/Microcapsule Incorporation
by Fatemeh Baghi, Adem Gharsallaoui, Emilie Dumas and Sami Ghnimi
Foods 2022, 11(5), 760; https://doi.org/10.3390/foods11050760 - 06 Mar 2022
Cited by 43 | Viewed by 8653
Abstract
Food packaging plays a fundamental role in the modern food industry as a main process to preserve the quality of food products from manufacture to consumption. New food packaging technologies are being developed that are formulated with natural compounds by substituting synthetic/chemical antimicrobial [...] Read more.
Food packaging plays a fundamental role in the modern food industry as a main process to preserve the quality of food products from manufacture to consumption. New food packaging technologies are being developed that are formulated with natural compounds by substituting synthetic/chemical antimicrobial and antioxidant agents to fulfill consumers’ expectations for healthy food. The strategy of incorporating natural antimicrobial compounds into food packaging structures is a recent and promising technology to reach this goal. Concepts such as “biodegradable packaging”, “active packaging”, and “bioactive packaging” currently guide the research and development of food packaging. However, the use of natural compounds faces some challenges, including weak stability and sensitivity to processing and storage conditions. The nano/microencapsulation of these bioactive compounds enhances their stability and controls their release. In addition, biodegradable packaging materials are gaining great attention in the face of ever-growing environmental concerns about plastic pollution. They are a sustainable, environmentally friendly, and cost-effective alternative to conventional plastic packaging materials. Ultimately, a combined formulation of nano/microencapsulated antimicrobial and antioxidant natural molecules, incorporated into a biodegradable food packaging system, offers many benefits by preventing food spoilage, extending the shelf life of food, reducing plastic and food waste, and preserving the freshness and quality of food. The main objective of this review is to illustrate the latest advances in the principal biodegradable materials used in the development of active antimicrobial and antioxidant packaging systems, as well as the most common nano/microencapsulated active natural agents incorporated into these food-packaging materials. Full article
Show Figures

Figure 1

15 pages, 1341 KiB  
Article
Fiber-Rich Cranberry Pomace as Food Ingredient with Functional Activity for Yogurt Production
by Laurita Varnaitė, Milda Keršienė, Aušra Šipailienė, Rita Kazernavičiūtė, Petras Rimantas Venskutonis and Daiva Leskauskaitė
Foods 2022, 11(5), 758; https://doi.org/10.3390/foods11050758 - 06 Mar 2022
Cited by 17 | Viewed by 3618
Abstract
In this study, different amounts (from 2% to 4.5%) of dietary fiber-rich cranberry pomace (CP) were added to yogurt before or after fermentation to increase dietary fiber content without changing the textural properties of the product. The addition of CP reduced whey loss, [...] Read more.
In this study, different amounts (from 2% to 4.5%) of dietary fiber-rich cranberry pomace (CP) were added to yogurt before or after fermentation to increase dietary fiber content without changing the textural properties of the product. The addition of CP reduced whey loss, improved the firmness and viscosity, increased the total phenol compound content and the antioxidant capacity values (DPPH•, ABTS, and ORAC) of the yogurt in a dose-dependent manner, and had no significant effect on the viability of the yogurt culture bacteria. For all CP-supplemented yogurt samples, the bioaccessibility index of the polyphenols after in vitro intestinal phase digestion was approximately 90%. However, yogurt with CP added before fermentation exhibited a significantly (p < 0.05) lower degree of protein hydrolysis post-gastric and post-intestinal than the yogurt with CP added after fermentation. Yogurt supplemented with 4.5% CP could be considered a good antioxidant dairy product and a good source of dietary fiber. Full article
(This article belongs to the Special Issue Studies on Antioxidant-Containing Foods and Related By-Products)
Show Figures

Graphical abstract

18 pages, 3251 KiB  
Article
Kombucha Reduces Hyperglycemia in Type 2 Diabetes of Mice by Regulating Gut Microbiota and Its Metabolites
by Suyun Xu, Yanping Wang, Jinju Wang and Weitao Geng
Foods 2022, 11(5), 754; https://doi.org/10.3390/foods11050754 - 05 Mar 2022
Cited by 22 | Viewed by 5050
Abstract
Kombucha, which is rich in tea polyphenols and organic acid, is a kind of acidic tea soup beverage fermented by acetic acid bacteria, yeasts, lactic acid bacteria. Kombucha has been reported to possess anti-diabetic activity, but the underlying mechanism was not well understood. [...] Read more.
Kombucha, which is rich in tea polyphenols and organic acid, is a kind of acidic tea soup beverage fermented by acetic acid bacteria, yeasts, lactic acid bacteria. Kombucha has been reported to possess anti-diabetic activity, but the underlying mechanism was not well understood. In this study, a high-fat, high-sugar diet combined with streptozotocin (STZ) injection was used to induce T2DM model in mice. After four weeks of kombucha intervention, the physiological and biochemical index were measured to determine the diabetes-related indicators. High-throughput sequencing technology was used to analyze the changes in gut microbiota from the feces. The results showed that four weeks of kombucha intervention increased the abundance of SCFAs-producing bacteria and reduced the abundance of gram-negative bacteria and pathogenic bacteria. The improvement in gut microbiota reduced the damage of intestinal barrier, thereby reducing the displacement of lipopolysaccharide (LPS) and inhibiting the occurrence of inflammation and insulin resistance in vivo. In addition, the increased levels of SCFAs-producing bacteria, and thus increasing the SCFAs, improved islet β cell function by promoting the secretion of gastrointestinal hormones (GLP-1/PYY). This study methodically uncovered the hypoglycemic mechanism of kombucha through gut microbiota intervention, and the result suggested that kombucha may be introduced as a new functional drink for T2DM prevention and treatment. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

19 pages, 392 KiB  
Review
Innovative and Healthier Dairy Products through the Addition of Microalgae: A Review
by Héctor Hernández, Maria Cristiana Nunes, Catarina Prista and Anabela Raymundo
Foods 2022, 11(5), 755; https://doi.org/10.3390/foods11050755 - 05 Mar 2022
Cited by 19 | Viewed by 5207
Abstract
In recent years, the development of healthier foods, richer in nutraceutical or functional compounds, has been in great demand. Microalgae are attracting increasing attention, as their incorporation in foods and beverages can be a promising strategy to develop sustainable foods with improved nutritional [...] Read more.
In recent years, the development of healthier foods, richer in nutraceutical or functional compounds, has been in great demand. Microalgae are attracting increasing attention, as their incorporation in foods and beverages can be a promising strategy to develop sustainable foods with improved nutritional profiles and a strong positive impacts on health. Despite the increasing market demand in plant-based foods, the popularity of fermented dairy foods has increased in the recent years since they are a source of microorganisms with health-promoting effects. In this context, the incorporation of microalgae in cheeses, fermented milks and other dairy products represents an interesting approach towards the development of innovative and added-value hybrid products based on animal proteins and enriched with vegetable origin ingredients recognized as extremely valuable sources of bioactive compounds. The effect of the addition of microalgal biomass (Chlorella vulgaris, Arthrospira platensis, Pavlova lutheri, and Diacronema vlkianum, among others) and its derivates on the physicochemical composition, colorimetric and antioxidant properties, texture and rheology behavior, sensory profile, and viability of starter cultures and probiotics in yogurt, cheese and ice cream is discussed in the current work. This review of the literature on the incorporation of microalgae in dairy products aims to contribute to a better understanding of the potential use of these unique food ingredients in the development of new sustainable products and of their beneficial effects on health. Considering the importance of commercialization, regulatory issues about the use of microalgae in dairy products are also discussed. Full article
Show Figures

Graphical abstract

19 pages, 376 KiB  
Review
Biocontrol Approaches against Escherichia coli O157:H7 in Foods
by Pradeep Puligundla and Seokwon Lim
Foods 2022, 11(5), 756; https://doi.org/10.3390/foods11050756 - 05 Mar 2022
Cited by 23 | Viewed by 4657
Abstract
Shiga-toxin-producing Escherichia coli O157:H7 is a well-known water- and food-borne zoonotic pathogen that can cause gastroenteritis in humans. It threatens the health of millions of people each year; several outbreaks of E. coli O157:H7 infections have been linked to the consumption of contaminated [...] Read more.
Shiga-toxin-producing Escherichia coli O157:H7 is a well-known water- and food-borne zoonotic pathogen that can cause gastroenteritis in humans. It threatens the health of millions of people each year; several outbreaks of E. coli O157:H7 infections have been linked to the consumption of contaminated plant foods (e.g., lettuce, spinach, tomato, and fresh fruits) and beef-based products. To control E. coli O157:H7 in foods, several physical (e.g., irradiation, pasteurization, pulsed electric field, and high-pressure processing) and chemical (e.g., using peroxyacetic acid; chlorine dioxide; sodium hypochlorite; and organic acids, such as acetic, lactic, and citric) methods have been widely used. Although the methods are quite effective, they are not applicable to all foods and carry intrinsic disadvantages (alteration of sensory properties, toxicity, etc.). Therefore, the development of safe and effective alternative methods has gained increased attention recently. Biocontrol agents, including bacteriophages, probiotics, antagonistic bacteria, plant-derived natural compounds, bacteriocins, endolysins, and enzymes, are rapidly emerging as effective, selective, relatively safe for human consumption, and environmentally friendly alternatives. This paper summarizes advances in the application of biocontrol agents for E. coli O157:H7 control in foods. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Graphical abstract

24 pages, 2202 KiB  
Review
Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment, and Applications to Olive Industry Products
by Stella A. Ordoudi, Maria Papapostolou, Nikolaos Nenadis, Fani Th. Mantzouridou and Maria Z. Tsimidou
Foods 2022, 11(5), 752; https://doi.org/10.3390/foods11050752 - 04 Mar 2022
Cited by 14 | Viewed by 6744
Abstract
Essential oils (EOs) find application as flavoring agents in the food industry and are also desirable ingredients as they possess preservative properties. The Mediterranean diet involves the use of a lot of herbs and spices and their products (infusions, EOs) as condiments and [...] Read more.
Essential oils (EOs) find application as flavoring agents in the food industry and are also desirable ingredients as they possess preservative properties. The Mediterranean diet involves the use of a lot of herbs and spices and their products (infusions, EOs) as condiments and for the preservation of foods. Application of EOs has the advantage of homogeneous dispersion in comparison with dry leaf use in small pieces or powder. Among them, Laurus nobilis (bay laurel) L. EO is an interesting source of volatiles, such as 1,8-cineole and eugenol, which are known for their preservative properties. Its flavor suits cooked red meat, poultry, and fish, as well as vegetarian dishes, according to Mediterranean recipes. The review is focused on its chemistry, quality control aspects, and recent trends in methods of analysis and activity assessment with a focus on potential antioxidant activity and applications to olive industry products. Findings indicate that this EO is not extensively studied in comparison with those from other Mediterranean plants, such as oregano EO. More work is needed to establish authenticity and activity methods, whereas the interest for using it for the preparation of flavored olive oil or for the aromatization and preservation of table oils must be further encouraged. Full article
(This article belongs to the Special Issue Natural Bioactive Compounds and Foods of the Mediterranean Diet)
Show Figures

