Special Issue "Frontiers of Perovskite Solar Cells"

A special issue of Crystals (ISSN 2073-4352). This special issue belongs to the section "Materials for Energy Applications".

Deadline for manuscript submissions: closed (30 April 2023) | Viewed by 11139

Special Issue Editors

Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
Interests: semiconductor nanocrystals; halide perovskite; optoelectronic devices; solar cells; LED
Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
Interests: photodetectors; radiation detectors; 2D materials; hybrid perovskites; LEDs

Special Issue Information

Dear Colleagues,

For perovskite solar cells (PSCs) to become a cost-effective photovoltaic technology, their efficiency, stability and industrialization are the basic merits to consider. Among these aspects, the working stability can become a large obstacle for the development of PSCs, which is mainly due to the light sensitivity of the device. In the past few years, there have been significant advances in studies on the crystal growth process, photo/moisture/oxygen/heat-induced degradation, performance optimization and the device structure design of perovskite solar cells in terms of both mechanisms and solutions. However, how do environmental factors affect the formation/degradation of the perovskite lattice? Which is more suitable for commercial development, component engineering or pure phase perovskite? How can perovskite devices achieve long-term development in the silicon market? These are currently open questions, as well as hot and timely topics. The present Special Issue on “Perovskite Solar Cells” may become a status report summarizing the progress achieved in the last five years.

Dr. Jing Wei
Dr. Fangze Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • perovskite
  • commercial development
  • interface engineer
  • crystal growth
  • device stability
  • degradation
  • structure design

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Colloidal Synthesis and Optical Properties of Cs2CuCl4 Nanocrystals
Crystals 2023, 13(6), 864; https://doi.org/10.3390/cryst13060864 - 24 May 2023
Viewed by 267
Abstract
Lead-free copper halide perovskite nanocrystals (NCs) are emerging materials with excellent photoelectric properties. Herein, we present a colloidal synthesis route for orthorhombic Cs2CuCl4 NCs with a well-defined cubic shape and an average diameter of 24 ± 2.1 nm. The Cs [...] Read more.
Lead-free copper halide perovskite nanocrystals (NCs) are emerging materials with excellent photoelectric properties. Herein, we present a colloidal synthesis route for orthorhombic Cs2CuCl4 NCs with a well-defined cubic shape and an average diameter of 24 ± 2.1 nm. The Cs2CuCl4 NCs exhibited bright, deep blue photoluminescence, which was attributed to the Cu(II) defects. In addition, passivating the Cs2CuCl4 NCs by Ag+ could effectively improve the photoluminescence quantum yield (PLQY) and environmental stability. Full article
(This article belongs to the Special Issue Frontiers of Perovskite Solar Cells)
Show Figures

Figure 1

Article
Design and Device Numerical Analysis of Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cell
Crystals 2023, 13(2), 267; https://doi.org/10.3390/cryst13020267 - 03 Feb 2023
Cited by 1 | Viewed by 1048
Abstract
The advancement of lead-free double perovskite materials has drawn great interest thanks to their reduced toxicity, and superior stability. In this regard, Cs2AgBiBr6 perovskites have appeared as prospective materials for photovoltaic (PV) applications. In this work, we present design and [...] Read more.
The advancement of lead-free double perovskite materials has drawn great interest thanks to their reduced toxicity, and superior stability. In this regard, Cs2AgBiBr6 perovskites have appeared as prospective materials for photovoltaic (PV) applications. In this work, we present design and numerical simulations, using SCAPS-1D device simulator, of Cs2AgBiBr6-based double perovskite solar cell (PSC). The initial calibrated cell is based on an experimental study in which the Cs2AgBiBr6 layer has the lowest bandgap (Eg = 1.64 eV) using hydrogenation treatment reported to date. The initial cell (whose structure is ITO/SnO2/Cs2AgBiBr6/Spiro-OMeTAD/Au) achieved a record efficiency of 6.58%. The various parameters that significantly affect cell performance are determined and thoroughly analyzed. It was found that the conduction band offset between the electron transport layer (ETL) and the Cs2AgBiBr6 layer is the most critical factor that affects the power conversion efficiency (PCE), in addition to the thickness of the absorber film. Upon engineering these important technological parameters, by proposing a double ETL SnO2/ZnO1-xSx structure with tuned absorber thickness, the PCE can be boosted to 14.23%. Full article
(This article belongs to the Special Issue Frontiers of Perovskite Solar Cells)
Show Figures

