Journal Description
Earth
Earth
is an international, peer-reviewed, open access journal on earth science, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, GeoRef, AGRIS, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 16.2 days after submission; acceptance to publication is undertaken in 3.6 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
Impact of Climate Variability on Rainfall Characteristics in the Semi-Arid Shashe Catchment (Botswana) from 1981–2050
Earth 2023, 4(2), 398-441; https://doi.org/10.3390/earth4020022 - 06 Jun 2023
Abstract
►
Show Figures
Futuristic rainfall projections are used in scale and various climate impact assessments. However, the influence of climate variability on spatial distribution patterns and characteristics of rainfall at the local level, especially in semi-arid catchments that are highly variable and are not well explored.
[...] Read more.
Futuristic rainfall projections are used in scale and various climate impact assessments. However, the influence of climate variability on spatial distribution patterns and characteristics of rainfall at the local level, especially in semi-arid catchments that are highly variable and are not well explored. In this study, we explore the influence of climate variability on the spatial distribution and rainfall characteristics at a local scale in the semi-arid Shashe catchment, Northeastern Botswana. The LARS-WG, Long Ashton Research Station Weather Generator downscaling method, three representative scenarios (RCP 2.6, RCP 4.5, and RCP 4.5), three trend detection methods (Mann-Kendall, Sen’s slope, and innovative trend analysis) and L-moment method were used to assess climate change impacts on rainfall. Two data sets were used; one with 40 years of observed data from 1981–2020 and the other with 70 years from 1981–2050 (40 years of observed and 30 years of projected data from 2021–2050). Generally, the study found trend inconsistencies for all the trend detection methods. In most cases, Sen’s Slope has a high estimate of observed and RCP 2.6, while ITA overestimates rainfall totals under RCP 4.5 and RCP 8.5. The trend is increasing for annual total rainfall in most gauging stations while decreasing for annual maximum rainfall. The catchment is homogeneous, and Generalized Logistic distribution is the dataset’s best-fit distribution. Spatial coverage of a 100-year rainfall between 151–180 mm will be 81% based on observed data and 87% based on projected data under RCP 2.6 scenario when it happens. A 200-year rainfall between 196–240 mm under RCP 4.5 and 8.5 has high spatial areal coverage, at least 90% of the total catchment. The outcomes of this study will provide insightful information for water resource management and flood risk assessment under climate change. There is a need, however, to assess the transferability of this approach to other catchments in the country and assess the performance of other advanced modelling systems, such as machine learning, in this region.
Full article
Open AccessArticle
The Influence of Eurasian Beaver (Castor fiber L.) Activity on the Transformation and Functioning of Riparian Phytocoenoses in the Southern Boreal Zone (European Russia)
by
, , , and
Earth 2023, 4(2), 384-397; https://doi.org/10.3390/earth4020021 - 09 May 2023
Abstract
►▼
Show Figures
The reintroduction of Eurasian beaver (Castor fiber L.) results in significant changes in ecosystems. The purpose of this study is to assess the impact of the environment-forming activity of C. fiber on the riparian phytocoenoses of the Raifa forest sector of the
[...] Read more.
The reintroduction of Eurasian beaver (Castor fiber L.) results in significant changes in ecosystems. The purpose of this study is to assess the impact of the environment-forming activity of C. fiber on the riparian phytocoenoses of the Raifa forest sector of the Volga-Kama State Nature Biosphere Reserve (Middle Volga region, European Russia) after the reintroduction. Phytoindication methods of ecological–coenotic groups and indicator values were used to assess changes in environmental conditions under the influence of beaver activity. The influence of the beaver reintroduction factor on the increase in the moisture regime (by three points according to the Tsyganov indicator values) and the illumination of habitats, the richness of soils in nitrogen, and the acidity and salt regime of soils (by one point) was revealed. Under the conditions of fodder and construction activities of the beaver, an increase in the proportion of aquatic and wetland groups from 10.2% to 28.2% and boreal plant species from 15.0% to 27.6% was detected. An expansive nature of the change in the degree of landscape occupancy with wetland plants was noted. A decrease in the degree of landscape occupancy (3 to 2 points) of the distribution of ruderal species in the riparian zones of the waterbodies of the reserve due to the activity of the beaver was revealed. Based on phytoindication and ecological–coenotic analyses, it was shown that the reintroduction of C. fiber into the waterbodies of the Raifa forest sector of the reserve is responsible for maintaining the necessary microclimatic conditions for the preservation of natural southern boreal communities. The results obtained can be used for predictive assessment of the influence of the beaver on riparian (small rivers and lakes) plant communities of forest ecosystems in the Middle Volga region of European Russia and other regions of the planet with similar environmental conditions.
Full article

