Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Ring-Opening Polymerization of rac-Lactide Catalyzed by Octahedral Nickel Carboxylate Complexes
Catalysts 2023, 13(2), 304; https://doi.org/10.3390/catal13020304 - 29 Jan 2023
Viewed by 1078
Abstract
To date, nickel(II) complexes have not been practically investigated as catalysts in ring-opening polymerization (ROP) of lactide to produce biodegradable poly(lactic acid), which is in demand in biomedicine and industry. In this study, carboxylate complexes of nickel(II) containing various N-donor ligands with different [...] Read more.
To date, nickel(II) complexes have not been practically investigated as catalysts in ring-opening polymerization (ROP) of lactide to produce biodegradable poly(lactic acid), which is in demand in biomedicine and industry. In this study, carboxylate complexes of nickel(II) containing various N-donor ligands with different nuclearity, metal core rigidity and nature of carboxylate ligands were synthesized and studied by infrared spectroscopy, X-ray diffraction, elemental and thermogravimetric analyses. The obtained complexes were examined in the ROP of the rac-lactide in bulk and in toluene solution with and without the addition of a benzyl alcohol initiator. In the series of complexes studied, the complex [Ni(DBED)2(O2CC(CH3)3)2]·(CH3)3CCO2H (DBED is N,N′-dibenzylethylenediamine) was a syndioselective catalyst and showed the highest catalytic ability in the polymerization without the addition of benzyl alcohol. For this complex, according to 1D DOSY 1H NMR spectroscopy and mass spectrometry with electrospray ionization, polymerization is initiated by a free secondary amine, DBED, leaving the metal’s inner coordination sphere. Based on the experimental data obtained, a comprehensive density functional theory (DFT) study of the ROP pathways including the initiation and first chain growth cycle steps with a detailed description of the intermediates and evaluation of the energy barriers of the steps was carried out. It was shown that one of the key roles in the reaction process is played by carboxylate ligands, which act as proton carriers from the initiator molecule and have a significant influence on the reactivity of the catalytic metal complexes. Full article
(This article belongs to the Special Issue Organocatalysis in the Chemical Transformations)
Show Figures

Graphical abstract

Review
Recent Advances of Oxygen Carriers for Hydrogen Production via Chemical Looping Water-Splitting
Catalysts 2023, 13(2), 279; https://doi.org/10.3390/catal13020279 - 26 Jan 2023
Viewed by 1366
Abstract
Hydrogen is an important green energy source and chemical raw material for various industrial processes. At present, the major technique of hydrogen production is steam methane reforming (SMR), which suffers from high energy penalties and enormous CO2 emissions. As an alternative, chemical [...] Read more.
Hydrogen is an important green energy source and chemical raw material for various industrial processes. At present, the major technique of hydrogen production is steam methane reforming (SMR), which suffers from high energy penalties and enormous CO2 emissions. As an alternative, chemical looping water-splitting (CLWS) technology represents an energy-efficient and environmentally friendly method for hydrogen production. The key to CLWS lies in the selection of suitable oxygen carriers (OCs) that hold outstanding sintering resistance, structural reversibility, and capability to release lattice oxygen and deoxygenate the steam for hydrogen generation. Described herein are the recent advances in designing OCs, including simple metal oxides (e.g., Fe, Zn, Ce, and Ti-based metal oxides) and composite metal oxides (e.g., perovskite, spinel, and garnets), for different CLWS processes with emphasis on the crucial parameters that determine their redox performance and future challenges. Full article
Show Figures

