Journal Description
Colloids and Interfaces
Colloids and Interfaces
is an international, peer-reviewed, open access journal on colloids and interfaces chemistry. Colloids and Interfaces is published online quarterly by MDPI.
- Open Access— free for readers, no limits on space and color.
- High Visibility: indexed within Scopus, ESCI (Web of Science), CAPlus / SciFinder, Inspec, and other databases.
- Journal Rank: CiteScore - Q1 (Chemistry (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 16.2 days after submission; acceptance to publication is undertaken in 4.6 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Latest Articles
Amplification of SERS Signal of Methotrexate Using Beta-Cyclodextrin Modified Silver Nanoparticles
Colloids Interfaces 2023, 7(2), 42; https://doi.org/10.3390/colloids7020042 - 26 May 2023
Abstract
The paper describes the use of native β-cyclodextrin (CD) for the modification of silver nanoparticles (AgNPs) in order to improve the determination of the anticancer drug methotrexate (MTX) using surface-enhanced Raman spectroscopy (SERS). A control experiment with unmodified AgNPs showed that the strong
[...] Read more.
The paper describes the use of native β-cyclodextrin (CD) for the modification of silver nanoparticles (AgNPs) in order to improve the determination of the anticancer drug methotrexate (MTX) using surface-enhanced Raman spectroscopy (SERS). A control experiment with unmodified AgNPs showed that the strong SERS signal of MTX can only be achieved in alkaline media. However, competitive interactions and the strong background signal of human body fluid components significantly challenge MTX determination in real samples. While previous reports propose the use of thorough sample pretreatment (e.g., solid phase extraction), the application of CD-modified AgNPs increases the SERS signal of MTX in neutral media by seven times which enables simplifying the analysis and improving its accuracy by reducing the influence of endogenous components of body fluids. A detailed study of the synthesis conditions (CD concentration and reaction time) and SERS registration conditions (pH, NaCl concentration, dilution of urine samples) was performed to maximize the analytical signal and signal-to-noise ratio. The final assay was tested for MTX determination in artificially spiked samples of real human urine. The results demonstrated that MTX can be determined within the concentration range suitable for therapeutic drug monitoring (20–300 μg mL−1) with satisfactory precision (6–15% RSD), accuracy (95–111% apparent recovery), and limit of detection (0.3 μg mL−1).
Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces)
►
Show Figures
Open AccessArticle
Experimental and Machine Learning Studies on Chitosan-Polyacrylamide Copolymers for Selective Separation of Metal Sulfides in the Froth Flotation Process
Colloids Interfaces 2023, 7(2), 41; https://doi.org/10.3390/colloids7020041 - 17 May 2023
Abstract
►▼
Show Figures
The froth flotation process is extensively used for the selective separation of valuable base metal sulfides from uneconomic associated minerals. However, in this complex multiphase process, various parameters need to be optimized to ensure separation selectivity and peak performance. In this study, two
[...] Read more.
The froth flotation process is extensively used for the selective separation of valuable base metal sulfides from uneconomic associated minerals. However, in this complex multiphase process, various parameters need to be optimized to ensure separation selectivity and peak performance. In this study, two machine learning (ML) models, artificial neural network (ANN) and random forests (RF), were used to predict the efficiency of in-house synthesized chitosan-polyacrylamide copolymers (C-PAMs) in the depression of iron sulfide minerals (i.e., pyrite) while valuable base metal sulfides (i.e., galena and chalcopyrite) were floated using nine flotation variables as inputs to the models. The prediction performance of the models was rigorously evaluated based on the coefficient of determination (R2) and the root-mean-square error (RMSE). The results showed that the RF model was able to produce high-fidelity predictions of the depression of pyrite once thoroughly trained as compared to ANN. With the RF model, the overall R2 and RMSE values were 0.88 and 4.38 for the training phase, respectively, and R2 of 0.90 and RMSE of 3.78 for the testing phase. As for the ANN, during the training phase, the overall R2 and RMSE were 0.76 and 4.75, respectively, and during the testing phase, the R2 and RMSE were 0.65 and 5.42, respectively. Additionally, fundamental investigations on the surface chemistry of C-PAMs at the mineral–water interface were conducted to give fundamental insights into the behavior of different metal sulfides during the flotation process. C-PAM was found to strongly adsorb on pyrite as compared to galena and chalcopyrite through zeta potential, X-ray photoelectron spectroscopy (XPS), and adsorption density measurements. XPS tests suggested that the adsorption mechanism of C-PAM on pyrite was through chemisorption of the amine and amide groups of the polymer.
Full article