Figure 1
Open AccessArticle
Assessing the Impacts of Land Use and Climate Changes on River Discharge towards Lake Victoria
by
, , , , and
Earth 2023, 4(2), 365-383; https://doi.org/10.3390/earth4020020 - 08 May 2023
Abstract
►▼
Show Figures
The Lake Victoria basin’s expanding population is heavily reliant on rainfall and river flow to meet their water needs, making them extremely vulnerable to changes in climate and land use. To develop adaptation and mitigation strategies to climate changes it is urgently necessary
[...] Read more.
The Lake Victoria basin’s expanding population is heavily reliant on rainfall and river flow to meet their water needs, making them extremely vulnerable to changes in climate and land use. To develop adaptation and mitigation strategies to climate changes it is urgently necessary to evaluate the impacts of climate change on the quantity of water in the rivers that drain into Lake Victoria. In this study, the semi-distributed hydrological SWAT model was used to evaluate the impact of current land use and climate changes for the period of 1990–2019 and assess the probable future impacts of climate changes in the near future (2030–2060) on the Simiyu river discharge draining into Lake Victoria, Northern Tanzania. The General Circulation Model under RCPs 4.5, 6.0 and 8.5 predicted an increase in the annual average temperature of 1.4 °C in 2030 to 2 °C in 2060 and an average of 7.8% reduction in rainfall in the catchment. The simulated river discharge from the hydrological model under RCPs 4.5, 6.0 and 8.5 revealed a decreasing trend in annual average discharge by 1.6 m3/s from 5.66 m3/s in 2019 to 4.0 m3/s in 2060. The increase in evapotranspiration caused by the temperature increase is primarily responsible for the decrease in river discharge. The model also forecasts an increase in extreme discharge events, from a range between 32.1 and 232.8 m3/s in 1990–2019 to a range between 10.9 and 451.3 m3/s in the 2030–2060 period. The present combined impacts of climate and land use changes showed higher effects on peak discharge at different return periods (Q5 to Q100) with values of 213.7 m3/s (Q5), 310.2 m3/s (Q25) and 400.4 m3/s (Q100) compared to the contributions of climate-change-only scenario with peak discharges of 212.1 m3/s (Q5), 300.2 m3/s (Q25) and 390.2 m3/s (Q100), and land use change only with peak discharges of 295.5 m3/s (Q5), 207.1 m3/s Q25) and 367.3 m3/s (Q100). However, the contribution ratio of climate change was larger than for land use change. The SWAT model proved to be a useful tool for forecasting river discharge in complex semi-arid catchments draining towards Lake Victoria. These findings highlight the need for catchment-wide water management plans in the Lake Victoria Basin.
Full article

Figure 1
Open AccessArticle
The Effect of Surface Oil on Ocean Wind Stress
Earth 2023, 4(2), 345-364; https://doi.org/10.3390/earth4020019 - 06 May 2023
Abstract
►▼
Show Figures
This study provides, to the best of our knowledge, the first detailed analysis of how surface oil modifies air–sea interactions in a two-way coupled model, i.e., the coupled–ocean–atmosphere–wave–sediment–transport (COAWST) model, modified to account for oil-related changes in air–sea fluxes. This study investigates the
[...] Read more.
This study provides, to the best of our knowledge, the first detailed analysis of how surface oil modifies air–sea interactions in a two-way coupled model, i.e., the coupled–ocean–atmosphere–wave–sediment–transport (COAWST) model, modified to account for oil-related changes in air–sea fluxes. This study investigates the effects of oil on surface roughness, surface wind, surface and near-surface temperature differences, and boundary-layer stability and how those conditions ultimately affect surface stress. We first conducted twin-coupled modeling simulations with and without the influence of oil over the Deepwater Horizon (DWH) oil spill period (20 April to 5 May 2010) in the Gulf of Mexico. Then, we compared the results by using a modularized flux model with parameterizations selected to match those selected in the coupled model adapted to either ignore or account for different atmospheric/oceanic processes in calculating surface stress. When non-oil inputs to the bulk formula were treated as being unchanged by oil, the surface stress changes were always negative because of oil-related dampening of the surface roughness alone. However, the oil-related changes to 10 m wind speeds and boundary-layer stability were found to play a dominant role in surface stress changes relative to those due to the oil-related surface roughness changes, highlighting that most of the changes in surface stress were due to oil-related changes in wind speed and boundary-layer stability. Finally, the oil-related changes in surface stress due to the combined oil-related changes in surface roughness, surface wind, and boundary-layer stability were not large enough to have a major impact on the surface current and surface oil transport, indicating that the feedback from the surface oil to the surface oil movement itself is insignificant in forecasting surface oil transport unless the fractional oil coverage is much larger than the value found in this study.
Full article