Figure 1

Communication
High-Temperature-Treated LTX Zeolites as Heterogeneous Catalysts for the Hock Cleavage
Catalysts 2023, 13(1), 202; https://doi.org/10.3390/catal13010202 - 15 Jan 2023
Viewed by 991
Abstract
Hydroxybenzene, commonly known as phenol, is one of the most important organic commodity chemicals. To produce phenol, the cumene process is the most used process worldwide. A crucial step in this process is the Hock rearrangement, which has a major impact on the [...] Read more.
Hydroxybenzene, commonly known as phenol, is one of the most important organic commodity chemicals. To produce phenol, the cumene process is the most used process worldwide. A crucial step in this process is the Hock rearrangement, which has a major impact on the overall cumene consumption rate and determines the safety level of the process. The most used catalyst for the cleavage of cumene hydroperoxide (CHP) is sulfuric acid. Besides its strong corrosive property, which increases plant investment costs, it also requires neutralization after the decomposition step to prevent side reactions. In this study, we show that high-temperature-treated Linde Type X (LTX) zeolites exhibit a high activity for the peroxide cleavage step. In addition, the structure–activity relationship responsible for this good performance in the reaction system of the HOCK rearrangement was investigated. XRPD analyses revealed the formation of a new phase after temperature treatment above 900 °C. The Si/Al ratio determined by EDX suggested the formation of extra-framework aluminum, which was confirmed by solid-state NMR analysis. The newly formed extra-framework aluminum was found to be responsible for the high catalytic activity. BET analyses showed that the surface area drops at higher calcination temperatures. This leads to a lower catalytic activity for most known reactions. However, for this study, no decrease in activity has been observed. The newfound material shows extraordinarily high activity as a catalyst in the HOCK cleavage and has the potential to be a heterogeneous alternative to sulfuric acid for this reaction. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Green Chemistry II)
Show Figures

Figure 1

Communication
Bienzymatic Cascade Combining a Peroxygenase with an Oxidase for the Synthesis of Aromatic Aldehydes from Benzyl Alcohols
Catalysts 2023, 13(1), 145; https://doi.org/10.3390/catal13010145 - 08 Jan 2023
Cited by 1 | Viewed by 973
Abstract
Aromatic aldehydes are important aromatic compounds for the flavour and fragrance industry. In this study, a parallel cascade combining aryl alcohol oxidase from Pleurotus eryngii (PeAAOx) and unspecific peroxygenase from the basidiomycete Agrocybe aegerita (AaeUPO) to convert aromatic primary [...] Read more.
Aromatic aldehydes are important aromatic compounds for the flavour and fragrance industry. In this study, a parallel cascade combining aryl alcohol oxidase from Pleurotus eryngii (PeAAOx) and unspecific peroxygenase from the basidiomycete Agrocybe aegerita (AaeUPO) to convert aromatic primary alcohols into high-value aromatic aldehydes is proposed. Key influencing factors in the process of enzyme cascade catalysis, such as enzyme dosage, pH and temperature, were investigated. The universality of PeAAOx coupled with AaeUPO cascade catalysis for the synthesis of aromatic aldehyde flavour compounds from aromatic primary alcohols was evaluated. In a partially optimised system (comprising 30 μM PeAAOx, 2 μM AaeUPO at pH 7 and 40 °C) up to 84% conversion of 50 mM veratryl alcohol into veratryl aldehyde was achieved in a self-sufficient aerobic reaction. Promising turnover numbers of 2800 and 21,000 for PeAAOx and AaeUPO, respectively, point towards practical applicability. Full article
(This article belongs to the Special Issue Enzymes in Biomedical, Cosmetic and Food Application)
Show Figures

Figure 1

Review
Electrochemically Assisted Persulfate Oxidation of Organic Pollutants in Aqueous Solution: Influences, Mechanisms and Feasibility
Catalysts 2023, 13(1), 135; https://doi.org/10.3390/catal13010135 - 06 Jan 2023
Cited by 1 | Viewed by 969
Abstract
Electrochemically (EC) assisted persulfate (PS) oxidation processes (EPOPs) have gained increasing attention in recent years. In this review, the current status and prospects of EC/PS degradation of organic pollutants are discussed and summarized. It was found that the oxidation of most organic contaminants [...] Read more.
Electrochemically (EC) assisted persulfate (PS) oxidation processes (EPOPs) have gained increasing attention in recent years. In this review, the current status and prospects of EC/PS degradation of organic pollutants are discussed and summarized. It was found that the oxidation of most organic contaminants could be significantly enhanced or accelerated using the combination of EC and PS compared to single treatments. Moreover, the effects of various operational variables on the removal of organic contaminants were investigated. Some variables are highly sensitive, and the optimal conditions are case-specific. Regarding the degradation mechanisms, radical-induced reactions and nonradical reactions both exist for the elimination of organic contaminants. Oxidants (including S2O82− and SO4•−) can be produced from SO42− near the anode, which is a unique feature of EPOPs. In some studies, the electrical energy consumption of EPOPs has been controlled to a reasonably low level in lab-scale attempts. Although there are still a few drawbacks or difficulties (e.g., potential electrode fouling, dependency on batch mode) for large-scale applications, EPOPs offer a promising alternative to traditional advanced oxidation techniques. Full article
(This article belongs to the Special Issue Advanced Catalytic Material for Water Treatment)
Show Figures

