Topical Collection "Feature Paper Collection in Bioactive Coatings and Biointerfaces"
Share This Topical Collection
Editor
E-Mail
Website
Collection Editor
Institute of Polymer Science and Technology, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
Interests: polymer coatings; antimicrobial coatings; biointerfaces; porous surfaces; functional surfaces superhydrophobicity; bioapplications
Special Issues, Collections and Topics in MDPI journals
Topical Collection Information
Dear Colleagues,
I am excited to announce a Special Feature Paper Collection for this section. I would like to invite leading experts in the field to contribute high-quality papers to this collection. This Feature Paper Collection aims at presenting novel approaches, improvements or new cutting-edge developments in the field.
The particular areas of interest for this Special Issue include but are not limited to:
- Cell–material interactions;
- Bioinspired surface and interfaces;
- Advances in bioactive surfaces characterization;
- Applications of Bioactive coatings;
- Antimicrobial coatings, prevention, and control of biofilms.
Feature articles and reviews from top experts are welcome. We are happy to offer discount of 600 CHF on the APCs for any article published, with additional discounts available if the contribution is a review that might be of great interest in this field. The criteria mainly include the academic background of the scholar, the publication record, the novelty and significance of content, and the peer-review result of the paper.
In addition, if 10 or more papers are published in this collection, we will make a collection book, and the leading authors of each article will receive a hard copy of this book.
Dr. Alexandra Muñoz-Bonilla
Collection Editor
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript.
The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs).
Submitted papers should be well formatted and use good English. Authors may use MDPI's
English editing service prior to publication or during author revisions.
Published Papers (7 papers)
Open AccessCommunication
Preparation and Antibacterial Properties of PLA-Based Composite Nanofiber Membrane Material Loaded with Cationic Antibacterial Agent by Electrospinning
Viewed by 87
Abstract
With the continuous application of antibacterial materials, various problems have emerged, such as expensive prices and the potential development of resistance. Cationic antibacterial agents, due to their high solubility, reactivity, and antibacterial properties, are considered as environmentally friendly and cost-effective antibacterial agents. In
[...] Read more.
With the continuous application of antibacterial materials, various problems have emerged, such as expensive prices and the potential development of resistance. Cationic antibacterial agents, due to their high solubility, reactivity, and antibacterial properties, are considered as environmentally friendly and cost-effective antibacterial agents. In addition, the electrospinning technique is recognized as a versatile and high-efficiency method to produce nanofibers with multifunctional properties and adjustable structures. In this work, we prepared a series of nanofiber membranes by electrospinning technology using hexadecyl trimethyl ammonium Bromide (CTAB) and 5-Chloro-8-hydroxyquinoline (5-Cl8Q) as antibacterial agents and polylactic acid (PLA) as substrate. The antimicrobial performance of PLA/CTAB/5-Cl8Q was the highest among the prepared materials, which inhabited
S. aureus and
E. coli up to 99.9% and 95.9%, respectively, and the antibacterial properties were stable. In general, PLA/CTAB/5-Cl8Q has great development potential, and it can be applied to real life as a cost-effective, biodegradable and highly antibacterial material.
Full article
►▼
Show Figures
Open AccessArticle
Biocompatible PVTF Coatings on Ti with Improved Bonding Strength
Viewed by 418
Abstract
In this work, a poly(vinylidenefluoride-co-trifluoroethylene) (PVTF) coating on a titanium (Ti) substrate was prepared, and Ti metal surfaces were treated by physical or chemical methods to achieve a high bonding strength with PVTF. Scanning electron microscopy (SEM), atomic force microscope (AFM), and static
[...] Read more.
