Exclusive Papers of the Editorial Board Members and Topical Advisory Panel Members of Catalysts in Section Electrocatalysis

A special issue of Catalysts (ISSN 2073-4344). This special issue belongs to the section "Electrocatalysis".

Deadline for manuscript submissions: closed (31 January 2024) | Viewed by 7610

Special Issue Editor

CNR-ITAE Institute for Advanced Energy Technologies “N. Giordano”, Via Salita S. Lucia sopra Contesse 5, 98126 Messina, Italy
Interests: polymer electrolyte fuel cells; direct alcohol fuel cells; water electrolysis; metal–air batteries; dye-sensitized solar cells; photo-electrolysis; carbon dioxide electro-reduction
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue of Catalysts is dedicated to recent advances in the research areas of electrocatalysts and electrochemical reactions and comprises a diverse selection of exclusive papers by the Editorial Board Members (EBMs). It focuses on highlighting recent interesting investigations conducted in the laboratories of our section’s EBMs and represents our journal as an attractive open-access publishing platform for research data into electrocatalysts and electrochemical reactions.

Dr. Vincenzo Baglio
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Catalysts is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mechanisms and kinetics of electrochemical reactions
  • electrochemical reactions in fuel cells, electrolysers, metal–air batteries, other energy conversion or storage devices
  • electrosynthesis, organic electrochemistry, and electrocatalytic hydrogenation
  • electrochemical conversion of CO2
  • electrode reactions occurring in electrochemical sensors
  • electrochemical reactions taking place on an electrode surface

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

25 pages, 17199 KiB  
Article
Enhanced Alkaline Hydrogen Evolution on Gd1.0/Ndx (x = 0.5, 1.0, 3.0, and 6.0%)-Doped TiO2 Bimetallic Electrocatalysts
by Mohammed Alsawat, Naif Ahmed Alshehri, Abdallah A. Shaltout, Sameh I. Ahmed, Hanan M. O. Al-Malki, Manash R. Das, Rabah Boukherroub, Mohammed A. Amin and Mohamed M. Ibrahim
Catalysts 2023, 13(8), 1192; https://doi.org/10.3390/catal13081192 - 08 Aug 2023
Cited by 1 | Viewed by 863
Abstract
The work reports a facile synthesis of high thermally stable nanocrystalline anatase TiO2 nanoparticles (NPs) doped with different atomic concentrations (0.5, 1.0, 3.0, and 6.0%) of Gd3+ and Nd3+ ions by a template-free and one-step solvothermal process, using titanium(IV) butoxide [...] Read more.
The work reports a facile synthesis of high thermally stable nanocrystalline anatase TiO2 nanoparticles (NPs) doped with different atomic concentrations (0.5, 1.0, 3.0, and 6.0%) of Gd3+ and Nd3+ ions by a template-free and one-step solvothermal process, using titanium(IV) butoxide as a titanium precursor and dimethyl sulfoxide (DMSO) as a solvent. The structure and morphology of the Gd3+, Nd3+, and 0.5%Gd3+-0.5%Nd3+/doped TiO2 NPs have been characterized by using various analytical techniques. The Gd3+/ and Nd3+/TiO2 molar ratios were found to have a pronounced impact on the crystalline structure, size, and morphology of TiO2 NPs. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies revealed the proper substitution of Ti4+ by Gd3+ and Nd3+ ions in the TiO2 host lattice. The as-prepared Gdx/TiO2, Ndx/TiO2, and Gd1.0/Ndx/TiO2 bimetallic NPs, x = 0.5, 1.0, 3.0, and 6%, have been investigated as electrocatalysts for hydrogen evolution reaction (HER) in 1.0 M KOH solution using a variety of electrochemical techniques. At any doping percentage, the Gd1.0/Ndx/TiO2 bimetallic NPs showed higher HER catalytic performance than their corresponding counterparts, i.e., Gdx/TiO2 and Ndx/TiO2. Upon increasing the Nd content from 0.5 to 6.0%, the HER catalytic performance of the Gd1.0/Ndx/TiO2 bimetallic NPs was generally enhanced. Among the studied materials, the bimetallic Gd1.0/Nd6.0/TiO2 NPs emerged as the most promising catalyst with an onset potential of −22 mV vs. RHE, a Tafel slope of 109 mV dec−1, and an exchange current density of 0.72 mA cm−2. Such HER electrochemical kinetic parameters are close to those recorded by the commercial Pt/C (onset potential: −15 mV, Tafel slope: 106 mV dec−1, and exchange current density: 0.80 mA cm−2), and also comparable with those measured by the most active electrocatalysts reported in the literature. The synergistic interaction of Gd and Nd is thought to be the major cause of the bimetallic catalyst’s activity. Full article
Show Figures