Figure 1

28 pages, 523 KiB  
Review
Fruit Juice Spoilage by Alicyclobacillus: Detection and Control Methods—A Comprehensive Review
by Patra Sourri, Chrysoula C. Tassou, George-John E. Nychas and Efstathios Z. Panagou
Foods 2022, 11(5), 747; https://doi.org/10.3390/foods11050747 - 03 Mar 2022
Cited by 21 | Viewed by 11219
Abstract
Fruit juices have an important place in humans’ healthy diet. They are considered to be shelf stable products due to their low pH that prevents the growth of most bacteria. However thermo-acidophilic endospore forming bacteria of the genus Alicyclobacillus have the potential to [...] Read more.
Fruit juices have an important place in humans’ healthy diet. They are considered to be shelf stable products due to their low pH that prevents the growth of most bacteria. However thermo-acidophilic endospore forming bacteria of the genus Alicyclobacillus have the potential to cause spoilage of commercially pasteurized fruit juices. The flat sour type spoilage, with absence of gas production but presence of chemical spoilage compounds (mostly guaiacol) and the ability of Alicyclobacillus spores to survive after pasteurization and germinate under favorable conditions make them a major concern for the fruit juice industry worldwide. Their special characteristics and presence in the fruit juice industry has resulted in the development of many isolation and identification methods based on cell detection (plating methods, ELISA, flow cytometry), nucleic acid analysis (PCR, RAPD-PCR, ERIC-PCR, DGGE-PCR, RT-PCR, RFLP-PCR, IMS-PCR, qPCR, and 16S rRNA sequencing) and measurement of their metabolites (HPLC, GC, GC-MS, GC-O, GC-SPME, Electronic nose, and FTIR). Early detection is a big challenge that can reduce economic loss in the industry while the development of control methods targeting the inactivation of Alicyclobacillus is of paramount importance as well. This review includes a discussion of the various chemical (oxidants, natural compounds of microbial, animal and plant origin), physical (thermal pasteurization), and non-thermal (High Hydrostatic Pressure, High Pressure Homogenization, ultrasound, microwaves, UV-C light, irradiation, ohmic heating and Pulse Electric Field) treatments to control Alicyclobacillus growth in order to ensure the quality and the extended shelf life of fruit juices. Full article
18 pages, 3244 KiB  
Article
Effects of κ-Carrageenan and Guar Gum on the Rheological Properties and Microstructure of Phycocyanin Gel
by Yu-chen Lei, Xia Zhao, Dong Li, Li-jun Wang and Yong Wang
Foods 2022, 11(5), 734; https://doi.org/10.3390/foods11050734 - 02 Mar 2022
Cited by 15 | Viewed by 5089
Abstract
The effects of two polysaccharides on the performance and microstructure of phycocyanin gels were studied by choosing anionic polysaccharides (κ-carrageenan) and neutral polysaccharides (guar gum). The linear and nonlinear rheological properties and microstructure of the phycocyanin-polysaccharide composite gel were evaluated. The results show [...] Read more.
The effects of two polysaccharides on the performance and microstructure of phycocyanin gels were studied by choosing anionic polysaccharides (κ-carrageenan) and neutral polysaccharides (guar gum). The linear and nonlinear rheological properties and microstructure of the phycocyanin-polysaccharide composite gel were evaluated. The results show that both κ-carrageenan and guar gum can enhance the network structure of phycocyanin gel and weaken the frequency dependence. The sample with 0.4% κ-carrageenan has the highest gel strength. All samples exhibited Type I behavior (inter-cycling strain-thinning) and mainly elastic behavior. As the concentration of κ-carrageenan increases, hydrophobic interactions and disulfide bonds play an essential role in maintaining the three-dimensional structure of the gel. Too high a concentration of guar gum hinders the formation of protein disulfide bonds. This research can provide a theoretical basis for designing and developing new food products based on phycocyanin and different polysaccharides with ideal texture in the food industry. Full article
Show Figures

Graphical abstract

20 pages, 2390 KiB  
Article
Improving the Flavor of Fermented Sausage by Increasing Its Bacterial Quality via Inoculation with Lactobacillus plantarum MSZ2 and Staphylococcus xylosus YCC3
by Ji Wang, Jinna Hou, Xin Zhang, Jingrong Hu, Zhihui Yu and Yingchun Zhu
Foods 2022, 11(5), 736; https://doi.org/10.3390/foods11050736 - 02 Mar 2022
Cited by 27 | Viewed by 3012
Abstract
This research aims to investigate the effects of Staphylococcus xylosus YCC3 (Sx YCC3) and Lactobacillus plantarum MSZ2 (Lp MSZ2) on lipid hydrolysis and oxidation, the bacterial community’s composition, and the volatile flavor compounds in fermented sausage. The bacterial community was examined by plate [...] Read more.
This research aims to investigate the effects of Staphylococcus xylosus YCC3 (Sx YCC3) and Lactobacillus plantarum MSZ2 (Lp MSZ2) on lipid hydrolysis and oxidation, the bacterial community’s composition, and the volatile flavor compounds in fermented sausage. The bacterial community was examined by plate counting and high-throughput sequencing. Differential flavor compounds in non-inoculated and inoculated sausages were identified by principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA). The results showed that the free fatty acid (FFA) content was increased after inoculating with Sx YCC3 or Lp MSZ2. The pH, peroxide value (POV), thiobarbituric acid reactive substances (TBARS) value, lipoxygenase activity, and the counts of Enterobacteriaceae were lower in the inoculated sausage than in the non-inoculated sausage. The bacterial inoculation enhanced the competitiveness of Staphylococcus and Lactobacillus and restricted the growth of unwanted bacteria. The OPLS-DA revealed that (Z)-hept-2-enal, (E)-2-octenal, 1-nonanal, octanal, and 1-octen-3-ol were common differential flavor compounds that were found in the inoculated sausages but were not found in the non-inoculated sausages. A positive correlation was observed between the differential flavor compounds and the relative abundance of Staphylococcus or Lactobacillus, or the FFA content. Our results indicated that inoculation with Sx YCC3 or Lp MSZ2 can improve fermented sausages’ flavor by enhancing their bacterial quality and increasing their FFA content. Full article
(This article belongs to the Special Issue Factors Affecting Flavour, Taste and Colour of Meat)
Show Figures

Figure 1

13 pages, 625 KiB  
Article
Characterization of Berry Pomace Powders as Dietary Fiber-Rich Food Ingredients with Functional Properties
by Ieva Jurevičiūtė, Milda Keršienė, Loreta Bašinskienė, Daiva Leskauskaitė and Ina Jasutienė
Foods 2022, 11(5), 716; https://doi.org/10.3390/foods11050716 - 28 Feb 2022
Cited by 17 | Viewed by 3233
Abstract
This study aimed to evaluate and compare the dried pomace powder of cranberries, lingonberries, sea buckthorns, and black currants as potential food ingredients with functional properties. The composition and several physicochemical and adsorption properties associated with their functionality were investigated. Tested berry pomace [...] Read more.
This study aimed to evaluate and compare the dried pomace powder of cranberries, lingonberries, sea buckthorns, and black currants as potential food ingredients with functional properties. The composition and several physicochemical and adsorption properties associated with their functionality were investigated. Tested berry pomace powders were rich in dietary soluble fiber (4.92–12.74 g/100 g DM) and insoluble fiber (40.95–65.36 g/100 g DM). The highest level of total phenolics was observed in the black currant pomace (11.09 GAE/g DM), whereas the sea buckthorn pomace revealed the highest protein concentration (21.09 g/100 g DM). All the berry pomace powders that were tested exhibited good water-holding capacity (2.78–4.24 g/g) and swelling capacity (4.99–9.98 mL/g), and poor oil-binding capacity (1.09–1.57 g/g). The strongest hypoglycemic properties were observed for the lingonberry and black currant pomace powders. The berry pomace powders presented effective in vitro hypolipidemic properties. The cholesterol-binding capacities ranged from 21.11 to 23.13 mg/g. The black currant and cranberry pomace powders demonstrated higher sodium-cholate-binding capacity than those of the lingonberry and sea buckthorn pomace powders. This study shows promising results that the powders of tested berry pomace could be used for further application in foods. Full article
(This article belongs to the Special Issue Studies on Antioxidant-Containing Foods and Related By-Products)
Show Figures

Graphical abstract

18 pages, 1972 KiB  
Article
Willingness to Pay for Food Labelling Schemes in Vietnam: A Choice Experiment on Water Spinach
by Duc Tran, Ieben Broeckhoven, Yung Hung, Nguyen Hoang Diem My, Hans De Steur and Wim Verbeke
Foods 2022, 11(5), 722; https://doi.org/10.3390/foods11050722 - 28 Feb 2022
Cited by 13 | Viewed by 4258
Abstract
The growing concern for food safety and quality motivates governments and private sectors to improve consumers’ confidence in food systems, such as through adopting certifications and traceability systems. The recent emergence of diverse food labelling schemes and the turbulence in food systems in [...] Read more.
The growing concern for food safety and quality motivates governments and private sectors to improve consumers’ confidence in food systems, such as through adopting certifications and traceability systems. The recent emergence of diverse food labelling schemes and the turbulence in food systems in emerging countries have sparked questions about consumers’ valuation of such labels. Nonetheless, little is known on how the familiarity with, trust in and knowledge of these food labelling schemes affect consumers’ willingness to pay for labelling schemes in emerging market contexts. This study aims to address these literature gaps by investigating consumers’ valuation of existing certifications, branding and traceability labelling schemes in Vietnam. A face-to-face survey was conducted, including a discrete choice experiment on water spinach in Ho Chi Minh City, Vietnam. The findings indicated that Vietnamese consumers are generally willing to pay price premia for food labelling schemes, such as VietGAP certification, EU and USDA organic certifications, private branding and traceable Quick Response (QR) coding. While familiarity and understanding had no significant impact on Vietnamese consumers’ valuation, trust was found to be a critical factor shaping willingness to pay for products bearing VietGAP label. Policy implications and marketing strategies for organic certifications and traceability schemes in Vietnam are discussed. Full article
(This article belongs to the Special Issue Research on Influencing Factors of Food Choice and Food Consumption)
Show Figures