Figure 1
Open AccessArticle
Morphological Diversity in Diblock Copolymer Solutions: A Molecular Dynamics Study
Colloids Interfaces 2023, 7(2), 40; https://doi.org/10.3390/colloids7020040 - 09 May 2023
Abstract
►▼
Show Figures
Coarse-grained molecular dynamics simulations that incorporate explicit water-mediated hydrophilic/hydrophobic interactions are employed to track spatiotemporal evolution of diblock copolymer aggregation in initially homogeneous solutions. A phase portrait of the observed morphologies and their quantitative geometric features such as aggregation numbers, packing parameters, and
[...] Read more.
Coarse-grained molecular dynamics simulations that incorporate explicit water-mediated hydrophilic/hydrophobic interactions are employed to track spatiotemporal evolution of diblock copolymer aggregation in initially homogeneous solutions. A phase portrait of the observed morphologies and their quantitative geometric features such as aggregation numbers, packing parameters, and radial distribution functions of solvent/monomers are presented. Energetic and entropic measures relevant to self-assembly such as specific solvent accessible surface area (SASA) and probability distribution functions (pdfs) of segmental stretch of copolymer chains are analyzed. The simulations qualitatively capture experimentally observed morphological diversity in diblock copolymer solutions. Topologically simpler structures predicted include spherical micelles, vesicles (polymersomes), lamellae (bilayers), linear wormlike micelles, and tori. More complex morphologies observed for larger chain lengths and nearly symmetric copolymer compositions include branched wormlike micelles with Y-shaped junctions and cylindrical micelle networks. For larger concentrations, vesicle strands, held together by hydrogen bonds, and “giant” composite aggregates that consist of lamellar, mixed hydrophobic/hydrophilic regions and percolating water cores are predicted. All structures are dynamic and exhibit diffuse domain boundaries. Morphology transitions across topologically simpler structures can be rationalized based on specific SASA measurements. PDFs of segmental stretch within vesicular assemblies appear to follow a log-normal distribution conducive for maximizing configuration entropy.
Full article

Figure 1
Open AccessArticle
The Effects of Viscosity and Capillarity on Nonequilibrium Distribution of Gas Bubbles in Swelling Liquid–Gas Solution
Colloids Interfaces 2023, 7(2), 39; https://doi.org/10.3390/colloids7020039 - 05 May 2023
Abstract
A detailed statistical description of the evolution of supersaturated-by-gas solution at degassing has been presented on the basis of finding the time-dependent distribution in radii of overcritical gas bubbles. The influence of solution viscosity and capillarity via internal pressure in the bubbles on
[...] Read more.
A detailed statistical description of the evolution of supersaturated-by-gas solution at degassing has been presented on the basis of finding the time-dependent distribution in radii of overcritical gas bubbles. The influence of solution viscosity and capillarity via internal pressure in the bubbles on this distribution has been considered until the moment when the gas supersaturation drops due to depletion and stops nucleation of new overcritical gas bubbles. This study is based on our previous results for the nonstationary growth rates of overcritical bubbles depending on gas supersaturation, diffusivity and solubility in solution, solution viscosity, and surface tension on bubble surface. Other important factors are linked with the initial rate of homogeneous gas bubble nucleation and coupling between diffusivity and viscosity in the solution. Here, we numerically studied how all these factors affect the time-dependent distribution function of overcritical bubbles in their radii, maximal and mean bubble radii, and the time-dependent swelling ratio of a supersaturated-by-gas solution in a wide range of solution viscosities.
Full article
(This article belongs to the Special Issue A Themed Issue in Honor of Prof. Boris Noskov)
►▼
Show Figures

