Journal Description
Cryptography
Cryptography
is an international, scientific, peer-reviewed, open access journal of cryptography published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), dblp, and other databases.
- Journal Rank: CiteScore - Q1 (Applied Mathematics)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 20.5 days after submission; acceptance to publication is undertaken in 4.3 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Latest Articles
Flexible and Efficient Multi-Keyword Ranked Searchable Attribute-Based Encryption Schemes
Cryptography 2023, 7(2), 28; https://doi.org/10.3390/cryptography7020028 - 15 May 2023
Abstract
►
Show Figures
Currently, cloud computing has become increasingly popular and thus, many people and institutions choose to put their data into the cloud instead of local environments. Given the massive amount of data and the fidelity of cloud servers, adequate security protection and efficient retrieval
[...] Read more.
Currently, cloud computing has become increasingly popular and thus, many people and institutions choose to put their data into the cloud instead of local environments. Given the massive amount of data and the fidelity of cloud servers, adequate security protection and efficient retrieval mechanisms for stored data have become critical problems. Attribute-based encryption brings the ability of fine-grained access control and can achieve a direct encrypted data search while being combined with searchable encryption algorithms. However, most existing schemes only support single-keyword or provide no ranking searching results, which could be inflexible and inefficient in satisfying the real world’s actual needs. We propose a flexible multi-keyword ranked searchable attribute-based scheme using search trees to overcome the above-mentioned problems, allowing users to combine their fuzzy searching keywords with AND–OR logic gates. Moreover, our enhanced scheme not only improves its privacy protection but also goes a step further to apply a semantic search to boost the flexibility and the searching experience of users. With the proposed index-table method and the tree-based searching algorithm, we proved the efficiency and security of our schemes through a series of analyses and experiments.
Full article
Open AccessArticle
Blockchain-Based Electronic Voting: A Secure and Transparent Solution
by
, , , , and
Cryptography 2023, 7(2), 27; https://doi.org/10.3390/cryptography7020027 - 15 May 2023
Abstract
Since its appearance in 2008, blockchain technology has found multiple uses in fields such as banking, supply chain management, and healthcare. One of the most intriguing uses of blockchain is in voting systems, where the technology can overcome the security and transparency concerns
[...] Read more.
Since its appearance in 2008, blockchain technology has found multiple uses in fields such as banking, supply chain management, and healthcare. One of the most intriguing uses of blockchain is in voting systems, where the technology can overcome the security and transparency concerns that plague traditional voting systems. This paper provides a thorough examination of the implementation of a blockchain-based voting system. The proposed system employs cryptographic methods to protect voters’ privacy and anonymity while ensuring the verifiability and integrity of election results. Digital signatures, homomorphic encryption (He), zero-knowledge proofs (ZKPs), and the Byzantine fault-tolerant consensus method underpin the system. A review of the literature on the use of blockchain technology for voting systems supports the analysis and the technical and logistical constraints connected with implementing the suggested system. The study suggests solutions to problems such as managing voter identification and authentication, ensuring accessibility for all voters, and dealing with network latency and scalability. The suggested blockchain-based voting system can provide a safe and transparent platform for casting and counting votes, ensuring election results’ privacy, anonymity, and verifiability. The implementation of blockchain technology can overcome traditional voting systems’ security and transparency shortcomings while also delivering a high level of integrity and traceability.
Full article
(This article belongs to the Special Issue Emerging Topics in Blockchain Security and Privacy)
►▼
Show Figures