Figure 1
Open AccessReview
Fields of Application of SWAT Hydrological Model—A Review
by
and
Earth 2023, 4(2), 331-344; https://doi.org/10.3390/earth4020018 - 02 May 2023
Abstract
►▼
Show Figures
Soil and Water Assessment Tool (SWAT) is a widely used model for runoff, non-point source pollution, and other complex hydrological processes under changing environments (groundwater flow, evapotranspiration, snow melting, etc.). This paper reviews the key characteristics and applications of SWAT. Since its inception
[...] Read more.
Soil and Water Assessment Tool (SWAT) is a widely used model for runoff, non-point source pollution, and other complex hydrological processes under changing environments (groundwater flow, evapotranspiration, snow melting, etc.). This paper reviews the key characteristics and applications of SWAT. Since its inception in the 1990s, there has been a significant increase in the number of articles related to the SWAT model. In the last 10 years, the number of articles almost reached 4000. The range of applications varies between small and large scales; however, large watershed modelling dominates in North America and Asia. Moreover, the prevailing modelling is related to hydrological impacts in a changing environment, which is a global problem. The significant shortcoming of the SWAT model is the vast quantity of data necessary to run the model to generate accurate and reliable results, which is not accessible in some regions of the world. Apart from its accessibility, it has several advantages, including continuous development, which results in a slew of new interfaces and tools supporting the model. Additionally, it can simulate human activity and agricultural measures and adapt to new circumstances and situations. This article emphasizes weaknesses and strengths of SWAT model application on modelling of hydrological processes in changing climate and environment.
Full article

Figure 1
Open AccessArticle
Sustainable Use of Soil and Water Conservation Technologies and Its Determinants: The Case of the Handosha Watershed, Omo-Gibe River Basin, Ethiopia
Earth 2023, 4(2), 315-330; https://doi.org/10.3390/earth4020017 - 01 May 2023
Abstract
►▼
Show Figures
For the past forty years, Ethiopia has been promoting sustainable land management activities to enhance agricultural productivity. This study was intended to identify the factors determining farmers’ adoption and continued use of soil bund measures in the Handosha watershed, Omo-Gibe river basin. A
[...] Read more.
For the past forty years, Ethiopia has been promoting sustainable land management activities to enhance agricultural productivity. This study was intended to identify the factors determining farmers’ adoption and continued use of soil bund measures in the Handosha watershed, Omo-Gibe river basin. A multistage sampling technique was used to select 340 households using the Heckman sample selection model. A total of 235 (69.12%) households adopted soil bunds, but only 89 (37.87%) of them were sustainably practicing soil bunds on their farm plots. Most adopters widely practiced soil bunds (49.42%), followed by stone bund (15.9%), and Fanyajuu (10%). The empirical results of the Heckman sample selection model showed that the farming experience, land tenure security, and perception of profitability of conservation measures were significantly positively affected the adoption of soil bund. Whereas, farm plot size and participation in off farm activities significantly negatively influenced the adoption of soil bund. Sustainable use of soil bund measures were significantly positively influenced by land tenure security, family size, and frequency of extension contact, whereas the distance between farm plots and home, and farm plot size were negatively affected. As a result, a design of agro-ecological-based soil and water conservation (SWC) measures was essential in reducing farmland vulnerability to soil erosion and food insecurity. It has been concluded that conservation practices should not only focus on the implementation and biophysical factors but also consider the socioeconomic interests of the farmers to improve the sustainable use of conservation technologies.
Full article

Figure 1
Open AccessArticle
Simulating Urban Growth Using the Cellular Automata Markov Chain Model in the Context of Spatiotemporal Influences for Salem and Its Peripherals, India
Earth 2023, 4(2), 296-314; https://doi.org/10.3390/earth4020016 - 23 Apr 2023
Abstract
►▼
Show Figures
Urbanization is one of the biggest challenges for developing countries, and predicting urban growth can help planners and policymakers understand how spatial growth patterns interact. A study was conducted to investigate the spatiotemporal dynamics of land use/land cover changes in Salem and its
[...] Read more.
Urbanization is one of the biggest challenges for developing countries, and predicting urban growth can help planners and policymakers understand how spatial growth patterns interact. A study was conducted to investigate the spatiotemporal dynamics of land use/land cover changes in Salem and its surrounding communities from 2001 to 2020 and to simulate urban expansion in 2030 using cellular automata (CA)–Markov and geospatial techniques. The findings showed a decrease in aerial vegetation cover and an increase in barren and built-up land, with a rapid transition from vegetation cover to bare land. The transformed barren land is expected to be converted into built-up land in the near future. Urban growth in the area is estimated to be 179.6 sq km in 2030, up from 59.6 sq km in 2001, 76 sq km in 2011, and 133.3 sq km in 2020. Urban sprawl is steadily increasing in Salem and the surrounding towns of Omalur, Rasipuram, Sankari, and Vazhapadi, with sprawl in the neighboring towns surpassing that in directions aligned toward Salem. The city is being developed as a smart city, which will result in significant expansion and intensification of the built-up area in the coming years. The study’s outcomes can serve as spatial guidelines for growth regulation and monitoring.
Full article