In this work, a poly(vinylidenefluoride-co-trifluoroethylene) (PVTF) coating on a titanium (Ti) substrate was prepared, and Ti metal surfaces were treated by physical or chemical methods to achieve a high bonding strength with PVTF. Scanning electron microscopy (SEM), atomic force microscope (AFM), and static water contact angles (WCA) were used to characterize the Ti metal surfaces. Further, mechanical stretching testing was employed to measure the bonding strength of PVTF coatings. The possible mechanism for the improved bonding strength could be the higher OH concentrations on Ti metal surfaces, which could lead to the formation of chemical bonds with the F atom of PVTF chains. Finally, a CCK-8 analysis of bone marrow mesenchymal stem cells (BMSCs) cultured on the PVTF coatings confirmed that the physical and chemical treatments had no significant differences in biocompatibility. Such a PVTF coating on a Ti substrate showed the potential of biomedical metal implants.
Full article
►▼
Show Figures
Open AccessArticle
Mechanical Stability of Self-Adhesive/Ion-Releasing Resin Composites
Cited by 2 | Viewed by 1430
Abstract
The purpose of this study was to assess the effects of water storage on the surface microhardness (VHN) and fracture toughness (K
1C) of two self-adhesive restorative materials compared to traditional resin composite and resin-modified glass ionomer cement (RMGIC) restorative materials. Methods:
[...] Read more.
The purpose of this study was to assess the effects of water storage on the surface microhardness (VHN) and fracture toughness (K
1C) of two self-adhesive restorative materials compared to traditional resin composite and resin-modified glass ionomer cement (RMGIC) restorative materials. Methods: Two self-adhesive materials (Activa and Vertise Flow), a nonflowable composite (Filtek Z250), and an RMGIC (Fuji II) were evaluated. Hardness measurements (
n = 12) were recorded at three time intervals: (i) one-hour post-irradiation; (ii) after one day of storage in water at 37 °C; and (iii) after 90 days of storage in water at 37 °C. Fracture toughness (K
1C) measurements (
n = 12) were conducted after one day of storage in water at 37 °C and 90 days of storage in water at 37 °C. ANOVA and Tukey post hoc tests were used for statistical analysis. Results: Baseline VHN data were 38.2–58.3, decreasing significantly to 28.8–55.6 following 90 days of water storage. The Filtek Z250 had the highest VHN before and after storage, while the Activa had the lowest. K
IC values varied between 0.98–1.32 MPa·m
0.5. The highest value was for the Filtek Z250 while the Fuji II showed the lowest value (after both 1 and 90 days of storage in water). However, K
IC values decreased significantly after storage, except for the Fuji II. Conclusion: Self-adhesive/ion-releasing resin composites were negatively affected by water storage. Material reinforcements are possible future areas to explore.
Full article
►▼
Show Figures
Open AccessFeature PaperArticle
A Facile Synthesis of P(VDF-TrFE)-Coated-PMMA Janus Membranes for Guided Bone Regeneration
Cited by 1 | Viewed by 1018
Abstract
Bone repair and regeneration have aroused widespread interest due to their potential usefulness in cases when bone self-healing is insufficient. In this work, a Poly(vinylidene fluoride-trifluoroethylene)-coated-Poly methyl methacrylate Janus membrane was prepared, where a P(VDF-TrFE) coating on a PMMA film serves as Janus-A
[...] Read more.
Bone repair and regeneration have aroused widespread interest due to their potential usefulness in cases when bone self-healing is insufficient. In this work, a Poly(vinylidene fluoride-trifluoroethylene)-coated-Poly methyl methacrylate Janus membrane was prepared, where a P(VDF-TrFE) coating on a PMMA film serves as Janus-A to mediate cell growth behavior, owing to its electroactivity, and the PMMA film serves as Janus-B to inhibit soft-tissue growth. A P(VDF-TrFE) coating separated from the substrate was put above the PMMA film before the PMMA film had dried completely, and a Janus membrane formed because of the flowability and adhesion of the nonvolatile PMMA solution. Their bonding could withstand the pressure of the body fluids in the shear direction. Various crystallization substrates were also applied to modulate the P(VDF-TrFE) coating’s surface potentials, as the surface potential would further affect cellular response. It was also found that the responses of the bone marrow mesenchymal stem cells (BMSCs) and bone marrow macrophages (BMDMs) could be adjusted through surface potential modification. Such a Janus membrane could potentially be applied to a biological environment with the effect of both guiding bone regeneration and preventing soft tissue adhesion.
