Fermentation and Bioactive Metabolites 2.0

A special issue of Fermentation (ISSN 2311-5637). This special issue belongs to the section "Microbial Metabolism, Physiology & Genetics".

Deadline for manuscript submissions: closed (31 October 2020) | Viewed by 62249

Special Issue Editors

Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
Interests: microbial ecology; molds; mycotoxin; biofilms; antimicrobial compounds; fermented food
Special Issues, Collections and Topics in MDPI journals
Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
Interests: milk; dairy; food analysis; food microbiology and technology; food preservation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Microorganisms are known to produce secondary metabolites, being exploited as useful bioactive molecules. In addition, they are very diverse both phylogenetically and functionally, being able to carry out complex metabolic transformations. This metabolic versatility leads to a pool of biomolecules that are highly diverse in chemical structure and biological function, and which have potential applications in medicine and the pharmaceutical and food industry fields. In addition, several microorganisms have been exploited to obtain biologically active compounds like peptides, carbohydrates, polyphenols, carotenoids, phytosterols, and fatty acids, which offer health benefits like the prevention of diseases, utilizing different plant- and animal-derived products as substrates. In fact, nowadays, the use of fermented foods is considered a promising alternative to satisfy the growing consumer demands for healthy foods. To increase the production of biomolecules, many strategies, such as the use of specialized single-strain microbial origin cultures, co- cultures exhibiting high diversity allowing complementarity of functions that can modulate their physiology to produce new bioactive molecules, have been used. Accordingly, the design of bioreactor and bioprocesses are also being exploited. This Special Issue aims to publish technological developments (in the form of original research articles, short communications, reviews, mini-reviews, methods articles, perspectives, and opinions, that make a considerable and efficient contribution to the scientific community) used to investigate different aspects of the impact of fermentation on the production of bioactive metabolites. Topics that will be considered include the production of biomolecules in relation to foods, agriculture, industry, biotechnology, and public health.

Prof. Dr. Clemencia Chaves-López
Prof. Dr. Annalisa Serio
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Peptides
  • Fatty acids
  • Phenolic compounds
  • Organic volatile compounds
  • Antimicrobial compounds
  • Secondary metabolites

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

7 pages, 924 KiB  
Communication
A New Approach to Producing High Yields of Pulcherrimin from Metschnikowia Yeasts
Fermentation 2020, 6(4), 114; https://doi.org/10.3390/fermentation6040114 - 21 Nov 2020
Cited by 8 | Viewed by 3496
Abstract
Pulcherrimin, a red iron chelate, is produced by some yeasts and bacteria. It plays important ecological roles in many ecosystems, including growth control, biofilm inhibition and photoprotection. In this study, fifteen yeast strains of the genus Metschnikowia were characterized based on their production [...] Read more.
Pulcherrimin, a red iron chelate, is produced by some yeasts and bacteria. It plays important ecological roles in many ecosystems, including growth control, biofilm inhibition and photoprotection. In this study, fifteen yeast strains of the genus Metschnikowia were characterized based on their production of pulcherrimin. Yeast pulcherrimin was isolated and its purity assessed using 1H nuclear magnetic resonance spectroscopy. Under experimental conditions, pulcherrimin formation varied depending on both the tested strains and culture media. The best producers formed up to 240 mg/L of pulcherrimin in minimal medium with glucose as the carbon source, supplemented with 0.05% FeCl3 and 0.1% Tween 80. This study presents a new approach to producing high yields of pulcherrimin from yeasts. Full article
(This article belongs to the Special Issue Fermentation and Bioactive Metabolites 2.0)
Show Figures

Figure 1

9 pages, 1445 KiB  
Article
Antioxidant Content of Aronia Infused Beer
Fermentation 2020, 6(3), 71; https://doi.org/10.3390/fermentation6030071 - 20 Jul 2020
Cited by 12 | Viewed by 3910
Abstract
Beer is a fermented beverage in which antioxidants can contribute to the oxidative stability and nutraceutical properties of the product. Aronia berries are antioxidant-rich fruits of distinct sour and astringent taste, limiting their culinary uses. Previously, fermentation has proven to be effective in [...] Read more.
Beer is a fermented beverage in which antioxidants can contribute to the oxidative stability and nutraceutical properties of the product. Aronia berries are antioxidant-rich fruits of distinct sour and astringent taste, limiting their culinary uses. Previously, fermentation has proven to be effective in the removal of astringent tastes from various fruit juices. In this study, a single malt pale ale was produced and infused with Aronia berries under various process conditions by adding the antioxidant-rich fruits at different stages of the beer brewing process. The polyphenol content, antioxidant potential and color were determined. There was a positive correlation between the Aronia amount added and antioxidant capacity. Higher concentrations of added Aronia also increased the polyphenol content and EBC color rating, while no change in the resulting pH was observed. An increase in the Aronia amount increased the attenuation, showing a positive effect on sugar utilization during fermentation. The addition of Aronia after the boil yielded the highest coloration and antioxidative capacity, while addition before the boil yielded a similar antioxidative capacity with a lower EBC rating. Taken together, the infusion of pale ale with Aronia berries can increase the EBC rating, polyphenol content and antioxidative capacity of the beer. Full article
(This article belongs to the Special Issue Fermentation and Bioactive Metabolites 2.0)
Show Figures