Graphical abstract
Open AccessCommunication
Superspreading Surfactant on Hydrophobic Porous Substrates
by
, , , and
Colloids Interfaces 2023, 7(2), 38; https://doi.org/10.3390/colloids7020038 - 04 May 2023
Abstract
The wetting behavior of droplets of aqueous surfactant solutions over hydrophobic thin PVDF porous membrane and non-porous hydrophobic PVDF film is investigated for small (~10 μL) droplets of aqueous trisiloxane surfactant solutions: superspreader S 240. The time dependencies of contact angle, droplet radius,
[...] Read more.
The wetting behavior of droplets of aqueous surfactant solutions over hydrophobic thin PVDF porous membrane and non-porous hydrophobic PVDF film is investigated for small (~10 μL) droplets of aqueous trisiloxane surfactant solutions: superspreader S 240. The time dependencies of contact angle, droplet radius, wetted area and volume were monitored as well as penetration into the porous substrate. It is shown that the fast spreading of droplets of trisiloxane solutions takes place both in the case of porous and non-porous substrates at a concentration above some critical concentration. It was found that the trisiloxane droplets penetrate into the hydrophobic porous substrates and disappear much faster than on a corresponding hydrophobic non-porous substrate, which was not observed before. This phenomenon is referred to as “superpenetration”.
Full article
(This article belongs to the Special Issue Fundamental and Applied Aspects of Nanofluids)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Effect of Surfactants/Gels on the Stability of Boron Particle Dispersion in Liquid Fuel
Colloids Interfaces 2023, 7(2), 37; https://doi.org/10.3390/colloids7020037 - 24 Apr 2023
Abstract
Metal-based nanofillers are used as disperssants to enhance thermal conductivity for a minimal fuel requirement to extract maximum energy. To achieve this, metal-based nanofillers must be suspended uniformly into jet fuel so that desired propulsive characteristics can be achieved. However, the dispersion of
[...] Read more.
Metal-based nanofillers are used as disperssants to enhance thermal conductivity for a minimal fuel requirement to extract maximum energy. To achieve this, metal-based nanofillers must be suspended uniformly into jet fuel so that desired propulsive characteristics can be achieved. However, the dispersion of the metal-based nanofillers into the jet fuel is a critical challenge due to the density and viscosity that are independent parameters with a scattered relation. Hence, in the current work, we intended to investigate the propulsive characteristics of the JP-10 (Exo-Tetra Hydro Dicyclopentadiene) jet fuel dispersed with boron particles (BP) at various concentrations. The challenge involved in the current work was to make dispersion stable for a longer period due to the absence of functional groups entailed to BPs. Alongside JP-10, is a single-component, high-density hydrocarbon that can that can exhibit thixotropic characteristic in nature and hence combining with BP makes it difficult; hence, there is a need for oligomerization or the addition of surfactants that are derived from oligomers. Hence, in the current work, the BPs were dispersed in jet fuel by the ultrasound probe with various surfactants, namely Hydroxyl Terminated Polybutadiene (HTPB), Triton X-100, Span 80, Oleic acid, and Sodium dodecyl sulfate (SDS), followed by an investigation of their stability. The experimental studies reported that the stability of the boron was longest, for 54 h, with 0.5 wt.% boron and 0.3 wt.% HTPB at a micron size of the boron particles (325 ± 25 nm). The uniform dispersion of the particles was achieved by the effect of the ultrasound probe. From the thermal analysis, a total weight loss of 25% was observed within a short range of temperatures, i.e., 50 to 200 °C.
Full article
(This article belongs to the Special Issue Progress in Surfactants with Low Environmental Impact)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Rheology of Pickering Emulsions Stabilized and Thickened by Cellulose Nanocrystals over Broad Ranges of Oil and Nanocrystal Concentrations
by
and
Colloids Interfaces 2023, 7(2), 36; https://doi.org/10.3390/colloids7020036 - 24 Apr 2023
Abstract
The rheology of oil-in-water (O/W) emulsions, stabilized and thickened by cellulose nanocrystals, also referred to as nanocrystalline cellulose (NCC), was investigated over broad ranges of NCC and oil concentrations. The NCC concentration was varied from 1.03 to 7.41 wt% based on the aqueous
[...] Read more.
The rheology of oil-in-water (O/W) emulsions, stabilized and thickened by cellulose nanocrystals, also referred to as nanocrystalline cellulose (NCC), was investigated over broad ranges of NCC and oil concentrations. The NCC concentration was varied from 1.03 to 7.41 wt% based on the aqueous phase. The oil concentration of the emulsion was varied from approximately 10 to 70 wt%. The emulsions produced were highly stable with respect to creaming and coalescence. The emulsions were non-Newtonian in that they exhibited strong shear-thinning behavior. The rheological data were described adequately by a power-law model. The consistency index (K) and the flow behavior index (n) of the emulsions were strongly dependent on the NCC and oil concentrations. At a fixed oil concentration, the consistency index increased whereas the flow behavior index decreased with the increase in NCC concentration. A similar behavior was observed when the NCC concentration was fixed and the oil concentration was increased; that is, the consistency index increased whereas the flow behavior index decreased.
Full article
(This article belongs to the Special Issue Rheology of Complex Fluids and Interfaces)
►▼
Show Figures

Figure 1
Open AccessArticle
Matrices of Native and Oxidized Pectin and Ferrous Bisglycinate and Their In Vitro Behavior through Gastrointestinal Conditions
by
, , , , , , and
Colloids Interfaces 2023, 7(2), 35; https://doi.org/10.3390/colloids7020035 - 23 Apr 2023
Abstract
Colloidal matrices of native and oxidized pectin were developed to improve iron bioavailability through the digestive tract. Ferrous bisglycinate (Gly-Fe), obtained by precipitation of glycine chelation to Fe2+, was mixed with native and peroxide-oxidized citrus pectin, and subsequently lyophilized. Controls included
[...] Read more.
Colloidal matrices of native and oxidized pectin were developed to improve iron bioavailability through the digestive tract. Ferrous bisglycinate (Gly-Fe), obtained by precipitation of glycine chelation to Fe2+, was mixed with native and peroxide-oxidized citrus pectin, and subsequently lyophilized. Controls included matrices with iron and glycine without chelation. The resulting samples were characterized through FTIR, SEM, and TGA/DSC before and after in vitro digestion, which was performed in simulated salivary, gastric, and intestinal fluids. During these digestions, swelling capacity and iron release were assessed. All matrix formulations were porous, and while pectin oxidation did not alter architecture, it changed their properties, increasing thermal stability, likely due to greater number of interaction possibilities through carbonyl groups generated during oxidation. This also resulted in lower swelling capacity, with greater stability observed when using the chelated complex. Higher swelling was found in gastric and intestinal fluids. Pectin oxidation also increased retention of the chelated form, contrary to what was observed with unchelated iron. Thus, there is an important effect of pectin oxidation combined with iron in the form of ferrous biglyscinate on matrix stability and iron release through the digestive tract. These matrices could potentially improve iron bioavailability, diminishing organoleptic changes in fortified iron foods.
Full article
(This article belongs to the Special Issue Food Colloids II)
►▼
Show Figures