Figure 1
Open AccessArticle
Revisiting Multiple Ring Oscillator-Based True Random Generators to Achieve Compact Implementations on FPGAs for Cryptographic Applications
by
, , , and
Cryptography 2023, 7(2), 26; https://doi.org/10.3390/cryptography7020026 - 10 May 2023
Abstract
The generation of random numbers is crucial for practical implementations of cryptographic algorithms. In this sense, hardware security modules (HSMs) include true random number generators (TRNGs) implemented in hardware to achieve good random number generation. In the case of cryptographic algorithms implemented on
[...] Read more.
The generation of random numbers is crucial for practical implementations of cryptographic algorithms. In this sense, hardware security modules (HSMs) include true random number generators (TRNGs) implemented in hardware to achieve good random number generation. In the case of cryptographic algorithms implemented on FPGAs, the hardware implementation of RNGs is limited to the programmable cells in the device. Among the different proposals to obtain sources of entropy and process them to implement TRNGs, those based in ring oscillators (ROs), operating in parallel and combined with XOR gates, present good statistical properties at the cost of high area requirements. In this paper, these TRNGs are revisited, showing a method for area optimization independently of the FPGA technology used. Experimental results show that three ring oscillators requiring only three LUTs are enough to build a TRNG on Artix 7 devices from Xilinx with a throughput of 33.3 Kbps, which passes NIST tests. A throughput of 50 Kbps can be achieved with four ring oscillators, also requiring three LUTs in Artix 7 devices, while 100 Kbps can be achieved using an structure with four ring oscillators requiring seven LUTs.
Full article
(This article belongs to the Special Issue Privacy-Preserving Techniques in Cloud/Fog and Internet of Things)
►▼
Show Figures

Figure 1
Open AccessArticle
PudgyTurtle Mode Resists Bit-Flipping Attacks
by
and
Cryptography 2023, 7(2), 25; https://doi.org/10.3390/cryptography7020025 - 10 May 2023
Abstract
Cryptosystems employing a synchronous binary-additive stream cipher are susceptible to a generic attack called ’bit-flipping’, in which the ciphertext is modified to decrypt into a fraudulent message. While authenticated encryption and message authentication codes can effectively negate this attack, encryption modes can also
[...] Read more.
Cryptosystems employing a synchronous binary-additive stream cipher are susceptible to a generic attack called ’bit-flipping’, in which the ciphertext is modified to decrypt into a fraudulent message. While authenticated encryption and message authentication codes can effectively negate this attack, encryption modes can also provide partial protection against bit-flipping. PudgyTurtle is a stream-cipher mode which uses keystream to encode (via an error-correcting code) and to encipher (via modulo-2 addition). Here, we describe the behavior of this mode during bit-flipping attacks and demonstrate how it creates uncertainty about the number, positions, and identities of decrypted bits that will be affected.
Full article
(This article belongs to the Special Issue Coding and Cryptography)
►▼
Show Figures

Figure 1
Open AccessArticle
LACT+: Practical Post-Quantum Scalable Confidential Transactions
Cryptography 2023, 7(2), 24; https://doi.org/10.3390/cryptography7020024 - 08 May 2023
Cited by 1
Abstract
►▼
Show Figures
A “confidential monetary value” carries information about the real monetary value but does not disclose it. Post-quantum private blockchains with confidential monetary values—large-sized blockchains with large verification times—have the least scalability because they need to save and verify more information than
[...] Read more.
A “confidential monetary value” carries information about the real monetary value but does not disclose it. Post-quantum private blockchains with confidential monetary values—large-sized blockchains with large verification times—have the least scalability because they need to save and verify more information than those with “plain-text monetary values”. High scalability is an essential security requirement for decentralized blockchain payment systems because the more honest peers who can afford to verify the blockchain copies are, the higher the security. We propose a quantum-safe transaction protocol for confidential monetary blockchains, LACT+ (Lattice-based Aggregable Confidential Transactions), which is more scalable than previous post-quantum confidential blockchains, i.e., many input/output transactions with logarithmic sized complexity.
Full article