Figure 1
Open AccessArticle
Impact of Lockdown on Column and Surface Aerosol Content over Ahmedabad and a Comparison with the Indo-Gangetic Plain
Earth 2023, 4(2), 278-295; https://doi.org/10.3390/earth4020015 - 12 Apr 2023
Abstract
►▼
Show Figures
Changes in vertical column concentration, size distribution, and surface concentration of aerosol associated with the lockdown imposed by the COVID-19 pandemic in 2020 over the Ahmedabad region in Gujarat State, India, were analyzed. The results are compared with changes over selected Indo-Gangetic Plain
[...] Read more.
Changes in vertical column concentration, size distribution, and surface concentration of aerosol associated with the lockdown imposed by the COVID-19 pandemic in 2020 over the Ahmedabad region in Gujarat State, India, were analyzed. The results are compared with changes over selected Indo-Gangetic Plain (IGP) regions. On 25 March 2020, the prime minister of India declared a complete lockdown throughout the country and later lifted restrictions in a phased manner. Aerosol optical depth (AOD) over the Ahmedabad region on 29 March dropped to as low as 0.11, and in the first two weeks of lockdown, the weekly average AOD was only 0.18. On almost all days of the lockdown period, AOD over the Ahmedabad region was lower than the decadal mean. It was found that the Ahmedabad region responded differently to lockdown conditions compared to the IGP regions. During the first lockdown phase, AOD decreased by about 29% compared to the pre-lockdown period over the Ahmedabad region. However, the average reduction over the IGP was much more, about 50%. The average Angstrom exponent (AE) of 0.96 during the pre-lockdown period over the Ahmedabad region increased phase-wise to 1.36 during the L3 lockdown phase, indicating dominance of fine-mode particles during the lockdown period. It suggests a reduction in anthropogenically produced coarse-mode particles, typically dust produced by vehicular movement, construction, and industrial activities. However, on the other hand, over the IGP region, the high dominance of fine-mode particles during the pre-lockdown period had changed to a high dominance of coarse-mode particles, especially over the Delhi region. This indicates a reduction in anthropogenically produced fine-mode particles, which are mainly generated by fossil and biofuels/biomass combustion, over the IGP region by lockdown conditions. Within a few days of lockdown, PM2.5 was reduced by 64% and 76% over the Ahmedabad and Delhi regions, respectively. The lockdown imposed by the pandemic provided an excellent opportunity to ascertain background aerosol conditions in the atmosphere.
Full article

Figure 1
Open AccessTechnical Note
Application of the RAPS Method for Determining the Dependence of Nitrate Concentration in Groundwater on the Amount of Precipitation
Earth 2023, 4(2), 266-277; https://doi.org/10.3390/earth4020014 - 06 Apr 2023
Abstract
►▼
Show Figures
Protecting groundwater from contamination is today’s most current environmental protection topic. What can man do in his environment to reduce the harmful impact of contamination on the environment, and thus the immediate effect on groundwater? Agricultural production is an ongoing source of groundwater
[...] Read more.
Protecting groundwater from contamination is today’s most current environmental protection topic. What can man do in his environment to reduce the harmful impact of contamination on the environment, and thus the immediate effect on groundwater? Agricultural production is an ongoing source of groundwater contamination due to the increasingly frequent use of nitrates in fertilizers, which are washed out from the soil into groundwater due to precipitation. This paper investigates three wellfields in the north of the Republic of Croatia near the town of Varaždin. With the application of the RAPS method, the dependence of nitrate concentration in groundwater on the amount of precipitation was established. The analysis results show the connection of the observed parameters, especially in the upper aquifer layer. In this layer, the coefficients of correlation are greater than 0.80 at all locations, which shows a strong positive connection between the parameters. In the lower aquifer, the values of the coefficients of correlation are lower, and the results mostly indicate a weak correlation. The obtained results will serve as a starting point for future studies, which will aim to precisely determine the factors that influence groundwater quality in the observed area.
Full article