Figure 1

16 pages, 2105 KiB  
Article
Physical and Chemical Characterisation of Conventional and Nano/Emulsions: Influence of Vegetable Oils from Different Origins
by Jansuda Kampa, Richard Frazier and Julia Rodriguez-Garcia
Foods 2022, 11(5), 681; https://doi.org/10.3390/foods11050681 - 25 Feb 2022
Cited by 15 | Viewed by 3554
Abstract
The processes of oil production play an important role in defining the final physical and chemical properties of vegetable oils, which have an influence on the formation and characteristics of emulsions. The objective of this work was to investigate the correlations between oils’ [...] Read more.
The processes of oil production play an important role in defining the final physical and chemical properties of vegetable oils, which have an influence on the formation and characteristics of emulsions. The objective of this work was to investigate the correlations between oils’ physical and chemical properties with the stability of conventional emulsions (d > 200 nm) and nanoemulsions (d < 200 nm). Five vegetable oils obtained from different production processes and with high proportion of unsaturated fatty acids were studied. Extra virgin olive oil (EVOO), cold-pressed rapeseed oil (CPRO), refined olive oil (OO), refined rapeseed oil (RO) and refined sunflower oil (SO) were used in this study. The results showed that the physicochemical stability of emulsion was affected by fatty acid composition, the presence of antioxidants, free fatty acids and droplet size. There was a significant positive correlation (p < 0.05) between the fraction of unsaturated fatty acids and emulsion oxidative stability, where SO, OO and EVOO showed a significantly higher lipid oxidative stability compared to RO and CPRO emulsions. Nanoemulsions with a smaller droplet size showed better physical stability than conventional emulsions. However, there was not a significant correlation between the oxidative stability of emulsions, droplet size and antioxidant capacity of oils. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

19 pages, 1111 KiB  
Review
Postharvest Ultraviolet Radiation in Fruit and Vegetables: Applications and Factors Modulating Its Efficacy on Bioactive Compounds and Microbial Growth
by Magalí Darré, Ariel Roberto Vicente, Luis Cisneros-Zevallos and Francisco Artés-Hernández
Foods 2022, 11(5), 653; https://doi.org/10.3390/foods11050653 - 23 Feb 2022
Cited by 34 | Viewed by 4780
Abstract
Ultraviolet (UV) radiation has been considered a deleterious agent that living organisms must avoid. However, many of the acclimation changes elicited by UV induce a wide range of positive effects in plant physiology through the elicitation of secondary antioxidant metabolites and natural defenses. [...] Read more.
Ultraviolet (UV) radiation has been considered a deleterious agent that living organisms must avoid. However, many of the acclimation changes elicited by UV induce a wide range of positive effects in plant physiology through the elicitation of secondary antioxidant metabolites and natural defenses. Therefore, this fact has changed the original UV conception as a germicide and potentially damaging agent, leading to the concept that it is worthy of application in harvested commodities to take advantage of its beneficial responses. Four decades have already passed since postharvest UV radiation applications began to be studied. During this time, UV treatments have been successfully evaluated for different purposes, including the selection of raw materials, the control of postharvest diseases and human pathogens, the elicitation of nutraceutical compounds, the modulation of ripening and senescence, and the induction of cross-stress tolerance. Besides the microbicide use of UV radiation, the effect that has received most attention is the elicitation of bioactive compounds as a defense mechanism. UV treatments have been shown to induce the accumulation of phytochemicals, including ascorbic acid, carotenoids, glucosinolates, and, more frequently, phenolic compounds. The nature and extent of this elicitation have been reported to depend on several factors, including the product type, maturity, cultivar, UV spectral region, dose, intensity, and radiation exposure pattern. Even though in recent years we have greatly increased our understanding of UV technology, some major issues still need to be addressed. These include defining the operational conditions to maximize UV radiation efficacy, reducing treatment times, and ensuring even radiation exposure, especially under realistic processing conditions. This will make UV treatments move beyond their status as an emerging technology and boost their adoption by industry. Full article
Show Figures

Figure 1

19 pages, 367 KiB  
Review
Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef
by Hannah Davis, Amelia Magistrali, Gillian Butler and Sokratis Stergiadis
Foods 2022, 11(5), 646; https://doi.org/10.3390/foods11050646 - 23 Feb 2022
Cited by 26 | Viewed by 14615
Abstract
Livestock production is under increasing scrutiny as a component of the food supply chain with a large impact on greenhouse gas emissions. Amidst growing calls to reduce industrial ruminant production, there is room to consider differences in meat quality and nutritional benefits of [...] Read more.
Livestock production is under increasing scrutiny as a component of the food supply chain with a large impact on greenhouse gas emissions. Amidst growing calls to reduce industrial ruminant production, there is room to consider differences in meat quality and nutritional benefits of organic and/or pasture-based management systems. Access to forage, whether fresh or conserved, is a key influencing factor for meat fatty acid profile, and there is increasing evidence that pasture access is particularly beneficial for meat’s nutritional quality. These composition differences ultimately impact nutrient supply to consumers of conventional, organic and grass-fed meat. For this review, predicted fatty acid supply from three consumption scenarios were modelled: i. average UK population National Diet and Nutrition Survey (NDNS) (<128 g/week) red meat consumption, ii. red meat consumption suggested by the UK National Health Service (NHS) (<490 g/week) and iii. red meat consumption suggested by the Eat Lancet Report (<98 g/week). The results indicate average consumers would receive more of the beneficial fatty acids for human health (especially the essential omega-3, alpha-linolenic acid) from pasture-fed beef, produced either organically or conventionally. Full article
18 pages, 1044 KiB  
Article
Evaluation of Nutraceutical Properties of Eleven Microalgal Strains Isolated from Different Freshwater Aquatic Environments: Perspectives for Their Application as Nutraceuticals
by Carolina Chiellini, Valentina Serra, Leandro Gammuto, Adriana Ciurli, Vincenzo Longo and Morena Gabriele
Foods 2022, 11(5), 654; https://doi.org/10.3390/foods11050654 - 23 Feb 2022
Cited by 10 | Viewed by 2264
Abstract
The increasing global population and the simultaneous growing attention to natural, sustainable, and healthier products are driving the food industry towards research on alternative food sources. In this scenario, microalgae are gaining worldwide attention as “functional feedstocks” for foods, feeds, supplements, and nutraceutical [...] Read more.
The increasing global population and the simultaneous growing attention to natural, sustainable, and healthier products are driving the food industry towards research on alternative food sources. In this scenario, microalgae are gaining worldwide attention as “functional feedstocks” for foods, feeds, supplements, and nutraceutical formulations, being a source of high-value metabolites including polyphenols and other antioxidant compounds. In this work, eleven microalgal strains from freshwater environments were evaluated for their nutraceutical properties, focusing on photosynthetic pigments, total polyphenols, and flavonoid content, as well as in vitro antioxidant activities. Data helped to select those strains showing the most promising features for simultaneous massive growth and bioactive compound production. Results highlighted that the microalgae have variable values for both biochemical parameters and antioxidant activities, mainly depending on the solvents and applied treatment rather than on the isolation sources or the phylogenetic attribution. According to our results, the putative best candidates for massive cultivation under laboratory conditions for the simultaneous extraction of different molecules with nutraceutical potential are strains F1 (Scenedesmaceae), F3 (Chlamydomonas debariana), R1 (Chlorella sorokiniana), and C2 (Chlorella-like). Full article
Show Figures

Graphical abstract

28 pages, 3094 KiB  
Review
Red Fruits Composition and Their Health Benefits—A Review
by Fernanda Cosme, Teresa Pinto, Alfredo Aires, Maria Cristina Morais, Eunice Bacelar, Rosário Anjos, Jorge Ferreira-Cardoso, Ivo Oliveira, Alice Vilela and Berta Gonçalves
Foods 2022, 11(5), 644; https://doi.org/10.3390/foods11050644 - 23 Feb 2022
Cited by 35 | Viewed by 7103
Abstract
The probability that fruit ingestion may protect human health is an intriguing vision and has been studied around the world. Therefore, fruits are universally promoted as healthy. Over the past few decades, the number of studies proposing a relationship between fruit intake and [...] Read more.
The probability that fruit ingestion may protect human health is an intriguing vision and has been studied around the world. Therefore, fruits are universally promoted as healthy. Over the past few decades, the number of studies proposing a relationship between fruit intake and reduced risk of major chronic diseases has continued to grow. Fruits supply dietary fiber, and fiber intake is linked to a lower incidence of cardiovascular disease and obesity. Fruits also supply vitamins and minerals to the diet and are sources of phytochemicals that function as phytoestrogens, antioxidant and anti-inflammatory agents, and other protective mechanisms. So, this review aims to summarize recent knowledge and describe the most recent research regarding the health benefits of some selected red fruits. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Graphical abstract

12 pages, 1244 KiB  
Review
The Dual Nature of Amaranth—Functional Food and Potential Medicine
by Justyna Baraniak and Małgorzata Kania-Dobrowolska
Foods 2022, 11(4), 618; https://doi.org/10.3390/foods11040618 - 21 Feb 2022
Cited by 26 | Viewed by 5176
Abstract
The beneficial health-promoting properties of plants have been known to mankind for generations. Preparations from them are used to create recipes for dietary supplements, functional food, and medicinal products. Recently, amaranth has become an area of increasing scientific and industrial interest. This is [...] Read more.
The beneficial health-promoting properties of plants have been known to mankind for generations. Preparations from them are used to create recipes for dietary supplements, functional food, and medicinal products. Recently, amaranth has become an area of increasing scientific and industrial interest. This is due to its valuable biological properties, rich phytochemical composition, and wide pharmacological activity. Amaranth is a pseudo-cereal crop with a dual character, combining the features of food and health-promoting product. This paper briefly and concisely reviews the current information on the chemical composition of amaranth, the value of its supplementation, the status of amaranth as a food ingredient as well as its key biological and pharmacological activities. The beneficial biological properties of amaranth preparations described in this paper may be an incentive to conduct further in-depth scientific research in this field and also to promote the development of innovative technologies in the food and cosmetics industry with the use of this plant. Full article
Show Figures