Full article
►▼
Show Figures
Open AccessFeature PaperReview
Can Graphene Oxide Help to Prevent Peri-Implantitis in the Case of Metallic Implants?
Cited by 3 | Viewed by 1528
Abstract
This paper is a review focused on the capability of graphene oxide (GO) coatings in preventing peri-implantitis. Firstly, the paper establishes GO’s place in the frame of carbonic materials and its role as a composite material in dentistry in the prevention of bacterial
[...] Read more.
This paper is a review focused on the capability of graphene oxide (GO) coatings in preventing peri-implantitis. Firstly, the paper establishes GO’s place in the frame of carbonic materials and its role as a composite material in dentistry in the prevention of bacterial infections and in sustaining osseointegration. Secondly, the most relevant articles on GO as implant coatings and their associated shortcomings are presented and emphasizing is placed on the areas where more data is needed. The main chapters are devoted to the relationship between GO and biofilm formation on the implants and the surrounding periodontal tissue and we also attempt to evaluate GO’s efficacy in the case of peri-implantitis. Our findings strongly indicate that GO is a promising material for mitigating the problems mentioned, but some answers remain to be answered through rigorous research before declaring it a real success.
Full article
►▼
Show Figures
Open AccessReview
Chitin Nanocrystals: Environmentally Friendly Materials for the Development of Bioactive Films
Cited by 17 | Viewed by 3970
Abstract
Biobased nanomaterials have gained growing interest in recent years for the sustainable development of composite films and coatings, providing new opportunities and high-performance products. In particular, chitin and cellulose nanocrystals offer an attractive combination of properties, including a rod shape, dispersibility, outstanding surface
[...] Read more.
Biobased nanomaterials have gained growing interest in recent years for the sustainable development of composite films and coatings, providing new opportunities and high-performance products. In particular, chitin and cellulose nanocrystals offer an attractive combination of properties, including a rod shape, dispersibility, outstanding surface properties, and mechanical and barrier properties, which make these nanomaterials excellent candidates for sustainable reinforcing materials. Until now, most of the research has been focused on cellulose nanomaterials; however, in the last few years, chitin nanocrystals (ChNCs) have gained more interest, especially for biomedical applications. Due to their biological properties, such as high biocompatibility, biodegradability, and antibacterial and antioxidant properties, as well as their superior adhesive properties and promotion of cell proliferation, chitin nanocrystals have emerged as valuable components of composite biomaterials and bioactive materials. This review attempts to provide an overview of the use of chitin nanocrystals for the development of bioactive composite films in biomedical and packaging systems.
Full article
►▼
Show Figures
Open AccessReview
A Comprehensive Review of Bioactive Glass Coatings: State of the Art, Challenges and Future Perspectives
Cited by 48 | Viewed by 5377
Abstract
Bioactive glasses are promising biomaterials for bone and tissue repair and reconstruction, as they were shown to bond to both hard and soft tissues stimulating cells towards a path of regeneration and self-repair. Unfortunately, due to their relatively poor mechanical properties, such as
[...] Read more.
Bioactive glasses are promising biomaterials for bone and tissue repair and reconstruction, as they were shown to bond to both hard and soft tissues stimulating cells towards a path of regeneration and self-repair. Unfortunately, due to their relatively poor mechanical properties, such as brittleness, low bending strength and fracture toughness, their applications are limited to non-load-bearing implants. However, bioactive glasses can be successfully applied as coatings on the surface of metallic implants to combine the appropriate mechanical properties of metal alloys to bioactivity and biocompatibility of bioactive glasses. In this review, several available coating techniques to coat metal alloys using bioactive glasses are described, with a special focus on thermal spraying, which nowadays is the most used to deposit coatings on metallic implants.
Full article
►▼
Show Figures
Planned Papers
The below list represents only planned manuscripts. Some of these
manuscripts have not been received by the Editorial Office yet. Papers
submitted to MDPI journals are subject to peer-review.
Tentative Title: Chitin nanocrystals: environmentally friendly materials for the the development of bioactive films
Authors: Muñoz-Bonilla, A., et al.