Figure 1

14 pages, 3907 KiB  
Article
Molecular Cluster Complex of High-Valence Chromium Selenide Carbonyl as Effective Electrocatalyst for Water Oxidation
by Ibrahim Munkaila Abdullahi and Manashi Nath
Catalysts 2023, 13(4), 721; https://doi.org/10.3390/catal13040721 - 11 Apr 2023
Cited by 2 | Viewed by 1234
Abstract
Developing simple, affordable, and environmentally friendly water oxidation electrocatalysts with high intrinsic activity and low overpotential continues to be an area of intense research. In this article, a trichromium diselenide carbonyl cluster complex (Et4N)2[Se2Cr3(CO)10 [...] Read more.
Developing simple, affordable, and environmentally friendly water oxidation electrocatalysts with high intrinsic activity and low overpotential continues to be an area of intense research. In this article, a trichromium diselenide carbonyl cluster complex (Et4N)2[Se2Cr3(CO)10], with a unique bonding structure comprising bridging Se groups, has been identified as a promising electrocatalyst for oxygen evolution reaction (OER). This carbonyl cluster exhibits a promising overpotential of 310 mV and a low Tafel slope of 82.0 mV dec−1 at 10 mAcm−2, with superior durability in an alkaline medium, for a prolonged period of continuous oxygen evolution. The mass activity and turnover frequency of 62.2 Ag−1 and 0.0174 s−1 was achieved, respectively at 0.390 V vs. RHE. The Cr-complex reported here shows distinctly different catalytic activity based on subtle changes in the ligand chemistry around the catalytically active Cr site. Such dependence further corroborates the critical influence of ligand coordination on the electron density distribution which further affects the electrochemical activation and catalytic efficiency of the active site. Specifically, even partial substitution with more electronegative substituents leads to the weakening of the catalytic efficiency. This report further demonstrates that metal carbonyl chalcogenides cluster-type materials which exhibit partially occupied sites and high valence in their metal sites can serve as catalytically active centers to catalyze OER exhibiting high intrinsic activity. The insight generated from this report can be directly extrapolated to 3-dimensional solids containing similar structural motifs, thereby aiding in optimal catalyst design. Full article
Show Figures

Graphical abstract

14 pages, 5435 KiB  
Article
Oxygen Vacancy-Rich Ultrathin Co3O4 Nanosheets as Nanofillers in Solid-Polymer Electrolyte for High-Performance Lithium Metal Batteries
by Qihan Ding, Yuhai Dou, Yunlong Liao, Shuhan Huang, Rui Wang, Wenlu Min, Xianghong Chen, Chao Wu, Ding Yuan, Hua Kun Liu, Shi Xue Dou and Jiantie Xu
Catalysts 2023, 13(4), 711; https://doi.org/10.3390/catal13040711 - 08 Apr 2023
Cited by 1 | Viewed by 1268
Abstract
The development of high-performance solid-polymer electrolytes (SPEs) is a key to the practical application of lithium metal batteries (LMBs). The use of two-dimensional (2D) inorganic nanofiller is an efficient way to build poly(ethylene oxide) (PEO)-based SPEs with high ionic conductivity and stability. Herein, [...] Read more.
The development of high-performance solid-polymer electrolytes (SPEs) is a key to the practical application of lithium metal batteries (LMBs). The use of two-dimensional (2D) inorganic nanofiller is an efficient way to build poly(ethylene oxide) (PEO)-based SPEs with high ionic conductivity and stability. Herein, a series of 2D oxygen vacancy-rich Co3O4-yx (x = 1, 2 and 3) with well-defined 2D nanostructures, a high surface area and controllable oxygen vacancy contents (Co3O4-y) was synthesized via a facile self-assembly method and NaBH4 reduction. When the 2D Co3O4-yx (x = 1, 2 and 3) nanosheets are introduced as nanofillers in PEO-based SPEs, they can interact with the PEO to form a three-dimensional (3D) PEO/Co3O4-y film with uniform Li+ distribution and vertical diffusion channels, as well as strong adsorption of NO3 from LiNO3 electrolyte salt at the defective sites. As a result, the PEO/Co3O4-y−2 film reached a high ionic conductivity of 4.9 × 10−5 S cm−1, high Li+ a transference number of 0.51 and a wide electrochemical window over 4.6 V at 80 °C. The PEO/Co3O4-y−2 film enables the Li||PEO/Co3O4-y−2||LiFePO4 cell to deliver a high reversible capacity of 117.7 mAh g−1 at 2 C and to maintain 126.7 mAh g−1 at 1 C after 250 cycles with an initial capacity retention of 87.9%. Full article
Show Figures