Figure 1

16 pages, 1256 KiB  
Article
Impact of Genotype, Environment, and Malting Conditions on the Antioxidant Activity and Phenolic Content in US Malting Barley
Fermentation 2020, 6(2), 48; https://doi.org/10.3390/fermentation6020048 - 29 Apr 2020
Cited by 5 | Viewed by 2976
Abstract
The phenolic content and antioxidant potential of malting barley are important in brewing. The objective of our study was to investigate the effects of barley genotype, growing environment, and malting conditions on the total phenolic content and antioxidant activities of malting barley grown [...] Read more.
The phenolic content and antioxidant potential of malting barley are important in brewing. The objective of our study was to investigate the effects of barley genotype, growing environment, and malting conditions on the total phenolic content and antioxidant activities of malting barley grown in North America. Eight barley cultivars grown at three locations over three years were used. For the malting study, a single barley cultivar, separated into different kernel size fractions, was germinated for various periods of time and then processed by kilning or freeze-drying. Total phenolic content (TPC) and some of the antioxidant activities, including DPPH, ABTS, and superoxide anion radical scavenging activities, reducing power, and iron (II) chelating activity, were significantly impacted by the barley genotype, growth environment, and their interactions. The TPC and most antioxidant activities were also influenced by malting conditions and were generally higher in the malted barleys of the thin kernel size fraction, four-day germination, and in samples processed by kilning, when compared to the plumper kernel size fractions, one and two days of germination, and freeze-dried samples, respectively. There were interactions between malting parameters, and stepwise regression analysis was used to suggest the contribution of each parameter to the TPC and antioxidant activities. Full article
(This article belongs to the Special Issue Fermentation and Bioactive Metabolites 2.0)
Show Figures

Figure 1

14 pages, 2403 KiB  
Article
Suitability of the Lebanese “Ace Spur” Apple Variety for Cider Production Using Hanseniaspora sp. Yeast
Fermentation 2020, 6(1), 32; https://doi.org/10.3390/fermentation6010032 - 08 Mar 2020
Cited by 6 | Viewed by 3893
Abstract
In the present research work, the physicochemical and fermentative properties of the “Ace spur” apple variety, obtained from a Lebanese farm, and the “Kermerrien” variety, obtained from a French cider industry, were investigated. The pomological properties were first determined for both varieties showing [...] Read more.
In the present research work, the physicochemical and fermentative properties of the “Ace spur” apple variety, obtained from a Lebanese farm, and the “Kermerrien” variety, obtained from a French cider industry, were investigated. The pomological properties were first determined for both varieties showing significant differences in the shapes and sizes. Sugar content, titratable acidity, soluble solids, and pH values were then determined. The potential of the “Ace spur” apple juice was then evaluated using the yeast strain Hanseniaspora sp., a major yeast found during the spontaneous fermentation of apples. “Ace spur” apples contained more sugars while the “Kermerrien” cultivar had a highest malic acid and polyphenol concentrations. After 100 h of fermentation, the ethanol percentage (v/v) was around 4% in both ciders. Results obtained in this work revealed the chemical potential of the Lebanese apple juice to produce cider. Full article
(This article belongs to the Special Issue Fermentation and Bioactive Metabolites 2.0)
Show Figures

Graphical abstract

Review

Jump to: Research

23 pages, 1090 KiB  
Review
Ginger Beer: An Overview of Health Benefits and Recent Developments
Fermentation 2020, 6(4), 102; https://doi.org/10.3390/fermentation6040102 - 28 Oct 2020
Cited by 12 | Viewed by 19107
Abstract
Since time immemorial, ginger has been widely used as a food spice, providing aromatic odor and pungent taste, and as a medicinal plant, with various therapeutic effects such as antioxidant, anti-inflammatory, and analgesic, among others. It has long been an integral constituent of [...] Read more.
Since time immemorial, ginger has been widely used as a food spice, providing aromatic odor and pungent taste, and as a medicinal plant, with various therapeutic effects such as antioxidant, anti-inflammatory, and analgesic, among others. It has long been an integral constituent of most herbal medicines in Africa, China and India. Its medicinal properties are largely attributed to its outstanding amount of phenolics which include gingerols, paradols, zingerones, and many others. With consumer preference gradually and remarkably shifting from high-calorie towards low-calorie and functional beverages, the demand for ginger beer is flourishing at a faster rate. Currently, the ginger beer market is dominated by the United States. The demand for ginger beer is, however, debilitated by using artificial ingredients. Nonetheless, the use of natural ginger extract enriches beer with putative bioactive phytoconstituents such as shagaol, gingerone, zingerone, ginger flavonoids and essential oils, as well as essential nutritional components including proteins, vitamins and minerals, to promote general wellbeing of consumer. This paper presents an overview of the phytoconstituents of ginger as well as the overall biological activities they confer to the consumer. In addition, the market trend as well as the production technology of ginger beer using natural ginger extract is described here. Full article
(This article belongs to the Special Issue Fermentation and Bioactive Metabolites 2.0)
Show Figures

