Special Issue "Exclusive Papers of the Editorial Board Members and Topical Advisory Panel Members of Catalysts in Section "Photocatalysis""

A special issue of Catalysts (ISSN 2073-4344). This special issue belongs to the section "Photocatalysis".

Deadline for manuscript submissions: 31 December 2023 | Viewed by 4103

Special Issue Editors

Laboratory of Photoactive Nanocomposite Materials, Saint-Petersburg State University, Ulyanovskaya Str. 1, Peterhof, 198504 Saint-Petersburg, Russia
Interests: photocatalysis; self-cleaning; superhydrophilic; antibacterial surfaces; metal and semiconductor particles; nanocristalyne transparent coatings; functional test according to DIN; CEN and ISO
Special Issues, Collections and Topics in MDPI journals
Chemical Engineering Department, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus Cantoblanco, E-28049 Madrid, Spain
Interests: chemical engineering; metal–organic frameworks (MOFs); carbon materials; water treatment; adsorption; advanced oxidation processes (AOPs); photocatalysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue of Catalysts is dedicated to recent advances in the research areas of photocatalysts and photocatalyzed reactions, and comprises a diverse selection of exclusive papers by Editorial Board Members (EBMs) and Topical Advisory Panel (TAP) Members. It focuses on highlighting recent interesting investigations conducted in photocatalysis laboratories, and EBMs and TAP members represent the section as an attractive open access publishing platform for research data on photocatalysts and photocatalyzed reactions.

Prof. Dr. Detlef W. Bahnemann
Dr. Jorge Bedia
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Catalysts is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mechanisms and kinetics of photocatalytic processes
  • photochemical reactions in photoelectrochemical cells, gaseous, and liquid-phase photocatalytic reactors, as well as solar energy conversion devices
  • solar fuel synthesis, the photocatalytic synthesis of organic and inorganic compounds, and photo(electro)catalytic water splitting
  • the photoelectrochemical conversion (fixation) of CO2
  • photocatalytic air and water treatment involving toxic chemical as well as biological pollutants
  • electrode reactions occurring in photoelectrochemical cells
  • photocatalytic reactions taking place on particle and electrode surfaces
  • the development of novel photocatalysts and suitable electron transfer catalysts
  • reactor design and engineering for photocatalytic and photoelectrochemical processes
  • theoretical simulations of all the above-mentioned processes

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Synthesis of Ternary Cross-Linked MoS2/WS2/CdS Photocatalysts for Photocatalytic H2 Production
Catalysts 2023, 13(8), 1149; https://doi.org/10.3390/catal13081149 - 25 Jul 2023
Viewed by 465
Abstract
Photocatalytic H2 production provides an ideal way to alleviate the energy crisis and solve environmental problems. In this paper, the metallic MoS2/WS2 dual cocatalysts are prepared through the in situ growth of 1T-WS2 on the surface of 1T-MoS [...] Read more.
Photocatalytic H2 production provides an ideal way to alleviate the energy crisis and solve environmental problems. In this paper, the metallic MoS2/WS2 dual cocatalysts are prepared through the in situ growth of 1T-WS2 on the surface of 1T-MoS2 via a solvothermal method. The ternary cross-linked MoS2/WS2/CdS photocatalysts are finally constructed by growing CdS nanorods on MoS2/WS2 cocatalysts. The XRD and TEM results show that ternary cross-linked MoS2/WS2/CdS photocatalysts with close interfacial contact were successfully synthesized. The results of Photoluminescence (PL) and photoelectrochemical tests show that MoS2/WS2/CdS has the lowest hydrogen evolution overpotential and the highest charge separation efficiency. This is due to the synergistic effect between WS2 and MoS2, which further accelerates the transfer of photogenerated electrons and inhibits the recombination of carriers. The hydrogen evolution rate of the MoS2/WS2/CdS composite is 12.12 mmol·g−1·h−1, which is 4.57 times that of pristine CdS. The AQY at λ = 420 nm is 58.9%. Full article
Show Figures