Figure 1

Article
Construction of Laminated Luminescent Solar Concentrator “Smart” Window Based on Thermoresponsive Polymer and Carbon Quantum Dots
Crystals 2022, 12(11), 1612; https://doi.org/10.3390/cryst12111612 - 11 Nov 2022
Cited by 1 | Viewed by 846
Abstract
Conventional luminescent solar concentrators (LSCs) lack the ability of dynamic modulation, energy saving, and privacy protection. In this work, a thermoresponsive laminated LSC was created and further used as a “smart” window (SW). The laminated LSC “smart” window (LSC-SW) was prepared by introducing [...] Read more.
Conventional luminescent solar concentrators (LSCs) lack the ability of dynamic modulation, energy saving, and privacy protection. In this work, a thermoresponsive laminated LSC was created and further used as a “smart” window (SW). The laminated LSC “smart” window (LSC-SW) was prepared by introducing carbon quantum dots (CQDs) into the sandwiched LSCs filled with aqueous thermosensitive polymer (PNIPAm) solution. To realize better compatibility, two types of fluorescent materials, hydrophilic CQDs (blue and green emitting CQDs), had been synthesized. The LSC-SW showed a good dynamic response to the ambient temperature and solar irradiation, which can be switched between transparent (<32 °C) and opaque states (>32 °C). Besides, the optimal LSC-SW had high transmittance (>80%) at the transparent state and low transmittance (<10%) at the opaque state. More importantly, the opaque state enabled the LSC-SW with higher external optical efficiency (ηopt of 7.49%), energy saving. Full article
(This article belongs to the Special Issue Frontiers of Perovskite Solar Cells)
Show Figures

Figure 1

Article
Influence of Formamidine Formate Doping on Performance and Stability of FAPbI3-Based Perovskite Solar Cells
Crystals 2022, 12(9), 1194; https://doi.org/10.3390/cryst12091194 - 25 Aug 2022
Cited by 1 | Viewed by 960
Abstract
Formamidine lead iodide (FAPbI3) perovskite material is very suitable for solar photovoltaic devices because of its ideal low band gap, theoretically high efficiency, and wide range of solar spectral absorption, coupled with its good thermal stability. A two-step spin coating method [...] Read more.
Formamidine lead iodide (FAPbI3) perovskite material is very suitable for solar photovoltaic devices because of its ideal low band gap, theoretically high efficiency, and wide range of solar spectral absorption, coupled with its good thermal stability. A two-step spin coating method could control the crystallization process of formamidine lead iodide perovskite films better, resulting in more easily repeatable high-quality films. However, it is still difficult to avoid the formation of halide I-vacancy during the preparation of films, which will affect device performance and stability. In this paper, we added small molecular formamidine formate (FAHCOO) into the PbI2 precursor solution. Due to the high binding energy between HCOO and I-vacancy, film defects caused by I-vacancies could be passivated. A molecular exchange process could be introduced in the two-step method with the addition of FAHCOO. The exchange process could delay the crystallization process in perovskite films and make them transform more fully; thus, ultimately improving the crystallization quality of the films. In addition, by adding FAHCOO to the PbI2 precursor solution, a small number of FAPbI3 can be pre-generated as templates. These templates could induce the growth of specific crystal planes of FAPbI3 in the second step reaction; thereby, improving the crystallinity of FAPbI3 films. The FAPbI3 of devices with optimized FAHCOO show a champion power conversion efficiency (PCE) of 19.04%, apparently higher than that of the controlled devices without FAHCOO (16.69%). For working stability tests under AM 1.5G illumination in an air environment, PSCs with FAHCOO showed nearly 100% of their initial efficiency after a 4100 s tracking test, while the original control device dropped to about 94%. Full article
(This article belongs to the Special Issue Frontiers of Perovskite Solar Cells)
Show Figures

Figure 1

Article
High-Efficiency Electron Transport Layer-Free Perovskite/GeTe Tandem Solar Cell: Numerical Simulation
Crystals 2022, 12(7), 878; https://doi.org/10.3390/cryst12070878 - 21 Jun 2022
Cited by 5 | Viewed by 1591
Abstract
The primary purpose of recent research has been to achieve a higher power conversion efficiency (PCE) with stable characteristics, either through experimental studies or through modeling and simulation. In this study, a theoretical analysis of an efficient perovskite solar cell (PSC) with cuprous [...] Read more.
The primary purpose of recent research has been to achieve a higher power conversion efficiency (PCE) with stable characteristics, either through experimental studies or through modeling and simulation. In this study, a theoretical analysis of an efficient perovskite solar cell (PSC) with cuprous oxide (Cu2O) as the hole transport material (HTM) and zinc oxysulfide (ZnOS) as the electron transport material (ETM) was proposed to replace the traditional HTMs or ETMs. In addition, the impact of doping the perovskite layer was investigated. The results show that the heterostructure of n-p PSC without an electron transport layer (ETL) could replace the traditional n-i-p structure with better performance metrics and more stability due to reducing the number of layers and interfaces. The impact of HTM doping and thickness was investigated. In addition, the influence of the energy gap of the absorber layer was studied. Furthermore, the proposed PSC without ETL was used as a top sub-cell with germanium-telluride (GeTe) as a bottom sub-cell to produce an efficient tandem cell and boost the PCE. An ETL-free PSC/GeTe tandem cell is proposed for the first time to provide an efficient and stable tandem solar cell with a PCE of 45.99%. Finally, a comparison between the performance metrics of the proposed tandem solar cell and those of other recent studies is provided. All the simulations performed in this study are accomplished by using SCAPS-1D. Full article
(This article belongs to the Special Issue Frontiers of Perovskite Solar Cells)
Show Figures