Figure 1
Open AccessArticle
Enhancing Structural Stability of Oil-Shell Microbubbles via Incorporation of a Gold Nanoparticle Protective Shell for Theranostic Applications
Colloids Interfaces 2023, 7(2), 34; https://doi.org/10.3390/colloids7020034 - 23 Apr 2023
Abstract
Phospholipid-stabilized microbubbles are utilized as contrast agents in medical ultrasound imaging, and researchers are currently investigating their potential as theranostic agents. Due to the inadequate water solubility and poor stability of numerous new therapeutics, the development of stable microbubbles with the capacity to
[...] Read more.
Phospholipid-stabilized microbubbles are utilized as contrast agents in medical ultrasound imaging, and researchers are currently investigating their potential as theranostic agents. Due to the inadequate water solubility and poor stability of numerous new therapeutics, the development of stable microbubbles with the capacity to encapsulate hydrophobic therapeutics is necessary. Herein, we proposed a flow-focusing microfluidic device to generate highly monodispersed, phospholipid-stabilized dual-layer microbubbles for theranostic applications. The stability and microstructural evolution of these microbubbles were investigated by microscopy and machine-learning-assisted segmentation techniques at different phospholipid and gold nanoparticle concentrations. The double-emulsion microbubbles, formed with the combination of phospholipids and gold nanoparticles, developed a protective gold nanoparticle shell that not only acted as a steric barrier against gas diffusion and microbubble coalescence but also alleviated the progressive dewetting instability and the subsequent cascade of coalescence events.
Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces)
►▼
Show Figures

Graphical abstract
Open AccessArticle
How Dimensionality Affects the Structural Anomaly in a Core-Softened Colloid
Colloids Interfaces 2023, 7(2), 33; https://doi.org/10.3390/colloids7020033 - 21 Apr 2023
Abstract
►▼
Show Figures
The interaction between hard core–soft shell colloids are characterized by having two characteristic distances: one associated with the penetrable, soft corona and another one corresponding to the impenetrable core. Isotropic core-softened potentials with two characteristic length scales have long been applied to understand
[...] Read more.
The interaction between hard core–soft shell colloids are characterized by having two characteristic distances: one associated with the penetrable, soft corona and another one corresponding to the impenetrable core. Isotropic core-softened potentials with two characteristic length scales have long been applied to understand the properties of such colloids. Those potentials usually show water-like anomalies, and recent findings have indicated the existence of multiple anomalous regions in the 2D limit under compression, while in 3D, only one anomalous region is observed. In this direction, we perform molecular dynamics simulations to unveil the details about the structural behavior in the quasi-2D limit of a core-softened colloid. The fluid was confined between highly repulsive solvophobic walls, and the behavior at distinct wall separations and colloid densities was analyzed. Our results indicated a straight relation between the 2D- or 3D-like behavior and layer separation. We can relate that if the system behaves as independent 2D-layers, it will have a 2D-like behavior. However, for some separations, the layers are connected, with colloids hopping from one layer to another, thus having a 3D-like structural behavior. These findings fill the gap in the depiction of the anomalous behavior from 2D to 3D.
Full article

Figure 1
Open AccessArticle
First Observation of Protomicelles in the System with a Non-Colloidal Surfactant
Colloids Interfaces 2023, 7(2), 32; https://doi.org/10.3390/colloids7020032 - 13 Apr 2023
Abstract
A spectrophotometric study of the system heptanol—Nile red (NR)—water was carried out, where, for the first time for such studies, a non-colloidal surfactant that does not form micelles was taken as a surfactant. The dependence of the solubility of NR on the concentration
[...] Read more.
A spectrophotometric study of the system heptanol—Nile red (NR)—water was carried out, where, for the first time for such studies, a non-colloidal surfactant that does not form micelles was taken as a surfactant. The dependence of the solubility of NR on the concentration of heptanol in an aqueous solution was studied. The experiments were carried out at a given chemical potential of NR, which was provided by an excess of the solid phase of NR. The existence of a solubilization effect has been theoretically and experimentally established: An increase in the solubility of NR with an increase in the concentration of heptanol in solution. It was found that heptanol protomicelles with a solubilization core as an NR molecule are formed in such a system, so that in the absence of micelles, the protomicelles take on the entire solubilization load. From the experimental data, the concentration of protomicelle formation was calculated, which can also be taken as the concentration of NR monomerization in an aqueous solution, since the formation of protomicelles prevents the dye aggregation. Based on the results obtained, the following generalizations were made: (1) non-colloidal surfactants, although they do not give micelles, are capable of forming protomicelles; and (2) non-colloidal surfactants can serve as a practical means of dye monomerization.
Full article
(This article belongs to the Special Issue A Themed Issue in Honor of Prof. Boris Noskov)
►▼
Show Figures

