cimb-logo

Journal Browser

Journal Browser

Molecular and Real-World Evidence Research of Respiratory Diseases and Infections

A special issue of Current Issues in Molecular Biology (ISSN 1467-3045). This special issue belongs to the section "Molecular Medicine".

Deadline for manuscript submissions: 30 April 2024 | Viewed by 7006

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
Interests: rhinitis; sinusitis, pathogenic bacteria; infection; virus; COVID-19: tumor

Special Issue Information

Dear Colleagues,

As the first point of contact for inhaled pollutants, the respiratory system is particularly vulnerable, and if abnormal, signs and symptoms will eventually appear. The respiratory tract and oral cavity are frequently exposed to potentially pathogenic microorganisms, including bacteria and viruses. Respiratory viral infections are one of the leading causes of hospitalization and death. The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an example. The most representative human respiratory viruses are influenza virus, rhinovirus, respiratory syncytial virus and coronavirus. Viral clearance and resolution of infection require a complex response initiated by immune cells. Several factors contribute to the development of a protective immune response against viral and bacterial infection, including the host microbiota. To combat respiratory disease infections, more basic science and clinical research is urgently needed. This Special Issue aims to broadly understand the pathogenesis, host–pathogen interactions and immune responses in the context of different respiratory diseases affecting human and animal species, as well as viral or bacterial infections. Furthermore, it aims to provide information on the development of new vaccines and therapies against these respiratory diseases, as well as the evaluation of in vitro animal models and real-world evidence studies.

Dr. Chingyuan Wu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Current Issues in Molecular Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • respiratory diseases
  • pathogenesis
  • vaccines
  • therapies

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 4228 KiB  
Article
CCN1-Mediated Signaling in Placental Villous Tissues after SARS-CoV-2 Infection in Term Pregnant Women: Implications for Dysregulated Angiogenesis
by Yuyang Ma, Liyan Duan, Beatrix Reisch, Rainer Kimmig, Antonella Iannaccone and Alexandra Gellhaus
Curr. Issues Mol. Biol. 2024, 46(4), 3533-3550; https://doi.org/10.3390/cimb46040221 - 18 Apr 2024
Viewed by 443
Abstract
The global spread of SARS-CoV-2 has increased infections among pregnant women. This study aimed to explore placental pathology alterations and angiogenic factor levels in term pregnant women after SARS-CoV-2 infection in a retrospective single-center study. Additionally, we investigated the role and underlying mechanism [...] Read more.
The global spread of SARS-CoV-2 has increased infections among pregnant women. This study aimed to explore placental pathology alterations and angiogenic factor levels in term pregnant women after SARS-CoV-2 infection in a retrospective single-center study. Additionally, we investigated the role and underlying mechanism of the vascular inflammation-promoting, cysteine-rich protein 61 (CYR61/CCN1) in this context. All analyses were performed in term pregnant women infected with or without SARS-CoV-2. The sFlt-1, PlGF, and sEng serum levels were quantified using ELISA. Placental protein expressions were examined by immunoblot and immunostaining. Additionally, the effect of CCN1 protein on SGHPL-5 trophoblast cells was examined. We found that SARS-CoV-2 activated the inflammatory response in pregnant women, leading to pronounced vascular alterations in placental villous tissues. Elevated serum anti-angiogenic factors (sFlt-1, sEng) upon SARS-CoV-2 infection may directly contribute to these pathological changes. Upregulated CCN1 and pNF-κB in placental villous tissues of infected patients are identified as crucial factors in placental alterations. As a conclusion, CCN1 was significantly elevated in the placentas of term pregnant women infected with SARS-CoV-2. By activating a cascade of inflammatory responses, CCN1 induced the production of the anti-angiogenic factors sFlt-1 and sEng, which may lead to abnormal placental vascular architecture. Full article
Show Figures