Figure 1

Review

Jump to: Research

44 pages, 5378 KiB  
Review
Advanced Electrocatalysts for the Oxygen Evolution Reaction: From Single- to Multielement Materials
by América Higareda, Diana Laura Hernández-Arellano, Luis Carlos Ordoñez, Romeli Barbosa and Nicolas Alonso-Vante
Catalysts 2023, 13(10), 1346; https://doi.org/10.3390/catal13101346 - 05 Oct 2023
Cited by 3 | Viewed by 2627
Abstract
The proton exchange membrane water electrolyzer (PEM-WE) is a well-known green technology for hydrogen production. The main obstacle to its development, on a large scale, is the sluggish kinetics of the oxygen evolution reaction (OER). At present, the design of acid-stable electrocatalysts with [...] Read more.
The proton exchange membrane water electrolyzer (PEM-WE) is a well-known green technology for hydrogen production. The main obstacle to its development, on a large scale, is the sluggish kinetics of the oxygen evolution reaction (OER). At present, the design of acid-stable electrocatalysts with low overpotential and excellent stability for the OER constitutes an important activity in electrocatalysis. This review presents an analysis of the fundamentals and strategies for the design of advanced electrocatalysts for oxygen evolution, reaction mechanisms, and OER descriptors. The scrutiny of OER electrocatalysts, with elemental composition from single- to multielemental, are presented. In addition, the purpose of high-entropy alloys (HEAs), a recent research strategy, for the design of advanced materials is summarized. Briefly, the effect of support materials, which are beneficial for modulating the electronic properties of catalysts, is presented. Finally, the prospects for the development of acidic OER electrocatalysts are given. Full article
Show Figures

Graphical abstract

31 pages, 3592 KiB  
Review
Molten Metals and Molten Carbonates in Solid Oxide Direct Carbon Fuel Cell Anode Chamber: Liquid Metal Anode and Hybrid Direct Carbon Fuel Cells
by Ermete Antolini
Catalysts 2023, 13(7), 1107; https://doi.org/10.3390/catal13071107 - 15 Jul 2023
Cited by 2 | Viewed by 1061
Abstract
To enhance the contact between the electrolyte (source of O2−) and the carbon fuel in solid oxide–direct carbon fuel cells (SO-DCFCs), molten metals and molten salts were used in the anode chamber. Oxygen ions can dissolve and be transported in the [...] Read more.
To enhance the contact between the electrolyte (source of O2−) and the carbon fuel in solid oxide–direct carbon fuel cells (SO-DCFCs), molten metals and molten salts were used in the anode chamber. Oxygen ions can dissolve and be transported in the molten medium to the anode three-phase boundary to reach and oxidize the carbon particles. To improve the sluggish kinetics of the electrochemical oxidation of carbon, the same molten media can act as redox mediators. Moreover, using a liquid metal/salt anode, tolerant to fuel impurities, the negative effect of carbon contaminants on cell performance is mitigated. In this work, an overview of SO-DCFCs with liquid metals, liquid carbonates, and mixed liquid metals/liquid carbonates in the anode chamber is presented and their performance was compared to that of conventional SO-DCFCs. Full article
Show Figures

Graphical abstract

Back to TopTop