Figure 1
Open AccessArticle
Neural Crypto-Coding Based Approach to Enhance the Security of Images over the Untrusted Cloud Environment
Cryptography 2023, 7(2), 23; https://doi.org/10.3390/cryptography7020023 - 04 May 2023
Abstract
The cloud provides on-demand, high-quality services to its users without the burden of managing hardware and software. Though the users benefit from the remote services provided by the cloud, they do not have their personal data in their physical possession. This certainly poses
[...] Read more.
The cloud provides on-demand, high-quality services to its users without the burden of managing hardware and software. Though the users benefit from the remote services provided by the cloud, they do not have their personal data in their physical possession. This certainly poses new security threats for personal and confidential data, bringing the focus back on trusting the use of the cloud for sensitive data. The benefits of the cloud outweigh the concerns raised earlier, and with an increase in cloud usage, it becomes more important for security services to evolve in order to address the ever-changing threat landscape. Advanced encryption standard (AES), being one of the most widely used encryption techniques, has inherent disadvantages related to the secret key that is shared, and predictable patterns in subkey generation. In addition, since cloud storage involves data transfer over a wireless channel, it is important to address the effect of noise and multipath propagation on the transmitted data. Catering to this problem, we propose a new approach—the secure and reliable neural cryptcoding (SARNC) technique—which provides a superior algorithm, dealing with better encryption techniques combined with channel coding. A chain is as strong as the weakest link and, in the case of symmetric key encryption, the weakest link is the shared key. In order to overcome this limitation, we propose an approach wherein the key used for cryptographic purposes is different from the key shared between the sender and the receiver. The shared key is used to derive the secret private key, which is generated by the neural key exchange protocol. In addition, the proposed approach emphasizes strengthening the sub-key generation process and integrating advanced encryption standard (AES) with low-density parity check (LDPC) codes to provide end-to-end security and reliability over wireless channels. The proposed technique was tested against research done in related areas. A comparative study shows a significant improvement in PSNR, MSE, and the structural similarity index (SSIM). The key strength analysis was carried out to understand the strength and weaknesses of the keys generated.
Full article
(This article belongs to the Special Issue Privacy-Preserving Techniques in Cloud/Fog and Internet of Things)
►▼
Show Figures

Figure 1
Open AccessArticle
Anonymous Homomorphic IBE with Application to Anonymous Aggregation
by
and
Cryptography 2023, 7(2), 22; https://doi.org/10.3390/cryptography7020022 - 17 Apr 2023
Abstract
All anonymous identity-based encryption (IBE) schemes that are group homomorphic (to the best of our knowledge) require knowledge of the identity to compute the homomorphic operation. This paper is motivated by this open problem, namely to construct an anonymous group-homomorphic IBE scheme that
[...] Read more.
All anonymous identity-based encryption (IBE) schemes that are group homomorphic (to the best of our knowledge) require knowledge of the identity to compute the homomorphic operation. This paper is motivated by this open problem, namely to construct an anonymous group-homomorphic IBE scheme that does not sacrifice anonymity to perform homomorphic operations. Note that even when strong assumptions, such as indistinguishability obfuscation (iO), are permitted, no schemes are known. We succeed in solving this open problem by assuming iO and the hardness of the DBDH problem over rings (specifically, for RSA modulus N). We then use the existence of such a scheme to construct an IBE scheme with re-randomizable anonymous encryption keys, which we prove to be IND-ID-RCCA secure. Finally, we use our results to construct identity-based anonymous aggregation protocols.
Full article
(This article belongs to the Collection Survey of Cryptographic Topics)
Open AccessArticle
A Multi-Party Functional Signatures Scheme for Private Blockchain
Cryptography 2023, 7(2), 21; https://doi.org/10.3390/cryptography7020021 - 12 Apr 2023
Abstract
Digital signature technology is essential for ensuring the authenticity and unforgeability of transactions in a private blockchain framework. In some scenarios, transactions require verification from multiple parties, each of whom needs to authenticate different parts of the transaction. To address this issue, researchers
[...] Read more.
Digital signature technology is essential for ensuring the authenticity and unforgeability of transactions in a private blockchain framework. In some scenarios, transactions require verification from multiple parties, each of whom needs to authenticate different parts of the transaction. To address this issue, researchers have developed multi-party ECDSA (Elliptic Curve Digital Signature Algorithm) signature schemes. However, these schemes either need to consider the authentication of different parts of the transaction or generate an aggregated signature. This paper proposes a novel solution that combines functional signatures and multi-party ECDSA signatures to create a multi-party functional signature for private blockchains. Compared to previous constructions, the proposed scheme ensures that each part of the transaction is verified. Furthermore, when the aggregate signature of the entire transaction cannot be verified, this scheme identifies the specific part of the transaction for which the signature authentication fails instead of rejecting the entire transaction. This paper uses a smart contract to securely deploy the proposed scheme and authenticate the f in functional signatures. The constructed scheme also provides security under the existential unforgeability of the ECDSA signature, even if parties are corrupted, assuming a total of n parties. The scheme of this paper successfully conducted experiments on a personal computer, with three users taking approximately 343 ms, six users taking 552 ms, and nine users taking 791 ms.
Full article
(This article belongs to the Special Issue Cyber Security, Cryptology and Machine Learning)
►▼
Show Figures