Figure 1
Open AccessArticle
Integrated Geospatial and Geophysical Approaches for Mapping Groundwater Potential in the Semi-Arid Bukombe District, Tanzania
Earth 2023, 4(2), 241-265; https://doi.org/10.3390/earth4020013 - 05 Apr 2023
Abstract
►▼
Show Figures
The rapid growth of civil societies coupled with population influx due to the artisanal mining industry in the Bukombe district (BD) has triggered a high demand for water resources. The daily consumption of water resources in the district surpasses the supply from available
[...] Read more.
The rapid growth of civil societies coupled with population influx due to the artisanal mining industry in the Bukombe district (BD) has triggered a high demand for water resources. The daily consumption of water resources in the district surpasses the supply from available surface water sources. Thus, the situation has raised the demand for groundwater resources as an alternative. Despite the importance of groundwater resources, no current studies have spatially assessed groundwater potential to locate optimal points for borehole development. This study intended to investigate and map the groundwater potential areas (GWPAs) in the semi-arid BD using remote sensing (RS), the geographic information system (GIS), and the analytic hierarchy process (AHP) to help local communities access clean and safe water. Rainfall, geology, slope, drainage density, land use/land cover and lineament density were prepared to delineate the map of GWPAs. The map was categorized into poor (0.21%), moderate good (51.39%), good (45.70%) and very good (2.70%). Finally, the GWPA map was validated using Vertical Electrical Sounding (VES), 2-D sections and a drilled borehole. The validation results confirmed that the applied approach provides significant results that can help in planning the sustainable utilization of groundwater resources.
Full article

Figure 1
Open AccessReview
Freshwater Shortage, Salinity Increase, and Global Food Production: A Need for Sustainable Irrigation Water Desalination—A Scoping Review
Earth 2023, 4(2), 223-240; https://doi.org/10.3390/earth4020012 - 04 Apr 2023
Abstract
►▼
Show Figures
Climate-change-induced freshwater shortage and saline intrusion have been posing significant risks to agricultural sectors in arid and semi-arid regions, negatively impacting irrigation, crop yield, and food production. Climate-smart sustainable solutions are the requirement to combat these major concerns. To overcome freshwater scarcity, pressure-driven
[...] Read more.
Climate-change-induced freshwater shortage and saline intrusion have been posing significant risks to agricultural sectors in arid and semi-arid regions, negatively impacting irrigation, crop yield, and food production. Climate-smart sustainable solutions are the requirement to combat these major concerns. To overcome freshwater scarcity, pressure-driven desalination techniques are used that require advanced operational systems and electricity, which creates an additional economic burden when applied in the agriculture sector. Therefore, more sustainable methods for soil and water desalination using plant-, microbial-, algal-, biomass-, and carbon-based systems are needed. This scoping review addresses the effects of climate change on freshwater shortage and global food production, the influence of salinity and sodicity on agriculture, and sustainable desalination technologies.
Full article

Figure 1
Open AccessFeature PaperArticle
Ecotonic Communities of Diatoms in the Southeastern Part of the Kamchatka Peninsula
Earth 2023, 4(2), 209-222; https://doi.org/10.3390/earth4020011 - 30 Mar 2023
Abstract
►▼
Show Figures
Data about the ecotonic diatom communities of the Kamchatka Peninsula, a unique territory with strong volcanic activity, are very limited. We aimed to investigate diatom algae of the ecotones in the southeastern part of Kamchatka, including the Paratunka river valley, at the foot
[...] Read more.
Data about the ecotonic diatom communities of the Kamchatka Peninsula, a unique territory with strong volcanic activity, are very limited. We aimed to investigate diatom algae of the ecotones in the southeastern part of Kamchatka, including the Paratunka river valley, at the foot of the Vachkazhets volcano, and the bank of the Bystraya river. In total, 55 taxa were identified. The most diverse were the flora of the Paratunka river, with 31 taxa. Near the Bystraya river, 26 taxa were identified. Near the Vachkazhets volcano, 18 taxa were identified. Fragilariforma virescens, Planothidium lanceolatum, Pinnularia cf. subcapitata, Halamphora normanii, Nitzschia palea, and Eunotia exigua were the dominant species in the studied ecosystems, with the maximum abundance score. Pinnularia cf. subcapitata and Planothidium lanceolatum were found in all ecotones. In the studied habitats, small indifferent alkaliphilic cosmopolitan species prevailed. Our study revealed that the diatom species composition of the Kamchatka ecotones reflects their adaptability to survive in the extreme conditions of volcanic substrates. The results contribute to our knowledge of the ecology and biogeography of a number of diatom taxa.
Full article