Figure 1

Review
In Situ Surface Reconstruction of Catalysts for Enhanced Hydrogen Evolution
Catalysts 2023, 13(1), 120; https://doi.org/10.3390/catal13010120 - 05 Jan 2023
Cited by 1 | Viewed by 1031
Abstract
The in situ surface reconstitution of a catalyst for hydrogen evolution refers to its structure evolution induced by strong interactions with reaction intermediates during the hydrogen evolution reaction (HER), which eventually leads to the self-optimization of active sites. In consideration of the superior [...] Read more.
The in situ surface reconstitution of a catalyst for hydrogen evolution refers to its structure evolution induced by strong interactions with reaction intermediates during the hydrogen evolution reaction (HER), which eventually leads to the self-optimization of active sites. In consideration of the superior performance that can be achieved by in situ surface reconstitution, more and more attention has been paid to the relationship between active site structure evolution and the self-optimization of HER activity. More and more in situ and/or operando techniques have been explored to track the dynamic structural evolution of HER catalysts in order to clarify the underlying mechanism. This review summarizes recent advances in various types of reconstruction such as the reconfiguration of crystallinity, morphological evolution, chemical composition evolution, phase transition refactoring, surface defects, and interface refactoring in the HER process. Finally, different perspectives and outlooks are offered to guide future investigations. This review is expected to provide some new clues for a deeper understanding of in situ surface reconfiguration in hydrogen evolution reactions and the targeted design of catalysts with desirable structures. Full article
Show Figures

Figure 1

Review
Selectivity in the Aliphatic C–H Bonds Oxidation (Hydroxylation) Catalyzed by Heme- and Non-Heme Metal Complexes—Recent Advances
Catalysts 2023, 13(1), 121; https://doi.org/10.3390/catal13010121 - 05 Jan 2023
Cited by 1 | Viewed by 1085
Abstract
The oxyfunctionalization of non-activated C-H bonds has attracted considerable attention for several years. Following the example of enzymatic systems, a multitude of catalytic systems capable of carrying out such a transformation efficiently and selectively have been described. The great discoveries in this area [...] Read more.
The oxyfunctionalization of non-activated C-H bonds has attracted considerable attention for several years. Following the example of enzymatic systems, a multitude of catalytic systems capable of carrying out such a transformation efficiently and selectively have been described. The great discoveries in this area were described at the beginning of the 21st century, but due to the growing demand for precise syntheses (e.g., for the needs of the pharmaceutical industry), new solutions or new applications for already known catalytic systems are constantly being sought. This review article summarizes the development of metal complex-catalyzed selective functionalization of saturated C-H bonds since 2010. However, brief references to previous studies are also made for clarity. There is a huge amount of literature reports in this area, so we intend to highlight only the most important findings in the selective hydroxylation of saturated C–H bonds. Their practical applications in synthesis will also be pointed out. Full article
(This article belongs to the Special Issue Heteroaromatic N-oxides in Synthesis and Asymmetric Catalysis)
Show Figures

Figure 1

Article
Redrawing HER Volcano with Interfacial Processes—The Role of Hydrogen Spillover in Boosting H2 Evolution in Alkaline Media
Catalysts 2023, 13(1), 89; https://doi.org/10.3390/catal13010089 - 01 Jan 2023
Cited by 1 | Viewed by 1047
Abstract
The requirements for the efficient replacement of fossil fuel, combined with the growing energy crisis, places focus on hydrogen production. Efficient and cost-effective electrocatalysts are needed for H2 production, and novel strategies for their discovery must be developed. Here, we utilized Kinetic [...] Read more.
The requirements for the efficient replacement of fossil fuel, combined with the growing energy crisis, places focus on hydrogen production. Efficient and cost-effective electrocatalysts are needed for H2 production, and novel strategies for their discovery must be developed. Here, we utilized Kinetic Monte Carlo (KMC) simulations to demonstrate that hydrogen evolution reaction (HER) can be boosted via hydrogen spillover to the support when the catalyst surface is largely covered by adsorbed hydrogen under operating conditions. Based on the insights from KMC, we synthesized a series of reduced graphene-oxide-supported catalysts and compared their activities towards HER in alkaline media with that of corresponding pure metals. For Ag, Au, and Zn, the support effect is negative, but for Pt, Pd, Fe, Co, and Ni, the presence of the support enhances HER activity. The HER volcano, constructed using calculated hydrogen binding energies and measured HER activities, shows a positive shift of the strong binding branch. This work demonstrates the possibilities of metal–support interface engineering for producing effective HER catalysts and provides general guidelines for choosing novel catalyst–support combinations for electrocatalytic hydrogen production. Full article
Show Figures