Figure 1
Open AccessArticle
Protecting Digital Images Using Keys Enhanced by 2D Chaotic Logistic Maps
by
, , , , , and
Cryptography 2023, 7(2), 20; https://doi.org/10.3390/cryptography7020020 - 07 Apr 2023
Abstract
►▼
Show Figures
This research paper presents a novel digital color image encryption approach that ensures high-level security while remaining simple and efficient. The proposed method utilizes a composite key r and x of 128-bits to create a small in-dimension private key (a chaotic map), which
[...] Read more.
This research paper presents a novel digital color image encryption approach that ensures high-level security while remaining simple and efficient. The proposed method utilizes a composite key r and x of 128-bits to create a small in-dimension private key (a chaotic map), which is then resized to match the color matrix dimension. The proposed method is uncomplicated and can be applied to any image without any modification. Image quality, sensitivity analysis, security analysis, correlation analysis, quality analysis, speed analysis, and attack robustness analysis are conducted to prove the efficiency and security aspects of the proposed method. The speed analysis shows that the proposed method improves the performance of image cryptography by minimizing encryption–decryption time and maximizing the throughput of the process of color cryptography. The results demonstrate that the proposed method provides better throughput than existing methods. Overall, this research paper provides a new approach to digital color image encryption that is highly secure, efficient, and applicable to various images.
Full article

Figure 1
Open AccessArticle
Algebraic Cryptanalysis with MRHS Equations
by
Cryptography 2023, 7(2), 19; https://doi.org/10.3390/cryptography7020019 - 04 Apr 2023
Abstract
In this work, we survey the existing research in the area of algebraic cryptanalysis based on Multiple Right-Hand Sides (MRHS) equations (MRHS cryptanalysis). MRHS equation is a formal inclusion that contains linear combinations of variables on the left-hand side, and a potential set
[...] Read more.
In this work, we survey the existing research in the area of algebraic cryptanalysis based on Multiple Right-Hand Sides (MRHS) equations (MRHS cryptanalysis). MRHS equation is a formal inclusion that contains linear combinations of variables on the left-hand side, and a potential set of values for these combinations on the right-hand side. We describe MRHS equation systems in detail, including the evolution of this representation. Then we provide an overview of the methods that can be used to solve MRHS equation systems. Finally, we explore the use of MRHS equation systems in algebraic cryptanalysis and survey existing experimental results.
Full article
(This article belongs to the Collection Survey of Cryptographic Topics)
Open AccessArticle
A Novel FPGA Implementation of the NAND-PUF with Minimal Resource Usage and High Reliability
Cryptography 2023, 7(2), 18; https://doi.org/10.3390/cryptography7020018 - 03 Apr 2023
Abstract
In this work we propose a novel implementation on recent Xilinx FPGA platforms of a PUF architecture based on the NAND SR-latch (referred to as NAND-PUF in the following) which achieves an extremely low resource usage with very good overall performance. More specifically,
[...] Read more.
In this work we propose a novel implementation on recent Xilinx FPGA platforms of a PUF architecture based on the NAND SR-latch (referred to as NAND-PUF in the following) which achieves an extremely low resource usage with very good overall performance. More specifically, a 4 bit NAND-PUF macro has been designed referring to the Artix-7 platform occupying only 2 slices. The optimum excitation sequence has been determined by analysing the reliability versus the excitation time of the PUF cells under supply voltage variations. A 128 bit NAND-PUF has been tested on 16 FPGA boards under supply voltage and temperature variations and measured performances have been compared against state-of-the-art PUFs from the literature. The comparison has shown that the proposed PUF implementation exhibits the best reliability performance while occupying the minimum FPGA resource usage achieved in the PUF literature.
Full article
(This article belongs to the Special Issue Feature Papers in Hardware Security II)
►▼
Show Figures

