energies-logo

Journal Browser

Journal Browser

Sustainable Management of Energy Resources, Energy Strategies and Climate Change—2nd Edition

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "B: Energy and Environment".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 495

Special Issue Editors


E-Mail Website
Guest Editor
Department of Mechanical Engineering, School of Engineering, Aristotle University, Thessaloniki, Greece
Interests: operations management; sustainable development; decision support systems; sustainable management; energy resources; environmental engineering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The energy sector is strongly associated with economic development, but also with enormous environmental pressure and climate change. Sustainable management of energy resources is a challenge that the global community is facing at environmental, social, economic and political levels. If this challenge is not faced efficiently, it will endanger human health, longevity, and the quality of both life and the environment. On this basis, robust energy strategies are required towards the direction of sustainable management and efficiently encountering climate change. Furthermore, climate change constitutes one of the largest challenges (if not the largest) that humanity will be called to address in the coming years. Climate change has caused nations, leaders, and citizens to focus on the way our societies operate and utilize natural and energy resources. It is of vital importance to support decisions for improving living standards, both in industrialized and developing countries, while minimizing the risks and costs of climate change damage. Mitigation and adaptation options should be under consideration. Promoting energy strategies/alternatives/measures to mitigate but also adapt to climate change is a multidimensional problem.

The present Special Issue, entitled “Sustainable Management of Energy Resources, Energy Strategies and Climate Change—2nd Edition”, provides a platform for policy-makers, scientists, academics, researchers, and practitioners to exchange knowledge and evidence related to energy-oriented alternatives for a roadmap towards a low-carbon economy and sustainable management of energy resources. To that end, we invite papers on innovative technological developments, methodological schemes, and decision support systems, as well as reviews and pilot studies that demonstrate new knowledge and near-to-market solutions within the research agenda of energy strategies for sustainable development, decarbonization, and encountering climate change.

Prof. Dr. Christos Vlachokostas
Prof. Dr. Charisios Achillas
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • decision support systems
  • clean energy
  • smart technological solutions
  • renewable energy sources
  • energy efficiency
  • energy poverty
  • decarbonization
  • energy communities
  • nature based solutions
  • CBA

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 1890 KiB  
Article
A Long-Term Power Supply Risk Evaluation Method for China Regional Power System Based on Probabilistic Production Simulation
by Jianzu Hu, Yuefeng Wang, Fan Cheng and Hanqing Shi
Energies 2024, 17(11), 2515; https://doi.org/10.3390/en17112515 - 23 May 2024
Viewed by 206
Abstract
To qualify the risk of extreme weather events for power supply security during the long-term power system transformation process, this paper proposes a risk probability evaluation method based on probabilistic production simulation. Firstly, the internal relationship of extreme weather intensity and duration is [...] Read more.
To qualify the risk of extreme weather events for power supply security during the long-term power system transformation process, this paper proposes a risk probability evaluation method based on probabilistic production simulation. Firstly, the internal relationship of extreme weather intensity and duration is depicted using the copula function, and the influences of extreme weather on power security are described using the guaranteed power output ability coefficient, which can provide the extreme scenario basis for probabilistic production simulation. Then, a probabilistic production simulation method is proposed, which includes a typical-year scenario and extreme weather events. Meanwhile, an index system is proposed to qualify the power security level, which applies the loss of load expectation (LOLE) and time of loss of load expectation (TOLE) under different scenarios and other indices to reveal the long-term power security trend. Finally, the long-term power supply risks for the Yunnan provincial power system are analyzed using the proposed method, validating that the proposed method is capable of characterizing the influences of extreme weather on power security. The security level of different long-term power transformation schemes is evaluated. Full article
Back to TopTop