Figure 1
Open AccessArticle
Desert Locust (Schistocerca gregaria) Invasion Risk and Vegetation Damage in a Key Upsurge Area
by
, , , , and
Earth 2023, 4(2), 187-208; https://doi.org/10.3390/earth4020010 - 28 Mar 2023
Abstract
►▼
Show Figures
In the recent past, the Horn of Africa witnessed an upsurge in the desert locust (Schistocerca gregaria) invasion. This has raised major concerns over the massive food insecurity, socioeconomic impacts, and livelihood losses caused by these recurring invasions. This study determined
[...] Read more.
In the recent past, the Horn of Africa witnessed an upsurge in the desert locust (Schistocerca gregaria) invasion. This has raised major concerns over the massive food insecurity, socioeconomic impacts, and livelihood losses caused by these recurring invasions. This study determined the potential vegetation damage due to desert locusts (DLs) and predicted the suitable habitat at high risk of invasion by the DLs using current and future climate change scenarios in Kenya. The normalized difference vegetation index (NDVI) for the period 2018–2020 was computed using multi-date Sentinel-2 imagery in the Google Earth Engine platform. This was performed to assess the vegetation changes that occurred between May and July of the year 2020 when northern Kenya was the hotspot of the DL upsurge. The maximum entropy (MaxEnt) algorithm was used together with 646 DL occurrence records and six bioclimatic variables to predict DL habitat suitability. The current (2020) and two future climatic scenarios for the shared socioeconomic pathways SSP2-4.5 and SSP5-8.5 from the model for interdisciplinary research on climate (MIROC6) were utilized to predict the future potential distribution of DLs for the year 2030 (average for 2021–2040). Using Turkana County as a case, the NDVI analysis indicated the highest vegetation damage between May and July 2020. The MaxEnt model produced an area under the curve (AUC) value of 0.87 and a true skill statistic (TSS) of 0.61, while temperature seasonality (Bio4), mean diurnal range (Bio2), and precipitation of the warmest quarter (Bio18) were the most important bioclimatic variables in predicting the DL invasion suitability. Further analysis demonstrated that currently 27% of the total area in Turkana County is highly suitable for DL invasion, and the habitat coverage is predicted to potentially decrease to 20% in the future using the worst-case climate change scenario (SSP5-8.5). These results have demonstrated the potential of remotely sensed data to pinpoint the magnitude and location of vegetation damage caused by the DLs and the potential future risk of invasion in the region due to the available favorable vegetational and climatic conditions. This study provides a scalable approach as well as baseline information useful for surveillance, development of control programs, and monitoring of DL invasions at local and regional scales.
Full article

Figure 1
Open AccessReview
A Review of Literature on the Usage of Low-Cost Sensors to Measure Particulate Matter
by
, , , , and
Earth 2023, 4(1), 168-186; https://doi.org/10.3390/earth4010009 - 14 Mar 2023
Abstract
►▼
Show Figures
With advances in technological sciences, individuals can utilize low-cost air monitoring sensors to record air quality at homes, schools, and businesses. Air quality data collected from LCSs are publicly accessible, informing the community of the air quality around them. It is important to
[...] Read more.
With advances in technological sciences, individuals can utilize low-cost air monitoring sensors to record air quality at homes, schools, and businesses. Air quality data collected from LCSs are publicly accessible, informing the community of the air quality around them. It is important to measure local and regional particulate matter (PM) concentrations to keep the public involved, especially those with specific health concerns, such as asthma, wheezing, and seasonal allergies. The number of studies involving the use of LCSs to evaluate PM levels is increasing with more manufacturers producing ‘easy to use’ LCSs targeting the public. The goal of this review is to understand and incorporate the findings from studies using LCSs to analyze PM of various sizes, i.e., PM1, PM2.5, PM4, and PM10. This review integrates analyses from 51 different studies in 14 countries, including the U.S. The findings indicate spatial heterogeneity in the PM concentrations across a region. Some of the low-cost sensor manufacturers mentioned in these studies include Plantower, AQMesh, Alpha-sense, PurpleAir, E-MOTEs, and Shinyei. This review emphasizes the importance of LCSs in the field of PM monitoring and its potential to inform the public about their exposure burden, and to aid state and federal decision makers in formulating policies for mitigating the effects of PM pollution in any urban or rural setting.
Full article

Figure 1
Open AccessArticle
Multiscale Correlation Analysis between Wind Direction and Meteorological Parameters in Guadeloupe Archipelago
by
and
Earth 2023, 4(1), 151-167; https://doi.org/10.3390/earth4010008 - 10 Mar 2023
Abstract
►▼
Show Figures
In this paper, the wind direction ( ) behaviour with respect to the variability of other meteorological parameters (i.e., rainfall (R), temperature (T), relative humidity ( ), solar radiation ( ) and wind
[...] Read more.
In this paper, the wind direction ( ) behaviour with respect to the variability of other meteorological parameters (i.e., rainfall (R), temperature (T), relative humidity ( ), solar radiation ( ) and wind speed (U)) was studied in a multi-scale way. To carry out this study, the Hilbert–Huang transform (HHT) framework was applied to a Guadeloupe archipelago dataset from 2016 to 2021. Thus, the time-dependent intrinsic correlation (TDIC) analysis based on multivariate empirical mode decomposition (MEMD) was performed. For time scales between ∼3 days and ∼7 months, the localized positive and negative correlations between and the meteorological parameters have been identified. The alternation between these correlations was more significant for T and . With regard to and U, there was a dominance of a negative correlation with . We assumed that the micro-climate previously identified in the literature for the study area plays a key role in these behaviours. A strong positive correlation between and R was found from ∼7 months to ∼2.5 years. At the annual scale, the relationships between and all meteorological parameters were long range and no significant transition in correlation was observed showing the impact of the Earth’s annual cycle on climatic variables. All these results clearly show the influence of R-T- - -U on over different time scales.
Full article