Figure 1
Open AccessArticle
SCANN: Side Channel Analysis of Spiking Neural Networks
Cryptography 2023, 7(2), 17; https://doi.org/10.3390/cryptography7020017 - 27 Mar 2023
Abstract
Spiking neural networks (SNNs) are quickly gaining traction as a viable alternative to deep neural networks (DNNs). Compared to DNNs, SNNs are computationally more powerful and energy efficient. The design metrics (synaptic weights, membrane threshold, etc.) chosen for such SNN architectures are often
[...] Read more.
Spiking neural networks (SNNs) are quickly gaining traction as a viable alternative to deep neural networks (DNNs). Compared to DNNs, SNNs are computationally more powerful and energy efficient. The design metrics (synaptic weights, membrane threshold, etc.) chosen for such SNN architectures are often proprietary and constitute confidential intellectual property (IP). Our study indicates that SNN architectures implemented using conventional analog neurons are susceptible to side channel attack (SCA). Unlike the conventional SCAs that are aimed to leak private keys from cryptographic implementations, SCANN of spiking eural etworks) can reveal the sensitive IP implemented within the SNN through the power side channel. We demonstrate eight unique SCANN attacks by taking a common analog neuron (axon hillock neuron) as the test case. We chose this particular model since it is biologically plausible and is hence a good fit for SNNs. Simulation results indicate that different synaptic weights, neurons/layer, neuron membrane thresholds, and neuron capacitor sizes (which are the building blocks of SNN) yield distinct power and spike timing signatures, making them vulnerable to SCA. We show that an adversary can use templates (using foundry-calibrated simulations or fabricating known design parameters in test chips) and analysis to identify the specifications of the implemented SNN.
Full article
(This article belongs to the Special Issue Feature Papers in Hardware Security II)
►▼
Show Figures

Figure 1
Open AccessArticle
Encryption Scheme of Verifiable Search Based on Blockchain in Cloud Environment
Cryptography 2023, 7(2), 16; https://doi.org/10.3390/cryptography7020016 - 24 Mar 2023
Abstract
►▼
Show Figures
While transferring data to cloud servers frees users from having to manage it, it eventually raises new problems, such as data privacy. The concept of searchable encryption has drawn more and more focus in research as a means of resolving the tension between
[...] Read more.
While transferring data to cloud servers frees users from having to manage it, it eventually raises new problems, such as data privacy. The concept of searchable encryption has drawn more and more focus in research as a means of resolving the tension between data accessibility and data privacy. Due to the lack of integrity and correctness authentication in most searchable encryption techniques, malicious cloud servers may deliver false search results to users. Based on public key encryption with searching (PEKS), the study suggests a privacy-preserving method for verifiable fuzzy keyword searches based on the Ethernet blockchain in a cloud context to overcome the aforementioned security concerns. The search user can check the accuracy and integrity of the query document using the unalterability characteristics of the Ethernet blockchain system in this scheme to prevent the cloud server from giving incorrect query results. Furthermore, a fair transaction between the cloud server and the data user is achieved and can be tracked back to the malicious user using hash functions and Ethereum smart contracts, even if the user or the cloud is malicious. Finally, the security analysis shows that, under the random oracle model, our technique fulfils the adaptive selection keyword’s semantic security. The performance assessment demonstrates that the proposed scheme outperforms other related schemes in terms of computational efficiency.
Full article