Figure 1

16 pages, 263 KiB  
Review
Improving Kefir Bioactive Properties by Functional Enrichment with Plant and Agro-Food Waste Extracts
Fermentation 2020, 6(3), 83; https://doi.org/10.3390/fermentation6030083 - 16 Aug 2020
Cited by 30 | Viewed by 7288
Abstract
An increase in the number of novel fortified kefir-based beverages was observed in the last decades. Vegetables were often proposed as convenient resources of bioactive molecules able to improve nutraceutical benefits of these drinks and/or to confer them new significant features. These findings [...] Read more.
An increase in the number of novel fortified kefir-based beverages was observed in the last decades. Vegetables were often proposed as convenient resources of bioactive molecules able to improve nutraceutical benefits of these drinks and/or to confer them new significant features. These findings have been well accepted by the consumers, which generally reserve an important role to the quality of the assumed food and beverages. Specifically, functional fermented milk-based drinks enriched with vegetable extracts display significant biological properties, due to the presence of bioactive compounds exhibiting antimicrobial and antioxidant features. In addition, agro-industrial wastes have been also proposed as innovative resources of secondary metabolites to enrich kefir-based products. Eco-friendly extraction techniques were generally exploited to achieve the isolation of biomolecules and reducing, at the same time, economic and environmental loads. To this regard, this review deeply investigates the main findings to improve kefir bioactive properties by functional enrichment with plant and agro-food waste extracts. The nutraceutical characteristics related to the consumers’ health benefits, as well as their effects on the sensorial, chemical, and microbiological properties of the products were evaluated. Full article
(This article belongs to the Special Issue Fermentation and Bioactive Metabolites 2.0)
Show Figures

Graphical abstract

26 pages, 410 KiB  
Review
Gluten-Free Brewing: Issues and Perspectives
Fermentation 2020, 6(2), 53; https://doi.org/10.3390/fermentation6020053 - 20 May 2020
Cited by 37 | Viewed by 8591
Abstract
Celiac disease (CD) is an immune-mediated gluten-sensitive enteropathy. Currently, it affects around 1% of world population, but it is constantly growing. Celiac patients have to follow a strict gluten-free (GF) diet. Beer is one of the most consumed beverages worldwide, but it is [...] Read more.
Celiac disease (CD) is an immune-mediated gluten-sensitive enteropathy. Currently, it affects around 1% of world population, but it is constantly growing. Celiac patients have to follow a strict gluten-free (GF) diet. Beer is one of the most consumed beverages worldwide, but it is not safe for people with CD. It has a gluten content usually above the safe threshold (20 ppm), determined by the official method for hydrolyzed foods (R5-competitive-ELISA). The demand on the market for GF beers is increasingly growing. This review aims to provide a comprehensive overview of different strategies to produce GF beer, highlighting strengths and weaknesses of each approach and taking into account technological and sensory issues. GF cereals or pseudocereals have poor brewing attitudes (if used as main raw material) and give the beer unusual flavour. Instead, enzymatic treatments allow traditional brewing process followed by gluten content reduction. A survey on 185 GF-producing breweries (both industrial and craft) from all over the world have been considered to assess which approach is most used. Beers brewed with GF cereals and pseudocereals (used in well-balanced proportions) are more common than gluten-removed (GR) beers, obtained by enzymatic treatment. Full article
(This article belongs to the Special Issue Fermentation and Bioactive Metabolites 2.0)
25 pages, 2138 KiB  
Review
Changes Occurring in Spontaneous Maize Fermentation: An Overview
Fermentation 2020, 6(1), 36; https://doi.org/10.3390/fermentation6010036 - 23 Mar 2020
Cited by 53 | Viewed by 12025
Abstract
Maize and its derived fermented products, as with other cereals, are fundamental for human nutrition in many countries of the world. Mixed cultures, principally constituted by lactic acid bacteria (LAB) and yeasts, are responsible for maize fermentation, thus increasing its nutritional value and [...] Read more.
Maize and its derived fermented products, as with other cereals, are fundamental for human nutrition in many countries of the world. Mixed cultures, principally constituted by lactic acid bacteria (LAB) and yeasts, are responsible for maize fermentation, thus increasing its nutritional value and extending the products’ shelf-life. Other microorganisms involved, such as molds, acetic acid bacteria, and Bacillus spp. can contribute to the final product characteristics. This review gives an overview of the impact of the activities of this complex microbiota on maize product development and attributes. In particular, starting from amylolytic activity, which is able to increase sugar availability and influence the microbial succession and production of exopolysaccharides, vitamins, and antimicrobial compounds, which improve the nutritional value. Further activities are also considered with positive effects on the safety profile, such as phytates detoxification and mycotoxins reduction. Full article
(This article belongs to the Special Issue Fermentation and Bioactive Metabolites 2.0)
Show Figures

Figure 1

Back to TopTop