Figure 1
Open AccessArticle
Surface Urban Heat Island and Thermal Profiles Using Digital Image Analysis of Cities in the El Bajío Industrial Corridor, Mexico, in 2020
by
, , and
Earth 2023, 4(1), 93-150; https://doi.org/10.3390/earth4010007 - 08 Mar 2023
Abstract
►▼
Show Figures
The Surface Urban Heat Island (SUHI) effect refers to the difference in Land Surface Temperature (LST) between an urban area and its surrounding non-urban area. LST can provide detailed information on the variations in different types of land cover. This study, therefore, analyzes
[...] Read more.
The Surface Urban Heat Island (SUHI) effect refers to the difference in Land Surface Temperature (LST) between an urban area and its surrounding non-urban area. LST can provide detailed information on the variations in different types of land cover. This study, therefore, analyzes the behavior of LST and SUHIs in fourteen cities in the El Bajío Industrial Corridor, Mexico, using Landsat satellite images from 2020, with QGIS software. It utilizes thermal profiles to identify the land uses that intensify LST, which are essentially those that are anthropologically altered. The results show that the increases in LST and SUHI are more pronounced in cities with greater urban conglomeration, as well as those where there are few green areas and a sizeable industrial or mixed area, with few or no bodies of water. In addition, the increase in temperature in the SUHI is due to certain crops such as vegetables, red fruits, and basic grains such as corn, wheat, and sorghum that use fallow as part of agricultural practices, located around urban areas, which minimizes natural areas with arboreal vegetation.
Full article

Figure 1
Open AccessReview
Ecosystem Services Valuation of Constructed Wetland as a Nature-Based Solution to Wastewater Treatment
Earth 2023, 4(1), 78-92; https://doi.org/10.3390/earth4010006 - 11 Feb 2023
Cited by 1
Abstract
►▼
Show Figures
Constructed wetlands (CWs) are nature-based solutions that utilize natural vegetation, soils, and microbes to treat domestic wastewater and industrial effluents. They are engineered treatment systems that mimic the functions of natural wetlands to capture stormwater, reduce nutrient loads, and create diverse wildlife habitats.
[...] Read more.
Constructed wetlands (CWs) are nature-based solutions that utilize natural vegetation, soils, and microbes to treat domestic wastewater and industrial effluents. They are engineered treatment systems that mimic the functions of natural wetlands to capture stormwater, reduce nutrient loads, and create diverse wildlife habitats. Providing these monetary and non-monetary benefits, its implementation has grown in several applications and geographical spread. Recent studies integrate the ecosystem services of CWs in project valuation, and the critical analysis of research hotspots has not been made yet. This study employs a systematic review to analyze the literature on ecosystem services provided by CWs and how they are incorporated into the valuation of CW projects. Among the ecosystem services that have been identified are provisioning (biomass and water supply), regulating (wastewater treatment and purification, climate regulation, flood prevention, and erosion control), cultural (recreation and aesthetic, biodiversity, education, and research), and supporting (habitat formation, nutrient cycling, and hydrological cycle). In terms of valuation methods and techniques, the results identified contingent valuation, shadow pricing, cost–benefit analysis, benefits transfer, habitat evaluation procedures, replacement cost, and travel cost. The analysis results provide researchers with a concrete basis for future studies and directions for further development. This also provides policymakers and CW project planners with valuable insights on various aspects of policy support for CW adoption and project valuation.
Full article