Figure 1
Open AccessArticle
Adsorption and Desorption of Bile Salts at Air–Water and Oil–Water Interfaces
Colloids Interfaces 2023, 7(2), 31; https://doi.org/10.3390/colloids7020031 - 11 Apr 2023
Abstract
Bile Salts (BS) adsorb onto emulsified oil droplets to promote lipolysis and then desorb, solubilizing lipolytic products, a process which plays a crucial role in lipid digestion. Hence, investigating the mechanism of adsorption and desorption of BS onto the oil–water interface is of
[...] Read more.
Bile Salts (BS) adsorb onto emulsified oil droplets to promote lipolysis and then desorb, solubilizing lipolytic products, a process which plays a crucial role in lipid digestion. Hence, investigating the mechanism of adsorption and desorption of BS onto the oil–water interface is of major importance to understand and control BS functionality. This can have implications in the rational design of products with tailored digestibility. This study shows the adsorption and desorption curves of BS at air–water and oil–water interfaces obtained by pendant drop tensiometry. Three BS have been chosen with different conjugation and hydroxyl groups: Sodium Taurocholate (NaTC), Glycodeoxycholate (NaGDC) and Sodium Glycochenodeoxycholate (NaGCDC). Experimental results show important differences between the type of BS and the nature of the interface (air/oil–water). At the air–water interface, Glycine conjugates (NaGDC and NaGCDC) are more surface active than Taurine (NaTC), and they also display lower surface tension of saturated films. The position of hydroxyl groups in Glycine conjugates, possibly favors a more vertical orientation of BS at the surface and an improved lateral packing. These differences diminish at the oil–water interface owing to hydrophobic interactions of BS with the oil, preventing intermolecular associations. Desorption studies reveal the presence of irreversibly adsorbed layers at the oil–water interface in all cases, while at the air–water interface, the reversibility of adsorption depends strongly on the type of BS. Finally, dilatational rheology shows that the dilatational response of BS is again influenced by hydrophobic interactions of BS with the oil; thus, adsorbed films of different BS at the oil–water interface are very similar, while larger differences arise between BS adsorbed at the air–water interface. Results presented here highlight new features of the characteristics of adsorption layers of BS on the oil–water interface, which are more relevant to lipid digestion than characteristics of BS adsorbed at air–water interfaces.
Full article
(This article belongs to the Special Issue Food Colloids II)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Pea and Soy Protein Stabilized Emulsions: Formulation, Structure, and Stability Studies
by
, , , , and
Colloids Interfaces 2023, 7(2), 30; https://doi.org/10.3390/colloids7020030 - 06 Apr 2023
Abstract
During the last decades, there has been a huge consumer concern about animal proteins that has led to their replacement with plant proteins. Most of those proteins exhibit emulsifying properties; thus, the food industry begins their extensive use in various food matrices. In
[...] Read more.
During the last decades, there has been a huge consumer concern about animal proteins that has led to their replacement with plant proteins. Most of those proteins exhibit emulsifying properties; thus, the food industry begins their extensive use in various food matrices. In the present study, pea and soy protein isolates (PPI and SPI) were tested as potential candidates for stabilizing food emulsions to encapsulate α-tocopherol and squalene. More specifically, PPI and SPI particles were formulated using the pH modification method. Following, emulsions were prepared using high-shear homogenization and were observed at both a microscopic and macroscopic level. Furthermore, the adsorption of the proteins was measured using the bicinchoninic acid protein assay. The emulsions’ droplet size as well as their antioxidant capacity were also evaluated. It was found that the droplet diameter of the SPI-based emulsions was 60.0 μm, while the PPI ones had a relatively smaller diameter of approximately 57.9 μm. In the presence of the bioactives, both emulsions showed scavenging activity of the 2,20-Azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical cation (ABTS·+) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, with the ones loaded with α-tocopherol having the greatest antioxidant capacity. Overall, the proposed systems are very good candidates in different food matrices, with applications ranging from vegan milks and soups to meat alternative products.
Full article
(This article belongs to the Special Issue Food Colloids II)
►▼
Show Figures