Figure 1

15 pages, 3991 KiB  
Article
Disruption of the Functional Activity of Neutrophil Granulocytes as a Risk Factor for the Development of Lung Damage in Pregnant Women with COVID-19
by Irina Anatolyevna Andrievskaya, Egor Mikhailovich Ustinov, Karen Sargisovich Lyazgian, Nataliya Alexandrovna Ishutina and Inna Victorovna Dovzhikova
Curr. Issues Mol. Biol. 2024, 46(2), 1121-1135; https://doi.org/10.3390/cimb46020071 - 25 Jan 2024
Viewed by 586
Abstract
Currently, the assessment of immune status in patients with COVID-19 is limited to determining the count of polymorphonuclear leukocytes and the phagocytic function of neutrophils, which is insufficient to understand the regulatory role of innate immunity cells in the development of pneumonia. However, [...] Read more.
Currently, the assessment of immune status in patients with COVID-19 is limited to determining the count of polymorphonuclear leukocytes and the phagocytic function of neutrophils, which is insufficient to understand the regulatory role of innate immunity cells in the development of pneumonia. However, no such studies have been conducted in pregnant women with COVID-19. The aim of this study was to investigate the functional state of neutrophil granulocytes in order to identify predictors of pneumonia severity risk in pregnant women with COVID-19. A clinical characterization of pregnant women with COVID-19 in addition to minimal and average lung changes was provided. The composition and ratio of morphological forms of leukocyte cells were studied. Cytochemical studies of neutrophil granulocytes were carried out and calculations of the mean cytological index (MCI) for succinate dehydrogenase, myeloperoxidase, and cationic proteins were performed. The number of NETs in blood smears was counted. Independent predictors of pneumonia severity in pregnant women with COVID-19 were calculated using regression analysis. The quality of the model was assessed using ROC analysis. In pregnant women with COVID-19 and an average volume of lung changes, the number of polymorphonuclear leukocytes (p = 0.03) and band neutrophils (p = 0.002) in the blood was significantly higher than in pregnant women with minimal lung changes. The MCI indicators of succinate dehydrogenase, cationic proteins, and myeloperoxidase in pregnant women with COVID-19 were reduced in relation to the control group (p < 0.0001). In blood smears of pregnant women with COVID-19 and an average volume of lung changes, the number of NETs increased (p = 0.002). Regression analysis showed that succinate dehydrogenase and NETs are independent predictors of pneumonia severity in pregnant women with COVID-19. Our study confirms the prognostic significance of low levels of neutrophilic succinate dehydrogenase and high levels of NETs in the blood of pregnant women with COVID-19. The combination of these two biomarkers is a significant reflection of the severity of pneumonia development in pregnant women with COVID-19. However, further research is needed to identify the mechanisms underlying this association. Full article
Show Figures

Figure 1

12 pages, 2905 KiB  
Article
Abietane Diterpenoids Isolated from Torreya nucifera Disrupt Replication of Influenza Virus by Blocking the Phosphatidylinositol-3-Kinase (PI3K)-Akt and ERK Signaling Pathway
by Jaehoon Bae, Hyung-Jun Kwon, Ji Sun Park, Jinseok Jung, Young Bae Ryu, Woo Sik Kim, Ju Huck Lee, Jae-Ho Jeong, Jae Sung Lim, Woo Song Lee and Su-Jin Park
Curr. Issues Mol. Biol. 2023, 45(3), 2284-2295; https://doi.org/10.3390/cimb45030147 - 09 Mar 2023
Cited by 2 | Viewed by 1565
Abstract
Although vaccines and antiviral drugs are available, influenza viruses continue to pose a significant threat to vulnerable populations globally. With the emergence of drug-resistant strains, there is a growing need for novel antiviral therapeutic approaches. We found that 18-hydroxyferruginol (1) and [...] Read more.
Although vaccines and antiviral drugs are available, influenza viruses continue to pose a significant threat to vulnerable populations globally. With the emergence of drug-resistant strains, there is a growing need for novel antiviral therapeutic approaches. We found that 18-hydroxyferruginol (1) and 18-oxoferruginol (2) isolated from Torreya nucifera exhibited strong anti-influenza activity, with 50% inhibitory concentration values of 13.6 and 18.3 μM against H1N1, 12.8 and 10.8 μM against H9N2, and 29.2 μM (only compound 2) against H3N2 in the post-treatment assay, respectively. During the viral replication stages, the two compounds demonstrated stronger inhibition of viral RNA and protein in the late stages (12–18 h) than in the early stages (3–6 h). Moreover, both compounds inhibited PI3K-Akt signaling, which participates in viral replication during the later stages of infection. The ERK signaling pathway is also related to viral replication and was substantially inhibited by the two compounds. In particular, the inhibition of PI3K-Akt signaling by these compounds inhibited viral replication by sabotaging influenza ribonucleoprotein nucleus-to-cytoplasm export. These data indicate that compounds 1 and 2 could potentially reduce viral RNA and viral protein levels by inhibiting the PI3K-Akt signaling pathway. Our results suggest that abietane diterpenoids isolated from T. nucifera may be potent antiviral candidates for new influenza therapies. Full article
Show Figures