Graphical abstract

Article
Influence of Butanol Isomerization on Photothermal Hydrogen Production over Ti@TiO2 Core-Shell Nanoparticles
Catalysts 2022, 12(12), 1662; https://doi.org/10.3390/catal12121662 - 17 Dec 2022
Viewed by 806
Abstract
In this work, we reported for the first time the effect of butanol isomerization on the photothermal production of hydrogen in the presence of a noble, metal-free Ti@TiO2 core-shell photocatalyst. The experiments were performed in aqueous solutions of 1-BuOH, 2-BuOH, and t-BuOH [...] Read more.
In this work, we reported for the first time the effect of butanol isomerization on the photothermal production of hydrogen in the presence of a noble, metal-free Ti@TiO2 core-shell photocatalyst. The experiments were performed in aqueous solutions of 1-BuOH, 2-BuOH, and t-BuOH under Xe lamp irradiation (vis/NIR: 8.4 W, UV: 0.6 W) at 35–69 °C. The increase in temperature significantly enhanced H2 formation, indicating a strong photothermal effect in the studied systems. However, in dark conditions, H2 emission was not observed even at elevated temperatures, which clearly points out the photonic origin of H2 photothermal formation. The rate of H2 production followed the order of 1-BuOH >> 2-BuOH > t-BuOH in the entire range of studied temperatures. In the systems with 1-BuOH and 2-BuOH, hydrogen was the only gaseous product measured online in the outlet carrier argon using mass spectrometry. By contrast, a mixture of H2, CH4, and C2H6 was detected for t-BuOH, indicating a C–C bond scission with this isomer during photocatalytic degradation. The apparent activation energies, Ea, with 1-BuOH/2-BuOH isomers (20–21 kJ·mol−1) was found to be larger than for t-BuOH (13 kJ·mol−1). The significant difference in thermal response for 1-BuOH/2-BuOH and t-BuOH isomers was ascribed to the difference in the photocatalytic mechanisms of these species. The photothermal effect with 1-BuOH/2-BuOH isomers can be explained by the thermally induced transfer of photogenerated, shallowly trapped electron holes to highly reactive free holes at the surface of TiO2 and the further hole-mediated cleavage of the O-H bond. In the system with t-BuOH, another mechanism could also contribute to the overall process through hydrogen abstraction from the C–H bond by an intermediate OH radical, leading to CH3 group ejection. Formation of OH radicals during light irradiation of Ti@TiO2 nanoparticle suspension in water has been confirmed using terephthalate dosimetry. This analysis also revealed a positive temperature response of OH radical formation. Full article
Show Figures

Graphical abstract

Article
Biotransformation of the Proteogenic Amino Acids Phenylalanine, Tyrosine and Tryptophan by Yarrowia Species: An Application to the Preparative Synthesis of Natural Phenylacetic Acid
Catalysts 2022, 12(12), 1638; https://doi.org/10.3390/catal12121638 - 14 Dec 2022
Viewed by 995
Abstract
The biotransformation of the aromatic amino acids phenylalanine, tyrosine and tryptophan originates a number of bioactive compounds. Yeasts are the most used microorganisms for the transformation of (L)-phenylalanine into the flavour phenylethanol. Here, we reported a study on the biotransformation of the proteogenic [...] Read more.
The biotransformation of the aromatic amino acids phenylalanine, tyrosine and tryptophan originates a number of bioactive compounds. Yeasts are the most used microorganisms for the transformation of (L)-phenylalanine into the flavour phenylethanol. Here, we reported a study on the biotransformation of the proteogenic aminoacids phenylalanine, tyrosine and tryptophan by yeast strains belonging to Yarrowia genus. We found that the latter microorganisms, in high aerobic conditions, metabolise the aromatic amino acids (L)-phenylalanine and (L)-tyrosine with the almost exclusive formation of phenylacetic acid and 4-hydroxyphenylacetic acid, respectively. Differently, the biotransformation of (L)-tryptophan with Y. lipolytica, gave anthranilic acid as the main product. As stated by the European and USA legislations concerning natural flavour production, phenylacetic acid obtained by microbial conversion of phenylalanine of natural origin can be commercialised as a natural flavour. Accordingly, our findings were exploited in a new process, based on the Yarrowia strains-mediated biotransformation of natural (L)-phenylalanine, that allows the large-scale preparation of the high-value, natural flavour, phenylacetic acid. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