Figure 1
Open AccessArticle
Ballpoint/Rollerball Pens: Writing Performance and Evaluation
Colloids Interfaces 2023, 7(2), 29; https://doi.org/10.3390/colloids7020029 - 04 Apr 2023
Abstract
Here, a brief history of the development of the ballpoint/rollerball pen and the fountain pen is presented. Their principle of operation is analogous that of multipart microfluidics-type devices, where capillarity–gravity drives the ink, a complex fluid, to flow in the confinement of a
[...] Read more.
Here, a brief history of the development of the ballpoint/rollerball pen and the fountain pen is presented. Their principle of operation is analogous that of multipart microfluidics-type devices, where capillarity–gravity drives the ink, a complex fluid, to flow in the confinement of a micrometer-sized canal or to lubricate a ball rotating in a socket. The differences in the operational writing principles of the fountain pen versus the ballpoint/rollerball pen are discussed. The ballpoint/rollerball pen’s manner of writing was monitored using lens end fiber optics and was digitally recorded. The ball rotation rate per unit length was monitored using a piezoelectric disk oscilloscope technique. The role of ink (a complex fluid) chemistry in the wetting phenomenon is elucidated. We also discuss methods for studying and evaluating ink–film–ball–paper surface wetting. The goal of the proposed research is to optimize and improve the writing performance of the ballpoint/rollerball pen.
Full article
(This article belongs to the Special Issue Fundamental and Applied Aspects of Nanofluids)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Characterization of Micelle Formation by the Single Amino Acid-Based Surfactants Undecanoic L-Isoleucine and Undecanoic L-Norleucine in the Presence of Diamine Counterions with Varying Chain Lengths
by
, , , , and
Colloids Interfaces 2023, 7(2), 28; https://doi.org/10.3390/colloids7020028 - 04 Apr 2023
Abstract
The binding of linear diamine counterions with different methylene chain lengths to the amino-acid-based surfactants undecanoic L-isoleucine (und-IL) and undecanoic L-norleucine (und-NL) was investigated with NMR spectroscopy. The counterions studied were 1,2-ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, and 1,6-diaminohexane. These counterions were all linear diamines
[...] Read more.
The binding of linear diamine counterions with different methylene chain lengths to the amino-acid-based surfactants undecanoic L-isoleucine (und-IL) and undecanoic L-norleucine (und-NL) was investigated with NMR spectroscopy. The counterions studied were 1,2-ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, and 1,6-diaminohexane. These counterions were all linear diamines with varying spacer chain lengths between the two amine functional groups. The sodium counterion was studied as well. Results showed that when the length of the counterion methylene chain was increased, the surfactants’ critical micelle concentrations (CMC) decreased. This decrease was attributed to diamines with longer methylene chains binding to multiple surfactant monomers below the CMC and thus acting as templating agents for the formation of micelles. The entropic hydrophobic effect and differences in diamine counterion charge also contributed to the size of the micelles and the surfactants’ CMCs in the solution. NMR diffusion measurements showed that the micelles formed by both surfactants were largest when 1,4-diaminobutane counterions were present in the solution. This amine also had the largest mole fraction of micelle-bound counterions. Finally, the und-NL micelles were larger than the und-IL micelles when 1,4-diaminobutane counterions were bound to the micelle surface. A model was proposed in which this surfactant formed non-spherical aggregates with both the surfactant molecules’ hydrocarbon chains and n-butyl amino acid side chains pointing toward the micelle core. The und-IL micelles, in contrast, were smaller and likely spherically shaped.
Full article
(This article belongs to the Special Issue Progress in Surfactants with Low Environmental Impact)
►▼
Show Figures