Graphical abstract

17 pages, 4093 KiB  
Article
A Machine Learning Method for the Quantitative Detection of Adulterated Meat Using a MOS-Based E-Nose
by Changquan Huang and Yu Gu
Foods 2022, 11(4), 602; https://doi.org/10.3390/foods11040602 - 20 Feb 2022
Cited by 26 | Viewed by 3224
Abstract
Meat adulteration is a global problem which undermines market fairness and harms people with allergies or certain religious beliefs. In this study, a novel framework in which a one-dimensional convolutional neural network (1DCNN) serves as a backbone and a random forest regressor (RFR) [...] Read more.
Meat adulteration is a global problem which undermines market fairness and harms people with allergies or certain religious beliefs. In this study, a novel framework in which a one-dimensional convolutional neural network (1DCNN) serves as a backbone and a random forest regressor (RFR) serves as a regressor, named 1DCNN-RFR, is proposed for the quantitative detection of beef adulterated with pork using electronic nose (E-nose) data. The 1DCNN backbone extracted a sufficient number of features from a multichannel input matrix converted from the raw E-nose data. The RFR improved the regression performance due to its strong prediction ability. The effectiveness of the 1DCNN-RFR framework was verified by comparing it with four other models (support vector regression model (SVR), RFR, backpropagation neural network (BPNN), and 1DCNN). The proposed 1DCNN-RFR framework performed best in the quantitative detection of beef adulterated with pork. This study indicated that the proposed 1DCNN-RFR framework could be used as an effective tool for the quantitative detection of meat adulteration. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

19 pages, 1841 KiB  
Review
Tiger Nut (Cyperus esculentus L.): Nutrition, Processing, Function and Applications
by Yali Yu, Xiaoyu Lu, Tiehua Zhang, Changhui Zhao, Shiyao Guan, Yiling Pu and Feng Gao
Foods 2022, 11(4), 601; https://doi.org/10.3390/foods11040601 - 19 Feb 2022
Cited by 39 | Viewed by 9061
Abstract
The tiger nut is the tuber of Cyperus esculentus L., which is a high-quality wholesome crop that contains lipids, protein, starch, fiber, vitamins, minerals and bioactive factors. This article systematically reviewed the nutritional composition of tiger nuts; the processing methods for extracting oil, [...] Read more.
The tiger nut is the tuber of Cyperus esculentus L., which is a high-quality wholesome crop that contains lipids, protein, starch, fiber, vitamins, minerals and bioactive factors. This article systematically reviewed the nutritional composition of tiger nuts; the processing methods for extracting oil, starch and other edible components; the physiochemical and functional characteristics; as well as their applications in food industry. Different extraction methods can affect functional and nutritional properties to a certain extent. At present, mechanical compression, alkaline methods and alkali extraction–acid precipitation are the most suitable methods for the production of its oil, starch and protein in the food industry, respectively. Based on traditional extraction methods, combination of innovative techniques aimed at yield and physiochemical characteristics is essential for the comprehensive utilization of nutrients. In addition, tiger nut has the radical scavenging ability, in vitro inhibition of lipid peroxidation, anti-inflammatory and anti-apoptotic effects and displays medical properties. It has been made to milk, snacks, beverages and gluten-free bread. Despite their ancient use for food and feed and the many years of intense research, tiger nuts and their components still deserve further exploitation on the functional properties, modifications and intensive processing to make them suitable for industrial production. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

17 pages, 1137 KiB  
Article
Use of Healthy Emulsion Hydrogels to Improve the Quality of Pork Burgers
by Danila Foggiaro, Rubén Domínguez, Mirian Pateiro, Aurora Cittadini, Paulo E. S. Munekata, Paulo C. B. Campagnol, Maria João Fraqueza, Pasquale De Palo and José M. Lorenzo
Foods 2022, 11(4), 596; https://doi.org/10.3390/foods11040596 - 18 Feb 2022
Cited by 20 | Viewed by 2559
Abstract
The present research evaluated the use of oil mixture emulsion hydrogels as animal fat replacers and their effect on the physicochemical, nutritional and sensory characteristics of pork burgers. Three different types of burgers were manufactured: control (samples elaborated with 100% pork fat), T1 [...] Read more.
The present research evaluated the use of oil mixture emulsion hydrogels as animal fat replacers and their effect on the physicochemical, nutritional and sensory characteristics of pork burgers. Three different types of burgers were manufactured: control (samples elaborated with 100% pork fat), T1 and T2 (pork fat totally replaced by emulsion hydrogels of walnut or pistachio oil and algal oil, respectively). Fat replacement increased the moisture and ash contents and colour parameters (L* and b*) of pork burgers. Modified samples turned out to be firmer and chewier than those in the control group. The addition of oil emulsion hydrogels caused a significant decrease in fat and energy contents and the products obtained can be considered “reduced fat content”. Moreover, the content of saturated fatty acids decreased, while mono- and polyunsaturated fatty acids increased, constituting an improvement in health indices. Sensory differences were found between the samples and T2 was the most preferred for flavour and overall. However, both modified burgers had good levels of acceptability. To conclude, the use of the proposed oil mixture emulsion hydrogels as pork backfat substitutes represents a promising strategy to obtain healthier pork burgers without negatively affecting technological or sensory properties. Full article
(This article belongs to the Special Issue Meat Quality and Health)
Show Figures

Figure 1

23 pages, 828 KiB  
Review
Functional Performance of Plant Proteins
by Kai Kai Ma, Maija Greis, Jiakai Lu, Alissa A. Nolden, David Julian McClements and Amanda J. Kinchla
Foods 2022, 11(4), 594; https://doi.org/10.3390/foods11040594 - 18 Feb 2022
Cited by 79 | Viewed by 13440
Abstract
Increasingly, consumers are moving towards a more plant-based diet. However, some consumers are avoiding common plant proteins such as soy and gluten due to their potential allergenicity. Therefore, alternative protein sources are being explored as functional ingredients in foods, including pea, chickpea, and [...] Read more.
Increasingly, consumers are moving towards a more plant-based diet. However, some consumers are avoiding common plant proteins such as soy and gluten due to their potential allergenicity. Therefore, alternative protein sources are being explored as functional ingredients in foods, including pea, chickpea, and other legume proteins. The factors affecting the functional performance of plant proteins are outlined, including cultivars, genotypes, extraction and drying methods, protein level, and preparation methods (commercial versus laboratory). Current methods to characterize protein functionality are highlighted, including water and oil holding capacity, protein solubility, emulsifying, foaming, and gelling properties. We propose a series of analytical tests to better predict plant protein performance in foods. Representative applications are discussed to demonstrate how the functional attributes of plant proteins affect the physicochemical properties of plant-based foods. Increasing the protein content of plant protein ingredients enhances their water and oil holding capacity and foaming stability. Industrially produced plant proteins often have lower solubility and worse functionality than laboratory-produced ones due to protein denaturation and aggregation during commercial isolation processes. To better predict the functional performance of plant proteins, it would be useful to use computer modeling approaches, such as quantitative structural activity relationships (QSAR). Full article
Show Figures

Figure 1

29 pages, 725 KiB  
Review
Polysaccharide-Based Edible Films Incorporated with Essential Oil Nanoemulsions: Physico-Chemical, Mechanical Properties and Its Application in Food Preservation—A Review
by Ianne Kong, Pascal Degraeve and Liew Phing Pui
Foods 2022, 11(4), 555; https://doi.org/10.3390/foods11040555 - 16 Feb 2022
Cited by 46 | Viewed by 5677
Abstract
Edible films with essential oils (EOs) are becoming increasingly popular as an alternative to synthetic packaging due to their environmentally friendly properties and ability as carriers of active compounds. However, the required amounts of EOs to impart effective antimicrobial properties generally exceed the [...] Read more.
Edible films with essential oils (EOs) are becoming increasingly popular as an alternative to synthetic packaging due to their environmentally friendly properties and ability as carriers of active compounds. However, the required amounts of EOs to impart effective antimicrobial properties generally exceed the organoleptic acceptance levels. However, by nanoemulsifying EOs, it is possible to increase their antimicrobial activity while reducing the amount required. This review provides an overview of the physico-chemical and mechanical properties of polysaccharide-based edible films incorporated with EOs nanoemulsions and of their application to the preservation of different food types. By incorporating EOs nanoemulsions into the packaging matrix, these edible films can help to extend the shelf-life of food products while also improving the quality and safety of the food product during storage. It can be concluded that these edible films have the potential to be used in the food industry as a green, sustainable, and biodegradable method for perishable foods preservation. Full article
Show Figures

Figure 1

18 pages, 1051 KiB  
Review
Aconitic Acid Recovery from Renewable Feedstock and Review of Chemical and Biological Applications
by Gillian O. Bruni and K. Thomas Klasson
Foods 2022, 11(4), 573; https://doi.org/10.3390/foods11040573 - 16 Feb 2022
Cited by 19 | Viewed by 3163
Abstract
Aconitic acid (propene-1,2,3-tricarboxylic acid) is the most prevalent 6-carbon organic acid that accumulates in sugarcane and sweet sorghum. As a top value-added chemical, aconitic acid may function as a chemical precursor or intermediate for high-value downstream industrial and biological applications. These downstream applications [...] Read more.
Aconitic acid (propene-1,2,3-tricarboxylic acid) is the most prevalent 6-carbon organic acid that accumulates in sugarcane and sweet sorghum. As a top value-added chemical, aconitic acid may function as a chemical precursor or intermediate for high-value downstream industrial and biological applications. These downstream applications include use as a bio-based plasticizer, cross-linker, and the formation of valuable and multi-functional polyesters that have also been used in tissue engineering. Aconitic acid also plays various biological roles within cells as an intermediate in the tricarboxylic acid cycle and in conferring unique survival advantages to some plants as an antifeedant, antifungal, and means of storing fixed pools of carbon. Aconitic acid has also been reported as a fermentation inhibitor, anti-inflammatory, and a potential nematicide. Since aconitic acid can be sustainably sourced from renewable, inexpensive sources such as sugarcane, molasses, and sweet sorghum syrup, there is enormous potential to provide multiple streams of additional income to the sugar industry through downstream industrial and biological applications that we discuss in this review. Full article
Show Figures