Article
Fast and Complete Destruction of the Anti-Cancer Drug Cytarabine from Water by Electrocatalytic Oxidation Using Electro-Fenton Process
Catalysts 2022, 12(12), 1598; https://doi.org/10.3390/catal12121598 - 07 Dec 2022
Cited by 1 | Viewed by 833
Abstract
The fast and complete removal of the anti-cancer drug cytarabine (CYT) from water was studied, for the first time, by the electro-Fenton process using a BDD anode and carbon felt cathode. A catalytic amount (10−4 M) of ferrous iron was initially added [...] Read more.
The fast and complete removal of the anti-cancer drug cytarabine (CYT) from water was studied, for the first time, by the electro-Fenton process using a BDD anode and carbon felt cathode. A catalytic amount (10−4 M) of ferrous iron was initially added to the solution as catalyst and it was electrochemically regenerated in the process. Complete degradation of 0.1 mM (24.3 mg L−1) CYT was achieved quickly in 15 min at 300 mA constant current electrolysis by hydroxyl radicals (OH) electrocatalytically generated in the system. Almost complete mineralization (91.14% TOC removal) of the solution was obtained after 4 h of treatment. The mineralization current efficiency (MCE) and energy consumption (EC) during the mineralization process were evaluated. The absolute (second order) rate constant for the hydroxylation reaction of CYT by hydroxyl radicals was assessed by applying the competition kinetics method and found to be 5.35 × 109 M−1 s−1. The formation and evolution of oxidation reaction intermediates, short-chain carboxylic acids and inorganic ions were identified by gas chromatography-mass spectrometry, high performance liquid chromatography and ion chromatography analyses, respectively. Based on the identified intermediate and end-products, a plausible mineralization pathway for the oxidation of CYT by hydroxyl radicals is proposed. Full article
Show Figures

Graphical abstract

Article
Heterostructured Photocatalysts Associating ZnO Nanorods and Ag-In-Zn-S Quantum Dots for the Visible Light-Driven Photocatalytic Degradation of the Acid Orange 7 Dye
Catalysts 2022, 12(12), 1585; https://doi.org/10.3390/catal12121585 - 06 Dec 2022
Cited by 1 | Viewed by 938
Abstract
Heterostructured photocatalysts associating ZnO nanorods (NRs) sensitized by quaternary Ag-In-Zn-S (AIZS) quantum dots (QDs) were prepared by depositing AIZS QDs at the surface of ZnO NRs followed by thermal treatment at 300 °C. The ZnO/AIZS catalysts were characterized by X-ray diffraction, electron microscopy, [...] Read more.
Heterostructured photocatalysts associating ZnO nanorods (NRs) sensitized by quaternary Ag-In-Zn-S (AIZS) quantum dots (QDs) were prepared by depositing AIZS QDs at the surface of ZnO NRs followed by thermal treatment at 300 °C. The ZnO/AIZS catalysts were characterized by X-ray diffraction, electron microscopy, UV-vis diffuse spectroscopy and by photoelectrochemical measurements. Their photocatalytic activity was evaluated for the bleaching of the Acid Orange 7 (AO7) dye under visible light irradiation. Results show that the association of ZnO NRs with 10 wt% AIZS QDs affords the photocatalyst the highest activity due to the enhanced visible light absorption combined with the improved charge separation. The ZnO/AIZS(10) photocatalyst degrades 98% AO7 in 90 min under visible light illumination, while ZnO NRs can only decompose 11% of the dye. The ZnO/AIZS(10) photocatalyst was also found to be stable and can be reused up to eight times without significant alteration of its activity. This work demonstrates the high potential of AIZS QDs for the development of visible light active photocatalysts. Full article
(This article belongs to the Special Issue Advances in Solar- and Visible-Light Photocatalysis)
Show Figures