Graphical abstract
Open AccessReview
Food-Grade Oil-in-Water (O/W) Pickering Emulsions Stabilized by Agri-Food Byproduct Particles
by
, , , , and
Colloids Interfaces 2023, 7(2), 27; https://doi.org/10.3390/colloids7020027 - 31 Mar 2023
Abstract
In recent years, emulsions stabilized by solid particles (known as Pickering emulsions) have gained considerable attention due to their excellent stability and for being environmentally friendly compared to the emulsions stabilized by synthetic surfactants. In this context, edible Pickering stabilizers from agri-food byproducts
[...] Read more.
In recent years, emulsions stabilized by solid particles (known as Pickering emulsions) have gained considerable attention due to their excellent stability and for being environmentally friendly compared to the emulsions stabilized by synthetic surfactants. In this context, edible Pickering stabilizers from agri-food byproducts have attracted much interest because of their noteworthy benefits, such as easy preparation, excellent biocompatibility, and unique interfacial properties. Consequently, different food-grade particles have been reported in recent publications with distinct raw materials and preparation methods. Moreover, emulsions stabilized by solid particles can be applied in a wide range of industrial fields, such as food, biomedicine, cosmetics, and fine chemical synthesis. Therefore, this review aims to provide a comprehensive overview of Pickering emulsions stabilized by a diverse range of edible solid particles, specifically agri-food byproducts, including legumes, oil seeds, and fruit byproducts. Moreover, this review summarizes some aspects related to the factors that influence the stabilization and physicochemical properties of Pickering emulsions. In addition, the current research trends in applications of edible Pickering emulsions are documented. Consequently, this review will detail the latest progress and new trends in the field of edible Pickering emulsions for readers.
Full article
(This article belongs to the Special Issue Recent Advances in Emulsions and Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Impact of Hydrophobic and Electrostatic Forces on the Adsorption of Acacia Gum on Oxide Surfaces Revealed by QCM-D
Colloids Interfaces 2023, 7(2), 26; https://doi.org/10.3390/colloids7020026 - 30 Mar 2023
Abstract
The adsorption of Acacia gum from two plant exudates, A. senegal and A. seyal, at the solid-liquid interface on oxide surfaces was studied using a quartz crystal microbalance with dissipation monitoring (QCM-D). The impact of the hydrophobic and electrostatic forces on the adsorption capacity
[...] Read more.
The adsorption of Acacia gum from two plant exudates, A. senegal and A. seyal, at the solid-liquid interface on oxide surfaces was studied using a quartz crystal microbalance with dissipation monitoring (QCM-D). The impact of the hydrophobic and electrostatic forces on the adsorption capacity was investigated by different surface, hydrophobicity, and charge properties, and by varying the ionic strength or the pH. The results highlight that hydrophobic forces have higher impacts than electrostatic forces on the Acacia gum adsorption on the oxide surface. The Acacia gum adsorption capacity is higher on hydrophobic surfaces compared to hydrophilic ones and presents a higher stability with negatively charged surfaces. The structural configuration and charge of Acacia gum in the first part of the adsorption process are important parameters. Acacia gum displays an extraordinary ability to adapt to surface properties through rearrangements, conformational changes, and/or dehydration processes in order to reach the steadiest state on the solid surface. Rheological analysis from QCM-D data shows that the A. senegal layers present a viscous behavior on the hydrophilic surface and a viscoelastic behavior on more hydrophobic ones. On the contrary, A. seyal layers show elastic behavior on all surfaces according to the Voigt model or a viscous behavior on the hydrophobic surface when considering the power-law model.
Full article
(This article belongs to the Special Issue A Themed Issue in Honor of Prof. Boris Noskov)
►▼
Show Figures

Graphical abstract
Open AccessReview
Release of Encapsulated Bioactive Compounds from Active Packaging/Coating Materials and Its Modeling: A Systematic Review
by
, , , , , , , and
Colloids Interfaces 2023, 7(2), 25; https://doi.org/10.3390/colloids7020025 - 23 Mar 2023
Abstract
The issue of achieving controlled or targeted release of bioactive compounds with specific functional properties is a complex task that requires addressing several factors, including the type of bioactive, the nature of the delivery system, and the environmental conditions during transportation and storage.
[...] Read more.
The issue of achieving controlled or targeted release of bioactive compounds with specific functional properties is a complex task that requires addressing several factors, including the type of bioactive, the nature of the delivery system, and the environmental conditions during transportation and storage. This paper deals with extensive reporting for the identification of original articles using Scopus and Google Scholar based on active packaging as a novel packaging technology that controls the release of antimicrobial agents encapsulated into carriers in the food packaging systems. For evidence-based search, the studies were extracted from 2015 to 2020 and screened using the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Following the review and screening of publications, 32 peer-reviewed articles were subjected to systematic analysis. The preliminary search indicated that the encapsulation of bioactives enhances their bioavailability and stability. From a theoretical viewpoint, mathematical models play an important role in understanding and predicting the release behavior of bioactives during transportation and storage, thus facilitating the development of new packaging material by a systematic approach. However, only a few studies could formulate parameters for mathematical models in order to achieve the specific release mechanism regulated for the quality and safety of foods. Therefore, this paper will cover all encapsulation approaches, active packaging, and mathematical modeling in the food industry into structural form and analyze the challenges faced by the complex nature of active packaging in real food systems.
Full article
(This article belongs to the Special Issue Food Colloids II)
►▼
Show Figures