Figure 1

21 pages, 11399 KiB  
Article
Vaccine- and Breakthrough Infection-Elicited Pre-Omicron Immunity More Effectively Neutralizes Omicron BA.1, BA.2, BA.4 and BA.5 Than Pre-Omicron Infection Alone
by Eveline Santos da Silva, Jean-Yves Servais, Michel Kohnen, Victor Arendt, Georges Gilson, Therese Staub, Carole Seguin-Devaux and Danielle Perez-Bercoff
Curr. Issues Mol. Biol. 2023, 45(2), 1741-1761; https://doi.org/10.3390/cimb45020112 - 19 Feb 2023
Cited by 2 | Viewed by 1546
Abstract
Since the emergence of SARS-CoV-2 Omicron BA.1 and BA.2, several Omicron sublineages have emerged, supplanting their predecessors. Here we compared the neutralization of Omicron sublineages BA.1, BA.2, BA.4 and BA.5 by human sera collected from individuals who were infected with the ancestral B.1 [...] Read more.
Since the emergence of SARS-CoV-2 Omicron BA.1 and BA.2, several Omicron sublineages have emerged, supplanting their predecessors. Here we compared the neutralization of Omicron sublineages BA.1, BA.2, BA.4 and BA.5 by human sera collected from individuals who were infected with the ancestral B.1 (D614G) strain, who were vaccinated (3 doses) or with breakthrough infection with pre-Omicron strains (Gamma or Delta). All Omicron sublineages exhibited extensive escape from all sera when compared to the ancestral B.1 strain and to Delta, albeit to different levels depending on the origin of the sera. Convalescent sera were unable to neutralize BA.1, and partly neutralized BA.2, BA.4 and BA.5. Vaccinee sera partly neutralized BA.2, but BA.1, BA.4 and BA.5 evaded neutralizing antibodies (NAb). Some breakthrough infections (BTI) sera were non-neutralizing. Neutralizing BTI sera had similar neutralizing ability against all Omicron sublineages. Despite similar levels of anti-Spike and anti-Receptor Binding Domain (RBD) antibodies in all groups, BTI sera had the highest cross-neutralizing ability against all Omicron sublineages and convalescent sera were the least neutralizing. Antibody avidity inferred from the NT50:antibody titer ratio was highest in sera from BTI patients, underscoring qualitative differences in antibodies elicited by infection or vaccination. Together, these findings highlight the importance of vaccination to trigger highly cross-reactive antibodies that neutralize phylogenetically and antigenically distant strains, and suggest that immune imprinting by first generation vaccines may restrict, but not abolish, cross-neutralization. Full article
Show Figures

Figure 1

Review

Jump to: Research

16 pages, 675 KiB  
Review
The Influence of Neurotrophins on the Brain–Lung Axis: Conception, Pregnancy, and Neonatal Period
by Federica D’Amico, Cecilia Lugarà, Giovanni Luppino, Carlo Giuffrida, Ylenia Giorgianni, Eleonora Maria Patanè, Sara Manti, Antonella Gambadauro, Mariarosaria La Rocca and Tiziana Abbate
Curr. Issues Mol. Biol. 2024, 46(3), 2528-2543; https://doi.org/10.3390/cimb46030160 - 15 Mar 2024
Viewed by 495
Abstract
Neurotrophins (NTs) are four small proteins produced by both neuronal and non-neuronal cells; they include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). NTs can exert their action through both genomic and non-genomic mechanisms by interacting with specific [...] Read more.
Neurotrophins (NTs) are four small proteins produced by both neuronal and non-neuronal cells; they include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). NTs can exert their action through both genomic and non-genomic mechanisms by interacting with specific receptors. Initial studies on NTs have identified them only as functional molecules of the nervous system. However, recent research have shown that some tissues and organs (such as the lungs, skin, and skeletal and smooth muscle) as well as some structural cells can secrete and respond to NTs. In addition, NTs perform several roles in normal and pathological conditions at different anatomical sites, in both fetal and postnatal life. During pregnancy, NTs are produced by the mother, placenta, and fetus. They play a pivotal role in the pre-implantation process and in placental and embryonic development; they are also involved in the development of the brain and respiratory system. In the postnatal period, it appears that NTs are associated with some diseases, such as sudden infant death syndrome (SIDS), asthma, congenital central hypoventilation syndrome (CCHS), and bronchopulmonary dysplasia (BPD). Full article
Show Figures

Figure 1

19 pages, 378 KiB  
Review
Antioxidant Intake and Biomarkers of Asthma in Relation to Smoking Status—A Review
by Naser A. Alsharairi
Curr. Issues Mol. Biol. 2023, 45(6), 5099-5117; https://doi.org/10.3390/cimb45060324 - 10 Jun 2023
Cited by 2 | Viewed by 1697
Abstract
Asthma is considered a chronic inflammatory disorder associated with airway hyperresponsiveness (AHR). Increased oxidative stress (OS) is a clinical feature of asthma, which promotes the inflammatory responses in bronchial/airway epithelial cells. Smokers and nonsmokers with asthma have been shown to have increases in [...] Read more.
Asthma is considered a chronic inflammatory disorder associated with airway hyperresponsiveness (AHR). Increased oxidative stress (OS) is a clinical feature of asthma, which promotes the inflammatory responses in bronchial/airway epithelial cells. Smokers and nonsmokers with asthma have been shown to have increases in several OS and inflammatory biomarkers. However, studies suggest significant differences in OS and inflammation biomarkers between smokers and nonsmokers. A few studies suggest associations between antioxidant intake from diet/supplements and asthma in patients with different smoking status. Evidence is lacking on the protective role of antioxidant vitamin and/or mineral consumption against asthma by smoking status with respect to inflammation and OS biomarkers. Therefore, the aim of this review is to highlight current knowledge regarding the relations between antioxidant intake, asthma, and its associated biomarkers, according to smoking status. This paper can be used to guide future research directions towards the health consequences of antioxidant intake in smoking and nonsmoking asthmatics. Full article
Back to TopTop