Graphical abstract

13 pages, 1864 KiB  
Article
Metabolomic Analysis Reveals Nutritional Diversity among Three Staple Crops and Three Fruits
by Yunxia Shi, Yanxiu Guo, Yuhui Wang, Mingyang Li, Kang Li, Xianqing Liu, Chuanying Fang and Jie Luo
Foods 2022, 11(4), 550; https://doi.org/10.3390/foods11040550 - 15 Feb 2022
Cited by 18 | Viewed by 2685
Abstract
More than 2 billion people worldwide are under threat of nutritional deficiency. Thus, an in-depth comprehension of the nutritional composition of staple crops and popular fruits is essential for health. Herein, we performed LC-MS-based non-targeted and targeted metabolome analyses with crops (including wheat, [...] Read more.
More than 2 billion people worldwide are under threat of nutritional deficiency. Thus, an in-depth comprehension of the nutritional composition of staple crops and popular fruits is essential for health. Herein, we performed LC-MS-based non-targeted and targeted metabolome analyses with crops (including wheat, rice, and corn) and fruits (including grape, banana, and mango). We detected a total of 2631 compounds by using non-targeted strategy and identified more than 260 nutrients. Our work discovered species-dependent accumulation of common present nutrients in crops and fruits. Although rice and wheat lack vitamins and amino acids, sweet corn was rich in most amino acids and vitamins. Among the three fruits, mango had more vitamins and amino acids than grape and banana. Grape and banana provided sufficient 5-methyltetrahydrofolate and vitamin B6, respectively. Moreover, rice and grape had a high content of flavonoids. In addition, the three crops contained more lipids than fruits. Furthermore, we also identified species-specific metabolites. The crops yielded 11 specific metabolites, including flavonoids, lipids, and others. Meanwhile, most fruit-specific nutrients were flavonoids. Our work discovered the complementary pattern of essential nutrients in crops and fruits, which provides metabolomic evidence for a healthy diet. Full article
(This article belongs to the Special Issue Omics Technologies in Food Science)
Show Figures

Figure 1

18 pages, 1136 KiB  
Review
Strategies for Biocontrol of Listeria monocytogenes Using Lactic Acid Bacteria and Their Metabolites in Ready-to-Eat Meat- and Dairy-Ripened Products
by Irene Martín, Alicia Rodríguez, Josué Delgado and Juan J. Córdoba
Foods 2022, 11(4), 542; https://doi.org/10.3390/foods11040542 - 14 Feb 2022
Cited by 26 | Viewed by 4245
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens. This microorganism is a serious concern in the ready-to-eat (RTE) meat and dairy-ripened products industries. The use of lactic acid bacteria (LAB)-producing anti-L. monocytogenes peptides (bacteriocins) and/or lactic acid and/or other antimicrobial [...] Read more.
Listeria monocytogenes is one of the most important foodborne pathogens. This microorganism is a serious concern in the ready-to-eat (RTE) meat and dairy-ripened products industries. The use of lactic acid bacteria (LAB)-producing anti-L. monocytogenes peptides (bacteriocins) and/or lactic acid and/or other antimicrobial system could be a promising tool to control this pathogen in RTE meat and dairy products. This review provides an up to date about the strategies of use of LAB and their metabolites in RTE meat products and dairy foods by selecting the most appropriate strains, by analysing the mechanism by which they inhibit L. monocytogenes and methods of effective application of LAB, and their metabolites in these kinds of products to control this pathogen throughout the processing and storage. The selection of LAB with anti-L. monocytogenes activity allows to dispose of effective strains in meat and dairy-ripened products, achieving reductions form 2–5 logarithmic cycles of this pathogen throughout the ripening process. The combination of selected LAB strains with antimicrobial compounds, such as acid/sodium lactate and other strategies, as the active packaging could be the next future innovation for eliminating risk of L. monocytogenes in meat and dairy-ripened products. Full article
(This article belongs to the Special Issue Biotechnology Approaches in Food Preservation and Food Safety)
Show Figures

Graphical abstract

15 pages, 608 KiB  
Review
Maillard Reaction Induced Changes in Allergenicity of Food
by Jingkun Gou, Rui Liang, Houjin Huang and Xiaojuan Ma
Foods 2022, 11(4), 530; https://doi.org/10.3390/foods11040530 - 12 Feb 2022
Cited by 19 | Viewed by 2994
Abstract
Food allergy is increasing in prevalence, posing aheavier social and financial burden. At present, there is still no widely accepted treatment for it. Methods to reduce or eliminate the allergenicity of trigger foods are urgently needed. Technological processing contributes to producing some hypoallergenic [...] Read more.
Food allergy is increasing in prevalence, posing aheavier social and financial burden. At present, there is still no widely accepted treatment for it. Methods to reduce or eliminate the allergenicity of trigger foods are urgently needed. Technological processing contributes to producing some hypoallergenic foods. Among the processing methods, the Maillard reaction (MR) is popular because neither special chemical materials nor sophisticated equipment is needed. MR may affect the allergenicity of proteins by disrupting the conformational epitope, disclosing the hidden epitope, masking the linear epitope, and/or forming a new epitope. Changes in the allergenicity of foods after processing are affected by various factors, such as the characteristics of the allergen, the processing parameters, and the processing matrix, and they are therefore variable and difficult to predict. This paper reviews the effects of MR on the allergenicity of each allergen group from common allergenic foods. Full article
(This article belongs to the Special Issue Food Intolerances, Allergies, and Celiac Disease)
Show Figures

Figure 1

16 pages, 2576 KiB  
Article
Impact of Enzymatic Hydrolysis and Heat Inactivation on the Physicochemical Properties of Milk Protein Hydrolysates
by Alice Gruppi, Maria Dermiki, Giorgia Spigno and Richard J. FitzGerald
Foods 2022, 11(4), 516; https://doi.org/10.3390/foods11040516 - 11 Feb 2022
Cited by 16 | Viewed by 3323
Abstract
This study determined the physicochemical properties (apparent viscosity (ηapp), turbidity (A550nm), particle size and molecular mass distribution) of hydrolysates generated from whey protein concentrate (WPC), milk protein concentrate (MPC) and sodium caseinate (NaCN), following incubation with Debitrase HYW20™ and [...] Read more.
This study determined the physicochemical properties (apparent viscosity (ηapp), turbidity (A550nm), particle size and molecular mass distribution) of hydrolysates generated from whey protein concentrate (WPC), milk protein concentrate (MPC) and sodium caseinate (NaCN), following incubation with Debitrase HYW20™ and Prolyve™ at 50 °C, pH 7.0 for 1 and 4 h, before and after heat inactivation (80 °C for 10 min). The degree of hydrolysis (DH) increased with incubation time, giving values of 6.56%, 8.17% and 9.48%, following 1 h hydrolysis of WPC, MPC and NaCN with Debitrase HYW20™, and 12.04%, 15.74% and 17.78%, respectively, following 4 h incubation. These DHs were significantly higher compared to those obtained following 4 h incubation with Prolyve™. Hydrolysis with Debitrase HYW20™ gave >40% of peptides with molecular masses < 1 kDa for all substrates, which was higher than the value obtained following hydrolysis with Prolyve™. The effect of hydrolysis on the physicochemical properties was substrate dependent, since ηapp decreased in WPC and NaCN hydrolysates, particle size decreased for all the substrates, with aggregate formation for MPC, and turbidity decreased in WPC and MPC hydrolysates, while it increased in NaCN hydrolysates. The physical properties of the hydrolysates were influenced by the enzyme thermal inactivation step in a DH-dependent manner, with no significant effect on turbidity and viscosity for hydrolysates at higher DHs. Full article
Show Figures

Figure 1

13 pages, 793 KiB  
Article
The Impact of COVID-19 on Food Consumption and Dietary Quality of Rural Households in China
by Xu Tian, Ying Zhou and Hui Wang
Foods 2022, 11(4), 510; https://doi.org/10.3390/foods11040510 - 10 Feb 2022
Cited by 15 | Viewed by 2772
Abstract
The COVID-19 pandemic disrupted the food supply chain and thus threatened the food security of many people, while the impact of the pandemic on food consumption of people living in rural areas is still unknown. This study filled in the research gaps by [...] Read more.
The COVID-19 pandemic disrupted the food supply chain and thus threatened the food security of many people, while the impact of the pandemic on food consumption of people living in rural areas is still unknown. This study filled in the research gaps by employing a three-wave food consumption survey from 2019 to 2021 conducted in rural China. We adopted a random effect model and Poisson regression to quantify the short-run and long-run impacts of COVID-19 on rural households’ food consumption and dietary quality. We found that rural households increased the consumption of vegetables, aquaculture products and legumes in the short-run, and these changes in consumption behavior even lasted 1 year after lockdown was lifted. However, the positive impact was much smaller in households not engaged in agricultural production. In addition, our results showed that COVID-19 decreased dietary diversity but increased dietary quality for households still engaged in food-related agriculture production. Our study indicated that COVID-19 did not threaten the food security status of rural families in China. On the contrary, rural families, particularly those still engaged in agricultural production, increased the consumption of several foods to strengthen their resistance against the virus. Full article
(This article belongs to the Special Issue Food Consumption Behavior during the COVID-19 Pandemic)
Show Figures