Figure 1
Open AccessArticle
Simulation and Experimental Analysis of Microalgae and Membrane Surface Interaction
Colloids Interfaces 2023, 7(1), 24; https://doi.org/10.3390/colloids7010024 - 20 Mar 2023
Abstract
►▼
Show Figures
The microalgae-induced membrane system applied in wastewater treatment has attracted attention due to microalgae’s outstanding nutrient fixation capacity and biomass harvesting. However, the fundamental understanding of the interaction of microalgae and membrane surfaces is still limited. This study presents experimental and numerical methods
[...] Read more.
The microalgae-induced membrane system applied in wastewater treatment has attracted attention due to microalgae’s outstanding nutrient fixation capacity and biomass harvesting. However, the fundamental understanding of the interaction of microalgae and membrane surfaces is still limited. This study presents experimental and numerical methods to analyze the attachment of microalgae to the membrane. An atomic force microscope (AFM) analysis confirmed that a polydimethylsiloxane (PDMS) sensor, as a simulated membrane surface, exhibited a rougher surface morphology than a polyurethane (PU) sensor did. The contact angle and adsorption analysis using a quartz crystal microbalance confirmed that the PDMS surface, representing the membrane surface, provided a better attachment affinity than the PU surface for microalgae because of the lower surface tension and stronger hydrophobicity of PDMS. The simulation studies of this work involved the construction of roughly circular-shaped particles to represent microalgae, rough flat surfaces to represent membrane surfaces, and the interaction energy between particles and surfaces based on XDLVO theory. The modeling results of the microalgae adsorption trend are consistent and verified with the experimental results. It was observed that the interfacial energy increased with increasing the size of particles and asperity width of the membrane surface. Contrarily, the predicted interaction energy dropped with elevating the number of asperities and asperity height of the microalgae and membrane. The most influential parameter for controlling interfacial interaction between the simulated microalgae and membrane surface was the asperity height of the membrane; changing the height from 50 nm to 250 nm led to alteration in the primary minimum from −18 kT to −3 kT. Overall, this study predicted that the microalgae attachment depends on the size of the asperities to a great extent and on the number of asperities to a lesser extent. These results provide an insight into the interaction of microalgae and membrane surface, which would provide information on how the performance of microalgae-based membrane systems can be improved.
Full article

Graphical abstract
Open AccessReview
Nose-to-Brain Targeting via Nanoemulsion: Significance and Evidence
by
and
Colloids Interfaces 2023, 7(1), 23; https://doi.org/10.3390/colloids7010023 - 17 Mar 2023
Abstract
Background: Non-invasive and patient-friendly nose-to-brain pathway is the best-suited route for brain delivery of therapeutics as it bypasses the blood–brain barrier. The intranasal pathway (olfactory and trigeminal nerves) allows the entry of various bioactive agents, delivers a wide array of hydrophilic and hydrophobic
[...] Read more.
Background: Non-invasive and patient-friendly nose-to-brain pathway is the best-suited route for brain delivery of therapeutics as it bypasses the blood–brain barrier. The intranasal pathway (olfactory and trigeminal nerves) allows the entry of various bioactive agents, delivers a wide array of hydrophilic and hydrophobic drugs, and circumvents the hepatic first-pass effect, thus targeting neurological diseases in both humans and animals. The olfactory and trigeminal nerves make a bridge between the highly vascularised nasal cavity and brain tissues for the permeation and distribution, thus presenting a direct pathway for the entry of therapeutics into the brain. Materials: This review portrays insight into recent research reports (spanning the last five years) on the nanoemulsions developed for nose-to-brain delivery of actives for the management of a myriad of neurological disorders, namely, Parkinson’s disease, Alzheimer’s, epilepsy, depression, schizophrenia, cerebral ischemia and brain tumours. The information and data are collected and compiled from more than one hundred Scopus- and PubMed-indexed articles. Conclusions: The olfactory and trigeminal pathways facilitate better biodistribution and bypass BBB issues and, thus, pose as a possible alternative route for the delivery of hydrophobic, poor absorption and enzyme degradative therapeutics. Exploring these virtues, intranasal nanoemulsions have proven to be active, non-invasiveand safe brain-targeting cargos for the alleviation of the brain and other neurodegenerative disorders.
Full article
(This article belongs to the Special Issue Recent Advances in Emulsions and Applications)
►▼
Show Figures

Graphical abstract
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Coatings, Colloids and Interfaces, Gels, Molecules, Polymers
Insight into Liquid/Fluid Interfaces
Topic Editors: Eduardo Guzmán, Armando MaestroDeadline: 31 July 2023

Conferences
Special Issues
Special Issue in
Colloids and Interfaces
Food Colloids II
Guest Editors: Eleni P. Kalogianni, Julia Maldonado-Valderrama, Reinhard MillerDeadline: 31 May 2023
Special Issue in
Colloids and Interfaces
Delivery of Pharmaceuticals or Nutraceuticals
Guest Editor: Emilia NowakDeadline: 30 June 2023
Special Issue in
Colloids and Interfaces
Rheology of Complex Fluids and Interfaces
Guest Editors: Cecile Lemaitre, Philippe MarchalDeadline: 31 August 2023
Special Issue in
Colloids and Interfaces
Progress in Surfactants with Low Environmental Impact
Guest Editors: Johnny Bullon, Ronald Marquez, Franklin ZambranoDeadline: 30 September 2023