Graphical abstract
Open AccessArticle
Cybersecurity Test Bed for Smart Contracts
Cryptography 2023, 7(1), 15; https://doi.org/10.3390/cryptography7010015 - 10 Mar 2023
Abstract
Blockchain, smart contracts, and related concepts have emerged in recent years as a promising technology for cryptocurrency, NFTs, and other areas. However, there are still many security issues that must be addressed as these technologies evolve. This paper reviews some of the leading
[...] Read more.
Blockchain, smart contracts, and related concepts have emerged in recent years as a promising technology for cryptocurrency, NFTs, and other areas. However, there are still many security issues that must be addressed as these technologies evolve. This paper reviews some of the leading social engineering attacks on smart contracts, as well as several vulnerabilities which result from insecure code development. A smart contract test bed is constructed using Solidity and a Metamask wallet to evaluate vulnerabilities such as insecure arithmetic, denial of service, and re-entrancy attacks. Cross-chain vulnerabilities and potential vulnerabilities resulting from layer 2 side-chain processing were also investigated. Mitigation best practices are proposed based on the experimental results.
Full article
(This article belongs to the Special Issue Emerging Topics in Blockchain Security and Privacy)
►▼
Show Figures

Figure 1
Open AccessArticle
Models for Generation of Proof Forest in zk-SNARK Based Sidechains
Cryptography 2023, 7(1), 14; https://doi.org/10.3390/cryptography7010014 - 07 Mar 2023
Abstract
Sidechains are among the most promising scalability and extended functionality solutions for blockchains. Application of zero knowledge techniques (Latus, Mina) allows for reaching high level security and general throughput, though it brings new challenges on keeping decentralization where significant effort is required for
[...] Read more.
Sidechains are among the most promising scalability and extended functionality solutions for blockchains. Application of zero knowledge techniques (Latus, Mina) allows for reaching high level security and general throughput, though it brings new challenges on keeping decentralization where significant effort is required for robust computation of zk-proofs. We consider a simultaneous decentralized creation of various zk-proof trees that form proof-trees sequences in sidechains in the model that combines behavior of provers, both deterministic (mutually consistent) or stochastic (independent) and types of proof trees. We define the concept of efficiency of such process, introduce its quantity measure and recommend parameters for tree creation. In deterministic cases, the sequences of published trees are ultimately periodic and ensure the highest possible efficiency (no collisions in proof creation). In stochastic cases, we obtain a universal measure of prover efficiencies given by the explicit formula in one case or calculated by a simulation model in another case. The optimal number of allowed provers’ positions for a step can be set for various sidechain parameters, such as number of provers, number of time steps within one block, etc. Benefits and restrictions for utilization of non-perfect binary proof trees are also explicitly presented.
Full article
(This article belongs to the Special Issue Emerging Topics in Blockchain Security and Privacy)
►▼
Show Figures

Figure 1
Open AccessArticle
A Decentralized COVID-19 Vaccine Tracking System Using Blockchain Technology
Cryptography 2023, 7(1), 13; https://doi.org/10.3390/cryptography7010013 - 06 Mar 2023
Abstract
Coronavirus disease 2019 (COVID-19) vaccines play a crucial role in preventing the spread of the disease. However, the circulation of low-quality and counterfeit vaccines seriously affects human health and the reputation of real vaccine manufacturers (VMs) and increases the amount of fear concerning
[...] Read more.
Coronavirus disease 2019 (COVID-19) vaccines play a crucial role in preventing the spread of the disease. However, the circulation of low-quality and counterfeit vaccines seriously affects human health and the reputation of real vaccine manufacturers (VMs) and increases the amount of fear concerning vaccination. In this study, we address this problem by developing a blockchain-based COVID-19 vaccine tracking system called “Vacchain”. Our Vacchain allows users (USERs) to track and trace the route of vaccines. We propose three mechanisms, namely, a system manager (SYS-MAN), a mutual agreement concerning vaccine ownership, and vaccine passports, to enhance the security and reliability of data recorded in the Vacchain ledger. We develop this system on the Substrate platform with the Rust language. Our implementation, evaluation, and analysis have shown that Vacchain can trace and track vaccines smoothly. In addition, data security and reliability are enhanced by the abovementioned three mechanisms. The proposed system is expected to contribute to preventing the spread of COVID-19.
Full article
(This article belongs to the Special Issue Emerging Topics in Blockchain Security and Privacy)
►▼
Show Figures