Graphical abstract

Article
Using a Surface-Response Approach to Optimize the Photocatalytic Activity of rGO/g-C3N4 for Bisphenol A Degradation
Catalysts 2023, 13(7), 1069; https://doi.org/10.3390/catal13071069 - 04 Jul 2023
Viewed by 468
Abstract
Although environmental and clean energy research has identified graphitic carbon nitride impregnated with reduced graphene oxide (rGO/g-C3N4) as a potential, efficient non-metallic photocatalyst, its efficacy against Contaminants of Emerging Concern (CECs) is relatively unknown. This study reports an optimized [...] Read more.
Although environmental and clean energy research has identified graphitic carbon nitride impregnated with reduced graphene oxide (rGO/g-C3N4) as a potential, efficient non-metallic photocatalyst, its efficacy against Contaminants of Emerging Concern (CECs) is relatively unknown. This study reports an optimized photocatalyst (response surface methodology, RSM) to remove the plasticizer and endocrine disruptor bisphenol A (BPA) from water. The synthetic procedure included sonication of prepared particles of g-C3N4 and graphite oxide (rGO), followed by reduction with hydrazine (24 h reflux), increasing specific surface areas, and improving synthesis reproducibility. In optimal conditions, the produced photocatalyst (50 mg L–1) removed 90% of BPA (100 mL, 100 μg L−1) in 90 min (30 min in the dark + 60 min irradiated) using a UV source (centered at 365 nm, 26 W) and exhibiting pseudo-first-order kinetics. For comparison purposes, under the same experimental conditions, pure g-C3N4 removed 50% of the BPA solution. Radical scavenging tests identified the superoxide radical as the main reactive oxygen species involved in the degradation. Two major degradation products were identified by mass spectrometry, both of them less ecotoxic than BPA to a variety of test organisms, according to in silico estimations (ECOSAR 2.0). Full article
Show Figures

Graphical abstract

Article
Tungsten Oxide Morphology-Dependent Au/TiO2/WO3 Heterostructures with Applications in Heterogenous Photocatalysis and Surface-Enhanced Raman Spectroscopy
Catalysts 2023, 13(6), 1015; https://doi.org/10.3390/catal13061015 - 17 Jun 2023
Cited by 1 | Viewed by 1093
Abstract
Developing highly efficient Au/TiO2/WO3 heterostructures with applications in heterogeneous photocatalysis (photocatalytic degradation) and surface-enhanced Raman spectroscopy (dye detection) is currently of paramount significance. Au/TiO2/WO3 heterostructures were obtained via heat or time-assisted synthesis routes developed by slightly modifying [...] Read more.
Developing highly efficient Au/TiO2/WO3 heterostructures with applications in heterogeneous photocatalysis (photocatalytic degradation) and surface-enhanced Raman spectroscopy (dye detection) is currently of paramount significance. Au/TiO2/WO3 heterostructures were obtained via heat or time-assisted synthesis routes developed by slightly modifying the Turkevich–Frens synthesis methods and were investigated by TEM, SEM, XRD, Raman spectroscopy, XPS, photoluminescence, and UV–vis DRS techniques. Structural features, such as WO3 crystalline phases, TiO2 surface defects, as well as the WO3 (220) to TiO2-A (101) ratio, were the key parameters needed to obtain heterostructures with enhanced photocatalytic activity for removing oxalic acid, phenol, methyl orange, and aspirin. Photodegradation efficiencies of 95.9 and 96.9% for oxalic acid; above 96% (except one composite) for phenol; 90.1 and 97.9% for methyl orange; and 81.6 and 82.1% for aspirin were obtained. By employing the SERS technique, the detection limit of crystal violet dye, depending on the heterostructure, was found to be between 10−7–10−8 M. The most promising composite was Au/TiO2/WO3-HW-TA it yielded conversion rates of 82.1, 95.9 and 96.8% for aspirin, oxalic acid, and phenol, respectively, and its detection limit for crystal violet was 10−8 M. Au/TiO2/WO3-NWH-HA achieved 90.1, 96.6 and 99.0% degradation efficiency for methyl orange, oxalic acid, and phenol, respectively, whereas its limit of detection was 10−7 M. The Au/TiO2/WO3 heterojunctions exhibited excellent stability as SERS substrates, yielding strong-intensity Raman signals of the pollutant molecules even after a long period of time. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

Review
Recent Advances on Furan-Based Visible Light Photoinitiators of Polymerization
Catalysts 2023, 13(3), 493; https://doi.org/10.3390/catal13030493 - 28 Feb 2023
Cited by 7 | Viewed by 1698
Abstract
Photopolymerization is an active research field enabling to polymerize in greener conditions than that performed with traditional thermal polymerization. At present, a great deal of effort is devoted to developing visible light photoinitiating systems. Indeed, the traditional UV photoinitiating systems are currently the [...] Read more.
Photopolymerization is an active research field enabling to polymerize in greener conditions than that performed with traditional thermal polymerization. At present, a great deal of effort is devoted to developing visible light photoinitiating systems. Indeed, the traditional UV photoinitiating systems are currently the focus of numerous safety concerns so alternatives to UV light are being actively researched. However, visible light photons are less energetic than UV photons so the reactivity of the photoinitiating systems should be improved to address this issue. In this field, furane constitutes an interesting candidate for the design of photocatalysts of polymerization due to its low cost and its easy chemical modification. In this review, an overview concerning the design of furane-based photoinitiators is provided. Comparisons with reference systems are also established to demonstrate evidence of the interest of these photoinitiators in innovative structures. Full article
Show Figures

Figure 1

Back to TopTop