Figure 1

19 pages, 1206 KiB  
Review
The Extraction of β-Carotene from Microalgae for Testing Their Health Benefits
by Jing Wang, Xinge Hu, Junbin Chen, Tiannan Wang, Xianju Huang and Guoxun Chen
Foods 2022, 11(4), 502; https://doi.org/10.3390/foods11040502 - 10 Feb 2022
Cited by 23 | Viewed by 5545
Abstract
β-carotene, a member of the carotenoid family, is a provitamin A, and can be converted into vitamin A (retinol), which plays essential roles in the regulation of physiological functions in animal bodies. Microalgae synthesize a variety of carotenoids including β-carotene and are a [...] Read more.
β-carotene, a member of the carotenoid family, is a provitamin A, and can be converted into vitamin A (retinol), which plays essential roles in the regulation of physiological functions in animal bodies. Microalgae synthesize a variety of carotenoids including β-carotene and are a rich source of natural β-carotene. This has attracted the attention of researchers in academia and the biotech industry. Methods to enrich or purify β-carotene from microalgae have been investigated, and experiments to understand the biological functions of microalgae products containing β-carotene have been conducted. To better understand the use of microalgae to produce β-carotene and other carotenoids, we have searched PubMed in August 2021 for the recent studies that are focused on microalgae carotenoid content, the extraction methods to produce β-carotene from microalgae, and the bioactivities of β-carotene from microalgae. Articles published in peer-reviewed scientific journals were identified, screened, and summarized here. So far, various types and amounts of carotenoids have been identified and extracted in different types of microalgae. Diverse methods have been developed overtime to extract β-carotene efficiently and practically from microalgae for mass production. It appears that methods have been developed to simplify the steps and extract β-carotene directly and efficiently. Multiple studies have shown that extracts or whole organism of microalgae containing β-carotene have activities to promote lifespan in lab animals and reduce oxidative stress in culture cells, etc. Nevertheless, more studies are warranted to study the health benefits and functional mechanisms of β-carotene in these microalgae extracts, which may benefit human and animal health in the future. Full article
Show Figures

Figure 1

18 pages, 1181 KiB  
Review
Modern Processing of Indian Millets: A Perspective on Changes in Nutritional Properties
by N. A. Nanje Gowda, Kaliramesh Siliveru, P. V. Vara Prasad, Yogita Bhatt, B. P. Netravati and Chennappa Gurikar
Foods 2022, 11(4), 499; https://doi.org/10.3390/foods11040499 - 09 Feb 2022
Cited by 42 | Viewed by 15648
Abstract
Globally, billions of people are experiencing food insecurity and malnutrition. The United Nations has set a global target to end hunger by 2030, but we are far from reaching it. Over the decade, climate change, population growth and economic slowdown have impacted food [...] Read more.
Globally, billions of people are experiencing food insecurity and malnutrition. The United Nations has set a global target to end hunger by 2030, but we are far from reaching it. Over the decade, climate change, population growth and economic slowdown have impacted food security. Many countries are facing the challenge of both undernutrition and over nutrition. Thus, there is a need to transform the food system to achieve food and nutrition security. One of the ways to reach closer to our goal is to provide an affordable healthy and nutritious diet to all. Millets, the nutri-cereals, have the potential to play a crucial role in the fight against food insecurity and malnutrition. Nutri-cereals are an abundant source of essential macro- and micronutrients, carbohydrates, protein, dietary fiber, lipids, and phytochemicals. The nutrient content and digestibility of millets are significantly influenced by the processing techniques. This review article highlights the nutritional characteristics and processing of Indian millets, viz. foxtail, kodo, proso, little, and pearl millets. It also envisages the effect of traditional and modern processing techniques on millet’s nutritional properties. An extensive literature review was conducted using the research and review articles related to processing techniques of millets such as fermentation, germination, dehulling, extrusion, cooking, puffing, popping, malting, milling, etc. Germination and fermentation showed a positive improvement in the overall nutritional characteristics of millets, whereas excessive dehulling, polishing, and milling resulted in reduction of the dietary fiber and micronutrients. Understanding the changes happening in the nutrient value of millets due to processing can help the food industry, researchers, and consumers select a suitable processing technique to optimize the nutrient value, increase the bioavailability of nutrients, and help combat food and nutrition security. Full article
Show Figures

Figure 1

12 pages, 2173 KiB  
Article
Characterization of the Reduced IgE Binding Capacity in Boiled and Autoclaved Soybeans through Proteomic Approaches
by Xiaowen Pi, Yuxue Sun, Xiaomin Deng, Dawei Xin, Jianjun Cheng and Mingruo Guo
Foods 2022, 11(3), 479; https://doi.org/10.3390/foods11030479 - 07 Feb 2022
Cited by 10 | Viewed by 1889
Abstract
The study investigated the changes in IgE binding capacity, protein profiles and peptide compositions after soybeans were boiled and autoclaved. The results of ELISA showed that the IgE binding capacity of soybean was reduced by 69.3% and 88.9% after boiling and autoclaving, respectively. [...] Read more.
The study investigated the changes in IgE binding capacity, protein profiles and peptide compositions after soybeans were boiled and autoclaved. The results of ELISA showed that the IgE binding capacity of soybean was reduced by 69.3% and 88.9% after boiling and autoclaving, respectively. Above 43 and 10 kDa proteins disappeared in boiled and autoclaved soybeans from SDS-PAGE, respectively. A Venn diagram and heat map showed that there was no change in allergen types and a reduction in allergen contents in the boiled and autoclaved soybeans. The changes in peptide compositions were also observed in the boiled and autoclaved soybeans through Venn diagram, PCA and heat map. LC/MS-MS and peptide mapping analysis demonstrated that boiling and autoclaving masked many epitopes in Gly m 4 and Gly m 5, such as ALVTDADNVIPK, SVENVEGNGGPGTIKK and KITFLEDGETK of Gly m 4 and VEKEECEEGEIPRPRPRPQHPER of Gly m 5, resulting in a reduction of IgE binding capacity in the extracted proteins. By contrast, the exposure of many epitopes in Gly m 6 was observed in boiled and autoclaved soybeans, which might be mainly responsible for the existing IgE binding capacity in the treated soybean proteins. Interestingly, the IgE binding capacity of soybeans showed a positive correlation with the total contents and number of peptides in Gly m 4–Gly m 6. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

18 pages, 9535 KiB  
Review
Gluten-Free Bread and Bakery Products Technology
by Zuzana Šmídová and Jana Rysová
Foods 2022, 11(3), 480; https://doi.org/10.3390/foods11030480 - 07 Feb 2022
Cited by 40 | Viewed by 16121
Abstract
Gluten, a protein fraction from wheat, rye, barley, oats, their hybrids and derivatives, is very important in baking technology. The number of people suffering from gluten intolerance is growing worldwide, and at the same time, the need for foods suitable for a gluten-free [...] Read more.
Gluten, a protein fraction from wheat, rye, barley, oats, their hybrids and derivatives, is very important in baking technology. The number of people suffering from gluten intolerance is growing worldwide, and at the same time, the need for foods suitable for a gluten-free diet is increasing. Bread and bakery products are an essential part of the daily diet. Therefore, new naturally gluten-free baking ingredients and new methods of processing traditional ingredients are sought. The study discusses the use of additives to replace gluten and ensure the stability and elasticity of the dough, to improve the nutritional quality and sensory properties of gluten-free bread. The current task is to extend the shelf life of gluten-free bread and bakery products and thus extend the possibility of its distribution in a fresh state. This work is also focused on various technological possibilities of gluten-free bread and the preparation of bakery products. Full article
Show Figures

Figure 1

15 pages, 1840 KiB  
Article
The Effect of Breed and Age on the Growth Performance, Carcass Traits and Metabolic Profile in Breast Muscle of Chinese Indigenous Chickens
by Shaolin Deng, Tong Xing, Chunbao Li, Xinglian Xu and Guanghong Zhou
Foods 2022, 11(3), 483; https://doi.org/10.3390/foods11030483 - 07 Feb 2022
Cited by 20 | Viewed by 2801
Abstract
Indigenous chickens possess desirable characteristics and account for considerable proportions of the total chicken production in China. The current study examined the growth performance, carcass characteristics and muscle metabolites among a crossbred broiler and two indigenous, yellow-feathered chickens (Mahuang and Tuer) with different [...] Read more.
Indigenous chickens possess desirable characteristics and account for considerable proportions of the total chicken production in China. The current study examined the growth performance, carcass characteristics and muscle metabolites among a crossbred broiler and two indigenous, yellow-feathered chickens (Mahuang and Tuer) with different ages (60 and 75 days). Results indicated that the crossbred broiler had better feed efficiency, higher breast and thigh muscle yield, as well as a lower abdominal fat percentage than Mahuang and Tuer chickens (p < 0.05). Gas chromatography–mass spectrometry-based metabolomics and multivariate analysis revealed sugars, amino acids and organic acids were the predominant metabolites that differed among the three chicken breeds. Growth performance and carcass traits of yellow-feathered chickens exhibited significant differences with the extension of the feeding period (p < 0.05). Moreover, differential metabolites reflected altered aminoacyl-tRNA biosynthesis, ATP-binding cassette transporters, pantothenate and CoA biosynthesis, as well as glutathione metabolism in yellow-feathered chickens affected by age. Collectively, this study contributes to a deeper understanding of the production efficiency and chemical composition of precursor flavor in Chinese indigenous, yellow-feathered chicken. Full article
(This article belongs to the Special Issue Advances in Flavor of Meat and Meat Products)
Show Figures

Figure 1

17 pages, 3129 KiB  
Article
3D Printing of Textured Soft Hybrid Meat Analogues
by Tianxiao Wang, Lovedeep Kaur, Yasufumi Furuhata, Hiroaki Aoyama and Jaspreet Singh
Foods 2022, 11(3), 478; https://doi.org/10.3390/foods11030478 - 06 Feb 2022
Cited by 29 | Viewed by 6461
Abstract
Meat analogue is a food product mainly made of plant proteins. It is considered to be a sustainable food and has gained a lot of interest in recent years. Hybrid meat is a next generation meat analogue prepared by the co-processing of both [...] Read more.
Meat analogue is a food product mainly made of plant proteins. It is considered to be a sustainable food and has gained a lot of interest in recent years. Hybrid meat is a next generation meat analogue prepared by the co-processing of both plant and animal protein ingredients at different ratios and is considered to be nutritionally superior to the currently available plant-only meat analogues. Three-dimensional (3D) printing technology is becoming increasingly popular in food processing. Three-dimensional food printing involves the modification of food structures, which leads to the creation of soft food. Currently, there is no available research on 3D printing of meat analogues. This study was carried out to create plant and animal protein-based formulations for 3D printing of hybrid meat analogues with soft textures. Pea protein isolate (PPI) and chicken mince were selected as the main plant protein and meat sources, respectively, for 3D printing tests. Then, rheology and forward extrusion tests were carried out on these selected samples to obtain a basic understanding of their potential printability. Afterwards, extrusion-based 3D printing was conducted to print a 3D chicken nugget shape. The addition of 20% chicken mince paste to PPI based paste achieved better printability and fibre structure. Full article
(This article belongs to the Special Issue Processing Foods to Design Structures for Optimal Functionality)
Show Figures