Figure 1
Open AccessArticle
Dynamic Multimedia Encryption Using a Parallel File System Based on Multi-Core Processors
by
, , , , , and
Cryptography 2023, 7(1), 12; https://doi.org/10.3390/cryptography7010012 - 06 Mar 2023
Abstract
►▼
Show Figures
Securing multimedia data on disk drives is a major concern because of their rapidly increasing volumes over time, as well as the prevalence of security and privacy problems. Existing cryptographic schemes have high computational costs and slow response speeds. They also suffer from
[...] Read more.
Securing multimedia data on disk drives is a major concern because of their rapidly increasing volumes over time, as well as the prevalence of security and privacy problems. Existing cryptographic schemes have high computational costs and slow response speeds. They also suffer from limited flexibility and usability from the user side, owing to continuous routine interactions. Dynamic encryption file systems can mitigate the negative effects of conventional encryption applications by automatically handling all encryption operations with minimal user input and a higher security level. However, most state-of-the-art cryptographic file systems do not provide the desired performance because their architectural design does not consider the unique features of multimedia data or the vulnerabilities related to key management and multi-user file sharing. The recent move towards multi-core processor architecture has created an effective solution for reducing the computational cost and maximizing the performance. In this paper, we developed a parallel FUSE-based encryption file system called ParallelFS for storing multimedia files on a disk. The developed file system exploits the parallelism of multi-core processors and implements a hybrid encryption method for symmetric and asymmetric ciphers. Usability is significantly enhanced by performing encryption, decryption, and key management in a manner that is fully dynamic and transparent to users. Experiments show that the developed ParallelFS improves the reading and writing performances of multimedia files by approximately 35% and 22%, respectively, over the schemes using normal sequential encryption processing.
Full article

Figure 1
Open AccessArticle
Data Sharing Privacy Metrics Model Based on Information Entropy and Group Privacy Preference
Cryptography 2023, 7(1), 11; https://doi.org/10.3390/cryptography7010011 - 03 Mar 2023
Abstract
With the development of the mobile internet, service providers obtain data and resources through a large number of terminal user devices. They use private data for business empowerment, which improves the user experience while causing users’ privacy disclosure. Current research ignores the impact
[...] Read more.
With the development of the mobile internet, service providers obtain data and resources through a large number of terminal user devices. They use private data for business empowerment, which improves the user experience while causing users’ privacy disclosure. Current research ignores the impact of disclosing user non-sensitive attributes under a single scenario of data sharing and lacks consideration of users’ privacy preferences. This paper constructs a data-sharing privacy metrics model based on information entropy and group privacy preferences. Use information theory to model the correlation of the privacy metrics problem, the improved entropy weight algorithm to measure the overall privacy of the data, and the analytic hierarchy process to correct user privacy preferences. Experiments show that this privacy metrics model can better quantify data privacy than conventional methods, provide a reliable evaluation mechanism for privacy security in data sharing and publishing scenarios, and help to enhance data privacy protection.
Full article
(This article belongs to the Special Issue Applied Cryptography, Network Security, and Privacy Protection)
►▼
Show Figures