Figure 1
Open AccessPerspective
Environmentally Conscious Technologies Using Fungi in a Climate-Changing World
by
and
Earth 2023, 4(1), 69-77; https://doi.org/10.3390/earth4010005 - 08 Feb 2023
Cited by 1
Abstract
►▼
Show Figures
Fungi are a diverse and fascinating group of organisms that play an important role in various ecosystems, e.g., in the decomposition of organic matter and nutrient cycling. However, climate change poses a significant threat to these ecosystems and the organisms that inhabit them.
[...] Read more.
Fungi are a diverse and fascinating group of organisms that play an important role in various ecosystems, e.g., in the decomposition of organic matter and nutrient cycling. However, climate change poses a significant threat to these ecosystems and the organisms that inhabit them. Fluctuations in temperature and humidity can cause shifts in the distribution of fungi and negatively impact the ecosystems they inhabit. Yet fungi have the potential to play a role in mitigating the effects of climate change. With the use of biotechnology, fungi can help meet the United Nations Sustainable Development Goals, and their properties make them useful organisms in addressing the urgent challenges that humanity faces. For example, industrial biotechnology using fungi can lead to the production of goods that are more biodegradable, use less energy and produce less waste. Fungi have long been used in the production of enzymes, alkaloids, detergents, acids, and biosurfactants on an industrial scale. Recent research in the field of white biotechnology has made significant progress, and further advances are expected in the near future, especially in agricultural and environmental biotechnology. With this in mind, it is crucial to explore the use of fungi in novel and environmentally conscious technologies, as well as in mitigating the effects of climate change.
Full article

Figure 1
Open AccessEditorial
Acknowledgment to the Reviewers of Earth in 2022
Earth 2023, 4(1), 66-68; https://doi.org/10.3390/earth4010004 - 16 Jan 2023
Abstract
High-quality academic publishing is built on rigorous peer review [...]
Full article
Open AccessArticle
The Cost of Alternative Water Supply and Efficiency Options under Uncertainty: An Application of Modern Portfolio Theory and Chebyshev’s Inequality
Earth 2023, 4(1), 40-65; https://doi.org/10.3390/earth4010003 - 09 Jan 2023
Abstract
►▼
Show Figures
Sea-level rise, population growth, and changing land-use patterns will further constrain Florida’s already scarce groundwater and surface water supplies in the coming decades. Significant investments in water supply and water demand management are needed to ensure sufficient water availability for human and natural
[...] Read more.
Sea-level rise, population growth, and changing land-use patterns will further constrain Florida’s already scarce groundwater and surface water supplies in the coming decades. Significant investments in water supply and water demand management are needed to ensure sufficient water availability for human and natural systems. Section 403.928 (1) (b) of the Florida Statutes requires estimating the expenditures needed to meet the future water demand and avoid the adverse effects of competition for water supplies to 2040. This study considers the 2020–2040 planning period and projects (1) future water demand and supplies; and (2) the total expenditures (capital costs) necessary to meet the future water demand in Florida, USA. The uniqueness of this study compared with the previous studies is the introduction of a probabilistic-based approach to quantify the uncertainty of the investment costs to meet future water demand. We compile data from the U.S. Geological Survey, Florida’s Department of Agriculture & Consumer Services, Florida’s Water Management Districts, and the Florida Department of Environmental Protection to project the future water demand and supplies, and the expenditures needed to meet the demand considering uncertainty in the costs of alternative water supply options. The results show that the total annual water demand is projected to increase by 1405 million cubic meters (+15.9%) by 2040, driven primarily by urbanization. Using the median capital costs of alternative water supply projects, cumulative expenditures for the additional water supplies are estimated between USD 1.11–1.87 billion. However, when uncertainty in the project costs is accounted for, the projected expenditure range shifts to USD 1.65 and USD 3.21 billion. In addition, we illustrate how using Modern Portfolio Theory (MPT) can increase the efficacy of investment planning to develop alternative water supply options. The results indicate that using MPT in selecting the share of each project type in developing water supply options can reduce the standard deviation of capital costs per one unit of capacity by 74% compared to the equal share allocation. This study highlights the need for developing more flexible funding strategies on local, regional, and state levels to finance additional water supply infrastructure, and more cost-effective combinations of demand management strategies and alternative water supply options to meet the water needed for the state in the future.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Agriculture, Earth, Forests, Land, Remote Sensing
Google Earth Engine Applications for Monitoring Natural Ecosystems and Land Use
Topic Editors: Gherardo Chirici, Saverio Francini, Noel Gorelick, Nicholas CoopsDeadline: 25 December 2023
Topic in
Earth, Hydrology, Pollutants, Water, Land
Monitoring Inland Water Quality and Ecological Status
Topic Editors: Fei Xiao, Mengyuan Zhu, Lingling ZhuDeadline: 28 February 2024
Topic in
Agronomy, Climate, Earth, Remote Sensing, Water
Advances in Crop Simulation Modelling
Topic Editors: Mavromatis Theodoros, Thomas Alexandridis, Vassilis AschonitisDeadline: 15 June 2024

Conferences
Special Issues
Special Issue in
Earth
Monitoring Water, Vegetation, and Soil Condition in Farmland Ecosystems: Integration of Multi-Source Remote Sensing
Guest Editors: Ningbo Cui, Taifeng Dong, Cong Wang, Yulei XieDeadline: 15 August 2023