Graphical abstract

25 pages, 4478 KiB  
Review
Economic Impact of Temperature Control during Food Transportation—A COVID-19 Perspective
by Eulalia Skawińska and Romuald I. Zalewski
Foods 2022, 11(3), 467; https://doi.org/10.3390/foods11030467 - 04 Feb 2022
Cited by 21 | Viewed by 4179
Abstract
Temperature fluctuation and abuse in the food cold chain (FCC) is becoming an increasingly crucial factor in the process of food production and for the logistic business, especially in COVID-19 pandemic. The quality of perishable food products depends largely on accurate transport and [...] Read more.
Temperature fluctuation and abuse in the food cold chain (FCC) is becoming an increasingly crucial factor in the process of food production and for the logistic business, especially in COVID-19 pandemic. The quality of perishable food products depends largely on accurate transport and maintenance temperature. The evidence for temperature-related food waste and loss is extensive. The research problem is thus: how to decrease and control food losses caused by temperature abuse in the FCC and restrictions due to the COVID-19 pandemic. The primary objective is to propose a framework for real-time temperature measurement protocols supported by passive RFID, IoT and Statistical Process Control (SPC) charts. This method allows not only the signaling of temperature abuse alerts but, in addition to hitherto methods, investigation and mitigation of the causes of process instability of individual FCC links in the future. The secondary objective is to delineate the necessary data sources and ways of their collection and utilization in order to decrease food losses and waste via process stabilization of temperature in transport and storage. As contribution to current literature and practice, we offer an in-depth analysis of threats in the FCC in food transport and storage infrastructure and a solution supplemented by SPC charts and tested in controlled experiments that is practicable from economic and technical standpoints. Full article
(This article belongs to the Special Issue Water and Food Safety during COVID-19 Pandemic)
Show Figures

Figure 1

26 pages, 1506 KiB  
Review
Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry
by Manasweeta Angane, Simon Swift, Kang Huang, Christine A. Butts and Siew Young Quek
Foods 2022, 11(3), 464; https://doi.org/10.3390/foods11030464 - 04 Feb 2022
Cited by 112 | Viewed by 9949
Abstract
A novel alternative to synthetic preservatives is the use of natural products such as essential oil (EO) as a natural food-grade preservative. EOs are Generally Recognized as Safe (GRAS), so they could be considered an alternative way to increase the shelf-life of highly [...] Read more.
A novel alternative to synthetic preservatives is the use of natural products such as essential oil (EO) as a natural food-grade preservative. EOs are Generally Recognized as Safe (GRAS), so they could be considered an alternative way to increase the shelf-life of highly perishable food products by impeding the proliferation of food-borne pathogens. The mounting interest within the food industry and consumer preference for “natural” and “safe” products means that scientific evidence on plant-derived essential oils (EOs) needs to be examined in-depth, including the underlying mechanisms of action. Understanding the mechanism of action that individual components of EO exert on the cell is imperative to design strategies to eradicate food-borne pathogens. Results from published works showed that most EOs are more active against Gram-positive bacteria than Gram-negative bacteria due to the difference in the cell wall structure. In addition, the application of EOs at a commercial scale has been minimal, as their flavour and odour could be imparted to food. This review provides a comprehensive summary of the research carried out on EOs, emphasizing the antibacterial activity of fruit peel EOs, and the antibacterial mechanism of action of the individual components of EOs. A brief outline of recent contributions of EOs in the food matrix is highlighted. The findings from the literature have been encouraging, and further research is recommended to develop strategies for the application of EO at an industrial scale. Full article
Show Figures

Figure 1

18 pages, 2240 KiB  
Article
Plant and Dairy-Based Yogurts: A Comparison of Consumer Sensory Acceptability Linked to Textural Analysis
by Mitali K. Gupta, Damir D. Torrico, Lydia Ong, Sally L. Gras, Frank R. Dunshea and Jeremy J. Cottrell
Foods 2022, 11(3), 463; https://doi.org/10.3390/foods11030463 - 04 Feb 2022
Cited by 23 | Viewed by 6752
Abstract
Yogurt, readily available in plant and dairy-based formulations, is widely consumed and linked with health benefits. This research is aimed to understand the sensory and textural spectrum of commercially available dairy and plant-based yogurts. In a preliminary study, qualitative focus group discussions (4 [...] Read more.
Yogurt, readily available in plant and dairy-based formulations, is widely consumed and linked with health benefits. This research is aimed to understand the sensory and textural spectrum of commercially available dairy and plant-based yogurts. In a preliminary study, qualitative focus group discussions (4 groups; n = 32) were used to determine perceptions of 28 dairy and plant-based yogurts, identifying positive consumer perceptions of plant-based yogurts. A smaller subset of five spoonable and one drinkable yogurts—(Reference, Soy, Coconut, Cookies, Berry, and Drinkable) was subsequently selected for rheological and structural measurements, showing wide variations in the microstructure and rheology of selected yogurt samples. A quantitative blind sensory tasting (n = 117) showed varying yogurt acceptability, with Berry being the least-liked and Cookies being the most-liked yogurt, in terms of overall liking. The multi-factor analysis confirmed that compositional and textural elements, including protein content, gel firmness, and consistency coefficient, displayed a positive relationship with overall liking. In contrast, fat, sugar, and calories were negatively correlated to the overall liking. This research showed that texture and other compositional factors are significant determinants of the consumer acceptability of yogurt products and are essential properties to consider in product development. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Graphical abstract

19 pages, 1208 KiB  
Article
Microbial Ecology of Sheep Milk, Artisanal Feta, and Kefalograviera Cheeses. Part II: Technological, Safety, and Probiotic Attributes of Lactic Acid Bacteria Isolates
by Markella Tsigkrimani, Konstantina Panagiotarea, Spiros Paramithiotis, Loulouda Bosnea, Eleni Pappa, Eleftherios H. Drosinos, Panagiotis N. Skandamis and Marios Mataragas
Foods 2022, 11(3), 459; https://doi.org/10.3390/foods11030459 - 03 Feb 2022
Cited by 17 | Viewed by 2279
Abstract
The aim of the present study was to examine 189 LAB strains belonging to the species Enterococcus faecium, E. faecalis, Lactococcus lactis, Pediococcus pentosaceus, Leuconostoc mesenteroides, Lactiplantibacillus pentosus, Latilactobacillus curvatus, Lp. plantarum, Levilactobacillus brevis, [...] Read more.
The aim of the present study was to examine 189 LAB strains belonging to the species Enterococcus faecium, E. faecalis, Lactococcus lactis, Pediococcus pentosaceus, Leuconostoc mesenteroides, Lactiplantibacillus pentosus, Latilactobacillus curvatus, Lp. plantarum, Levilactobacillus brevis, and Weissella paramesenteroides isolated form sheep milk, Feta and Kefalograviera cheeses at different ripening stages, for their technological compatibility with dairy products manufacturing, their activities that may compromise safety of the dairy products as well as their capacity to survive in the human gastrointestinal tract. For that purpose, milk acidification and coagulation capacity, caseinolytic, lipolytic, hemolytic, gelatinolytic, and bile salt hydrolase activity, production of exopolysaccharides, antimicrobial compounds, and biogenic amines, as well as acid and bile salt tolerance and antibiotic susceptibility were examined. The faster acidifying strains were Lc. lactis DRD 2658 and P. pentosaceus DRD 2657 that reduced the pH value of skim milk, within 6 h to 5.97 and 5.92, respectively. Strains able to perform weak caseinolysis were detected in all species assessed. On the contrary, lipolytic activity, production of exopolysaccharides, amino acid decarboxylation, hemolytic, gelatinase, and bile salt hydrolase activity were not detected. Variable susceptibility to the antibiotics examined was detected among LAB strains. However, in the majority of the cases, resistance was evident. None of the strains assessed, managed to survive to exposure at pH value 1. On the contrary, 25.9 and 88.9% of the strains survived after exposure at pH values 2 and 3, respectively; the reduction of the population was larger in the first case. The strains survived well after exposure to bile salts. The strain-dependent character of the properties examined was verified. Many strains, belonging to different species, have presented very interesting properties; however, further examination is needed before their potential use as starter or adjunct cultures. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

12 pages, 620 KiB  
Review
Exploring the Future of Edible Insects in Europe
by Simone Mancini, Giovanni Sogari, Salomon Espinosa Diaz, Davide Menozzi, Gisella Paci and Roberta Moruzzo
Foods 2022, 11(3), 455; https://doi.org/10.3390/foods11030455 - 03 Feb 2022
Cited by 47 | Viewed by 7881
Abstract
The effects of population increase and food production on the environment have prompted various international organizations to focus on the future potential for more environmentally friendly and alternative protein products. One of those alternatives might be edible insects. Entomophagy, the practice of eating [...] Read more.
The effects of population increase and food production on the environment have prompted various international organizations to focus on the future potential for more environmentally friendly and alternative protein products. One of those alternatives might be edible insects. Entomophagy, the practice of eating insects by humans, is common in some places but has traditionally been shunned in others, such as European countries. The last decade has seen a growing interest from the public and private sectors to the research in the sphere of edible insects, as well as significant steps forward from the legislative perspective. In the EU, edible insects are considered novel foods, therefore a specific request and procedure must be followed to place them in the market; in fact, until now, four requests regarding insects as a novel food have been approved. Insects could also be used as feed for livestock, helping to increase food production without burdening the environment (indirect entomophagy). Market perspectives for the middle of this decade indicate that most of the demand will be from the feed sector (as pet food or livestock feed production). Undoubtedly, this sector is gaining momentum and its potential relies not only in food, but also in feed in the context of a circular economy. Full article
(This article belongs to the Special Issue Innovations in the Food System: Exploring the Future of Food)
Show Figures