Figure 1

Article
Simulation of Amorphous Silicon Carbide Photonic Crystal Absorption Layer for Solar Cells
Crystals 2022, 12(5), 665; https://doi.org/10.3390/cryst12050665 - 05 May 2022
Cited by 3 | Viewed by 1036
Abstract
In this work, the amorphous silicon carbide (a-SiC) with low cost and high extinction coefficient was used as the light absorption layer of solar cells, and the photonic crystal (PC) structure and defect structure were introduced. By optimizing the scatterer shape, structural parameters [...] Read more.
In this work, the amorphous silicon carbide (a-SiC) with low cost and high extinction coefficient was used as the light absorption layer of solar cells, and the photonic crystal (PC) structure and defect structure were introduced. By optimizing the scatterer shape, structural parameters and defect types of photonic crystal, the absorption efficiency of the light absorption layer was further improved. The results show that the photonic crystal absorption layer with vacancy line defect is better than the perfect photonic crystal absorption layer. Meanwhile, the absorption efficiency of the photonic crystal absorption layer significantly improves in the case that the scatterer is an elliptical cylindrical air hole scatterer. When the incident light is in the wavelength range of 0.30~0.80 μm and the absorption layer height is 0.60 μm, the absorption efficiency of the absorption layer can reach 95.60%. Compared with the absorption layer without photonic crystal structure, the absorption layer is increased by 43.24%. At the same time, the absorption layer has little dependence on the incidence angle of sunlight. When the incidence angle is 65°, the absorption efficiency is still higher than 80%. Full article
(This article belongs to the Special Issue Frontiers of Perovskite Solar Cells)
Show Figures

Figure 1

Review

Jump to: Research

Review
Review: Perovskite X-ray Detectors (1997–Present)
Crystals 2022, 12(11), 1563; https://doi.org/10.3390/cryst12111563 - 02 Nov 2022
Cited by 1 | Viewed by 1100
Abstract
Perovskite materials have attracted extensive attention because of their superior performance in the fields of photoelectric detection, photovoltaics, light-emitting diodes, metal–air batteries, etc. However, their development and application in the field of X-ray detectors have not been reviewed. In this paper, research on [...] Read more.
Perovskite materials have attracted extensive attention because of their superior performance in the fields of photoelectric detection, photovoltaics, light-emitting diodes, metal–air batteries, etc. However, their development and application in the field of X-ray detectors have not been reviewed. In this paper, research on perovskite-based X-ray detectors is analyzed using the bibliometric method. This analysis sample includes the literature from 1997 to the present. In addition, the research status of perovskite-based scintillators and direct X-ray detectors under different crystallization conditions and different preparation methods is discussed. Finally, several problems that need to be overcome in the future of perovskite-based X-ray detectors are put forward. Full article
(This article belongs to the Special Issue Frontiers of Perovskite Solar Cells)
Show Figures

Figure 1

Review
Annealing Engineering in the Growth of Perovskite Grains
Crystals 2022, 12(7), 894; https://doi.org/10.3390/cryst12070894 - 24 Jun 2022
Cited by 4 | Viewed by 3571
Abstract
Perovskite solar cells (PSCs) are a promising and fast-growing type of photovoltaic cell due to their low cost and high conversion efficiency. The high efficiency of PSCs is closely related to the quality of the photosensitive layer, and the high-quality light absorbing layer [...] Read more.
Perovskite solar cells (PSCs) are a promising and fast-growing type of photovoltaic cell due to their low cost and high conversion efficiency. The high efficiency of PSCs is closely related to the quality of the photosensitive layer, and the high-quality light absorbing layer depends on the growth condition of the crystals. In the formation of high-quality crystals, annealing is an indispensable and crucial part, which serves to evaporate the solvent and drive the crystallization of the film. Various annealing methods have different effects on the promotion of the film growth process owing to the way they work. Here, this review will present a discussion of the growth puzzles and quality of perovskite crystals under different driving forces, and then explain the relationship between the annealing driving force and crystal growth. We divided the main current annealing methods into physical and chemical annealing, which has never been summarized before. The main annealing methods currently reported for crystal growth are summarized to visualize the impact of annealing design strategies on photovoltaic performance, while the growth mechanisms of thin films under multiple annealing methods are also discussed. Finally, we suggest future perspectives and trends in the industrial fabrication of PSCs in the future. The review promises industrial manufacturing of annealed PSCs. The review is expected to facilitate the industrial fabrication of PSCs. Full article
(This article belongs to the Special Issue Frontiers of Perovskite Solar Cells)
Show Figures

Figure 1

Back to TopTop