Figure 1
Open AccessArticle
Selection Strategy of F4-Style Algorithm to Solve MQ Problems Related to MPKC
Cryptography 2023, 7(1), 10; https://doi.org/10.3390/cryptography7010010 - 27 Feb 2023
Abstract
►▼
Show Figures
Multivariate public-key cryptosystems are potential candidates for post-quantum cryptography. The security of multivariate public-key cryptosystems relies on the hardness of solving a system of multivariate quadratic polynomial equations. Faugère’s F4 algorithm is one of the solution techniques based on the theory of Gröbner
[...] Read more.
Multivariate public-key cryptosystems are potential candidates for post-quantum cryptography. The security of multivariate public-key cryptosystems relies on the hardness of solving a system of multivariate quadratic polynomial equations. Faugère’s F4 algorithm is one of the solution techniques based on the theory of Gröbner bases and selects critical pairs to compose the Macaulay matrix. Reducing the matrix size is essential. Previous research has not fully examined how many critical pairs it takes to reduce to zero when echelonizing the Macaulay matrix in rows. Ito et al. (2021) proposed a new critical-pair selection strategy for solving multivariate quadratic problems associated with encryption schemes. Instead, this paper extends their selection strategy for solving the problems associated with digital signature schemes. Using the OpenF4 library, we compare the software performance between the integrated F4-style algorithm of the proposed methods and the original F4-style algorithm. Our experimental results demonstrate that the proposed methods can reduce the processing time of the F4-style algorithm by up to a factor of about seven under certain specific parameters. Moreover, we compute the minimum number of critical pairs to reduce to zero and propose their extrapolation outside our experimental scope for further research.
Full article

Figure 1
Open AccessArticle
Attacking Windows Hello for Business: Is It What We Were Promised?
Cryptography 2023, 7(1), 9; https://doi.org/10.3390/cryptography7010009 - 14 Feb 2023
Abstract
Traditional password authentication methods have raised many issues in the past, including insecure practices, so it comes as no surprise that the evolution of authentication should arrive in the form of password-less solutions. This research aims to explore the problems that password authentication
[...] Read more.
Traditional password authentication methods have raised many issues in the past, including insecure practices, so it comes as no surprise that the evolution of authentication should arrive in the form of password-less solutions. This research aims to explore the problems that password authentication and password policies present and aims to deploy Windows Hello for Business (WHFB) on-premises. This includes creating three virtual machines (VMs) and evaluating WHFB as a password-less solution and showing how an attacker with privileged access may retrieve the end user’s domain password from the computer’s memory using Mimikatz and describing the possible results. The conducted research tests are in the form of two attack methods. This was feasible by the creation of three VMs operating in the following way. The first VM will act as a domain controller (DC) and certificate authority server (CA server). The second VM will act as an Active Directory Federation Service (ADFS). The third VM will act as the end-user device. The test findings research summarized that password-less authentication is far more secure than the traditional authentication method; this is evidenced throughout the author’s tests. Within the first test, it was possible to retrieve the password from an enrolled device for WHFB while it was still in the second phase of the deployment. The second test was a brute-force attack on the PIN of WHFB; since WHFB has measures to prevent such attacks, the attack was unsuccessful. However, even though the retrieval of the password was successful, there are several obstacles to achieving this outcome. It was concluded that many organizations still use password authentication as their primary authentication method for accessing devices and applications. Larger organizations such as Microsoft and Google support the adoption of password-less authentication for end-users, and the current usage of password-less authentication shared by both organizations is encouraged. This usually leads organizations to adopt this new solution for their IT infrastructure. This is because it has been used and tested by millions of people and has proven to be safe. This supports the findings of increased usage and the need for password-less authentication by today’s users.
Full article
(This article belongs to the Special Issue Privacy-Preserving Techniques in Cloud/Fog and Internet of Things)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Sciences, Cryptography, JCP, JSAN, Sci, Symmetry
Trends and Prospects in Security, Encryption and Encoding
Topic Editors: Ki-Hyun Jung, Luis Javier García VillalbaDeadline: 29 February 2024

Conferences
Special Issues
Special Issue in
Cryptography
Coding and Cryptography
Guest Editors: Simona Samardjiska, Huaxiong WangDeadline: 31 May 2023
Special Issue in
Cryptography
Blockchain for Internet of Things Security and Privacy
Guest Editors: Amir H. Gandomi, Shadi Aljawarneh, Bhabendu Kumar MohantaDeadline: 30 June 2023
Special Issue in
Cryptography
Applied Cryptography and Machine Learning for Security and Privacy Protection of Critical Infrastructures
Guest Editors: Mostafa Fouda, Ahmad Alsharif, Mohamed IbrahemDeadline: 12 July 2023
Special Issue in
Cryptography
Cyber Security, Cryptology and Machine Learning
Guest Editor: Shay GueronDeadline: 31 August 2023