Figure 1

15 pages, 4768 KiB  
Article
Effect and Mechanism of Acid-Induced Soy Protein Isolate Gels as Influenced by Cellulose Nanocrystals and Microcrystalline Cellulose
by Xueqi Jin, Ruijing Qu, Yong Wang, Dong Li and Lijun Wang
Foods 2022, 11(3), 461; https://doi.org/10.3390/foods11030461 - 03 Feb 2022
Cited by 15 | Viewed by 2409
Abstract
The effects of cellulose nanocrystals (CNC) and microcrystalline cellulose (MCC) on the gel properties and microstructure of glucono-δ-lactone-induced soy protein isolate (SPI) gels were investigated. The water-holding capacity, gel strength, and viscoelastic modulus of CNC–SPI gels were positively associated with CNC concentration from [...] Read more.
The effects of cellulose nanocrystals (CNC) and microcrystalline cellulose (MCC) on the gel properties and microstructure of glucono-δ-lactone-induced soy protein isolate (SPI) gels were investigated. The water-holding capacity, gel strength, and viscoelastic modulus of CNC–SPI gels were positively associated with CNC concentration from 0 to 0.75% (w/v). In contrast, MCC–SPI gels exhibited decreased water-holding capacity, gel strength, and viscoelastic modulus. All composite gels displayed high frequency dependence and the typical type I (strain thinning) network behavior. Changes in viscoelasticity under large strain were correlated with differences in the microstructure of SPI composite gels. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) showed that CNC were more evenly and steadily distributed in the protein matrix and formed a compact network structure. In contrast, MCC–SPI gels exhibited a discontinued and rough gel network with some large aggregates and pores, in which MCC was randomly entrapped. Fourier transform infrared spectroscopy (FTIR) and molecular forces results revealed that no new chemical bonds were formed in the gelation process and that the disulfide bond was of crucial importance in the gel system. With the addition of CNC, electrostatic interactions, hydrophobic interactions, and hydrogen bonds in the SPI gel network were significantly strengthened. However, the incorporation of MCC might obstruct the connection of the protein network. It is concluded that both cellulose type and concentration affect gelling properties. Full article
Show Figures

Figure 1

22 pages, 2025 KiB  
Article
Millennials’ Consumption of and Attitudes toward Meat and Plant-Based Meat Alternatives by Consumer Segment in Finland
by Antti Knaapila, Fabienne Michel, Kirsi Jouppila, Tuula Sontag-Strohm and Vieno Piironen
Foods 2022, 11(3), 456; https://doi.org/10.3390/foods11030456 - 03 Feb 2022
Cited by 24 | Viewed by 6995
Abstract
Millennials are considered the key generation with regard to the consumption of plant-based meat alternatives via flexitarianism. This study sought to characterize millennials’ consumer segments based on their consumption of and attitudes toward meat and meat alternatives. We conducted an online survey on [...] Read more.
Millennials are considered the key generation with regard to the consumption of plant-based meat alternatives via flexitarianism. This study sought to characterize millennials’ consumer segments based on their consumption of and attitudes toward meat and meat alternatives. We conducted an online survey on the hedonic tones of the associations evoked by meat and meat alternatives, consumption of such foods, and diet-related attitudes among a representative sample of Finnish millennials (N = 546, 59% women, age 20–39 years). Some 41% of respondents regularly ate plant-based meat alternatives, while 43% had tried such foods. We divided the respondents into six segments based on the hedonic tones of their meat vs. meat alternatives associations. The segments differed in terms of their consumption of meat alternatives and the underlying reasons why, importance of meat in meals, and Meat Commitment Scale scores. The segment that reported much more positive associations with meat than meat alternatives (~14% of the respondents) may prove resistant to interventions intended to reduce meat intake, whereas the segment that displayed the most positive attitudes toward meat alternatives (~18%) did not eat much meat. Thus, the four middle segments (totaling ~68%), whose associations’ hedonic tones were close to each other, may be the best targets for future interventions designed to reduce meat consumption through the use of meat alternatives. To conclude, introducing a simple segmentation allowed us to identify consumer segments with large potential to reduce meat consumption. Full article
(This article belongs to the Special Issue Sensory and Consumer Research for a Sustainable Food System)
Show Figures

Figure 1

14 pages, 2913 KiB  
Article
Antioxidant Potential of Cookies Formulated with Date Seed Powder
by Zein Najjar, Jaleel Kizhakkayil, Hira Shakoor, Carine Platat, Constantinos Stathopoulos and Meththa Ranasinghe
Foods 2022, 11(3), 448; https://doi.org/10.3390/foods11030448 - 03 Feb 2022
Cited by 27 | Viewed by 4231
Abstract
Utilising major waste products from the food industry can have both a great environmental impact and be a means to improve consumer health. Date seed is a food industry byproduct that has been proven to have high nutritional value. The aim of this [...] Read more.
Utilising major waste products from the food industry can have both a great environmental impact and be a means to improve consumer health. Date seed is a food industry byproduct that has been proven to have high nutritional value. The aim of this work was to measure the total polyphenolic content (TPC), flavonoids, and antioxidant activity of the seeds of six date fruit varieties, Fard, Khalas, Khinaizi, Sukkary, Shaham, and Zahidi, and to use those seeds to enhance the antioxidant value of cookies by partially substituting flour with ground date seed. Date seed powder (DSP) was extracted at three levels of sample to solvent ratio (5:1, 10:1 and 15:1 mg/mL). Cookies were prepared using three substitution levels of wheat flour (2.5, 5.0, and 7.5%, w/w) by DSP and two types of flour (white and whole wheat), and were baked at two different temperatures, 180 and 200 °C. The composite cookies were found to contain a significant amount of TPC and flavonoids, and showed increased antioxidant activity compared with the control samples. Full article
Show Figures

Figure 1

11 pages, 1904 KiB  
Perspective
Application Prospect of Protein-Glutaminase in the Development of Plant-Based Protein Foods
by Xiao Liu, Chao Wang, Xinwen Zhang, Guoqiang Zhang, Jingwen Zhou and Jian Chen
Foods 2022, 11(3), 440; https://doi.org/10.3390/foods11030440 - 02 Feb 2022
Cited by 15 | Viewed by 4814
Abstract
Plant-based protein foods as suitable alternative protein sources have recently received increased global interest. The scientific community is exploring effective modification approaches to enhance the functionality of plant-based proteins for expanded utilization. Deamidation has shown great potential for structural modifications and improving the [...] Read more.
Plant-based protein foods as suitable alternative protein sources have recently received increased global interest. The scientific community is exploring effective modification approaches to enhance the functionality of plant-based proteins for expanded utilization. Deamidation has shown great potential for structural modifications and improving the processing efficiency of proteins. In this review, we firstly revisit the enzyme reaction mechanism of protein-glutaminase and its fundamental differences from other enzymatic methods for the deamidation of proteins. Then, the latest advances regarding the suitability of protein-glutaminase modifications for improving the functional properties (e.g., solubility, emulsifying and foaming properties, flavor, and reduction in allergenicity) of plant-based proteins are overviewed. Finally, we address the potential prospect associated with the use of protein-glutaminase in plant-based protein foods, such as meat, dairy, and egg alternatives. This review provides a novel perspective for the design of plant-based protein foods by using protein-glutaminase in order to match animal counterparts in taste and texture, and to fuel widespread adoption. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

18 pages, 339 KiB  
Review
Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review
by Vera Lavelli and Jolanta Sereikaitė
Foods 2022, 11(3), 437; https://doi.org/10.3390/foods11030437 - 02 Feb 2022
Cited by 11 | Viewed by 2131
Abstract
β-Carotene serves as a precursor of vitamin A and provides relevant health benefits. To overcome the low bioavailability of β-carotene from natural sources, technologies have been designed for its encapsulation in micro- and nano-structures followed by freeze-drying, spray-drying, supercritical fluid-enhanced dispersion and electrospraying. [...] Read more.
β-Carotene serves as a precursor of vitamin A and provides relevant health benefits. To overcome the low bioavailability of β-carotene from natural sources, technologies have been designed for its encapsulation in micro- and nano-structures followed by freeze-drying, spray-drying, supercritical fluid-enhanced dispersion and electrospraying. A technological challenge is also to increase β-carotene stability, since due to its multiple conjugated double bonds, it is particularly prone to oxidation. This review analyzes the stability of β-carotene encapsulated in different dried micro- and nano-structures by comparing rate constants and activation energies of degradation. The complex effect of water activity and glass transition temperature on degradation kinetics is also addressed, since the oxidation process is remarkably dependent on the glassy or collapsed state of the matrix. The approaches to improve β-carotene stability, such as the development of inclusion complexes, the improvement of the performance of the interface between air and oil phase in which β-carotene was dissolved by application of biopolymer combinations or functionalization of natural biopolymers, the addition of hydrophilic small molecular weight molecules that reduce air entrapped in the powder and the co-encapsulation of antioxidants of various polarities are discussed and compared, in order to provide a rational basis for further development of the encapsulation technologies. Full article
(This article belongs to the Section Food Engineering and Technology)
20 pages, 3002 KiB  
Article
Quality and Shelf-Life Stability of Pork Meat Fillets Packaged in Multilayer Polylactide Films
by Eva Hernández-García, María Vargas and Sergio Torres-Giner
Foods 2022, 11(3), 426; https://doi.org/10.3390/foods11030426 - 01 Feb 2022
Cited by 13 | Viewed by 3437
Abstract
In the present study, the effectiveness of a multilayer film of polylactide (PLA), fully bio-based and compostable, was ascertained to develop a novel sustainable packaging solution for the preservation of fresh pork meat. To this end, the multilayer PLA films were first characterized [...] Read more.
In the present study, the effectiveness of a multilayer film of polylactide (PLA), fully bio-based and compostable, was ascertained to develop a novel sustainable packaging solution for the preservation of fresh pork meat. To this end, the multilayer PLA films were first characterized in terms of their thermal characteristics, structure, mechanical performance, permeance to water and aroma vapors and oxygen, and optical properties and, for the first time, compared with two commercial high-barrier multilayer packaging films. Thereafter, the multilayers were thermosealed to package fillets of fresh pork meat and the physicochemical changes, lipid oxidation levels, and microbiological counts were monitored in the food samples during storage under refrigeration conditions. Results showed that the meat fillets packaged in PLA developed a redder color and showed certain indications of dehydration and oxidation, being more noticeably after 11 days of storage, due to the higher water vapor and oxygen permeance values of the biopolymer multilayer. However, the pH changes and bacterial growth in the cold-stored fresh pork meat samples were minimal and very similar in the three tested multilayer films, successfully accomplishing the requirements of the food quality and safety standards at the end of storage. Full article
Show Figures

Figure 1

Back to TopTop