Graphical abstract

Article
Rh-Catalyzed Environmentally Benign Selective Hydrogenation of a Broad Variety of Functional Groups Using Al-Water as a Hydrogen Source
Catalysts 2022, 12(12), 1578; https://doi.org/10.3390/catal12121578 - 05 Dec 2022
Viewed by 829
Abstract
Supported rhodium catalysts were screened to catalyze the one-step hydrogenation of a broad variety of functional groups. The results show that 5% Rh/Al2O3 and 5% Rh/C performed well in controlling selective hydrogenation under the desired amount of time and temperature. [...] Read more.
Supported rhodium catalysts were screened to catalyze the one-step hydrogenation of a broad variety of functional groups. The results show that 5% Rh/Al2O3 and 5% Rh/C performed well in controlling selective hydrogenation under the desired amount of time and temperature. In this regard, partial and full hydrogenation were achieved by controlling reaction time or temperature. In addition to aliphatic C–C, C–N, C–O, and N–O multiple bonds, the applicability of this method was demonstrated by the hydrogenation of C=C double bonds of arenes, which is considered challenging. Importantly, the Al-H2O system producing hydrogen in situ and the high, controllable selectivity make this protocol environmentally benign and highly efficient. Full article
(This article belongs to the Special Issue Recent Developments in Rh Catalysts II)
Show Figures

Scheme 1

Article
Deactivation and Regeneration of Palladium Catalysts for Hydrogenation Debenzylation of 2,4,6,8,10,12-Hexabenzyl-2,4,6,8,10,12-Hexaazaisowurtzitane (HBIW)
Catalysts 2022, 12(12), 1547; https://doi.org/10.3390/catal12121547 - 01 Dec 2022
Cited by 1 | Viewed by 971
Abstract
2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW, also known as CL-20) is an important energetic compound. As one of the representatives of the third generation of energetic materials, it has an excellent performance, providing broad application prospects for the development of new weapons and equipment. The synthesis of [...] Read more.
2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW, also known as CL-20) is an important energetic compound. As one of the representatives of the third generation of energetic materials, it has an excellent performance, providing broad application prospects for the development of new weapons and equipment. The synthesis of CL-20 is usually obtained from 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (HBIW) through two catalytic hydrogenolysis and debenzylation reactions, followed by nitration. The most critical step is the hydrogenolysis debenzyl-acetylation process of HBIW because this process requires a large amount of expensive palladium-based catalyst, and the catalyst is completely deactivated after one use. In response to this problem, there is no suitable solution at present, resulting in the high cost of the entire synthesis process. Therefore, reducing the production cost of CL-20 by increasing the catalyst stability is one of the current research priorities. By using AAS, XRD, XPS, TEM, BET, TG and other characterization techniques, the reasons for catalyst deactivation were explored. Studies have shown that the main reason for catalyst deactivation is that a large number of blockages accumulate in the pores of the catalyst after the reaction, which greatly weakens the transfer of the reactant HBIW, intermediate substances, and product 2,6,8,12-tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (TADBIW) in the catalyst pores, and the blockage may block the active site of the catalyst. A regeneration treatment method for catalyst deactivation was developed. This method uses chloroform and glacial acetic acid as reagents, which, when combined with stirring and ultrasonic operation, finally restores the activity of the Pd(OH)2/C catalyst. The BET and TG parameters of the regenerated catalyst indicate that catalyst textural and structural properties have greatly recovered, indicating that this treatment method can remove the blockages in the catalyst pores. Full article
(This article belongs to the Special Issue Advanced Catalysis for Green Fuel Synthesis and Energy Conversion)
Show Figures

Figure 1

Review
Water Photo-Oxidation over TiO2—History and Reaction Mechanism
Catalysts 2022, 12(12), 1557; https://doi.org/10.3390/catal12121557 - 01 Dec 2022
Cited by 1 | Viewed by 1016
Abstract
Photocatalytic water oxidation over titanium dioxide (TiO2) was overviewed by surveying briefly the history of water photo-oxidation, followed by profiling the research for the molecular mechanism of oxygen evolution reaction (OER) at the TiO2 surface. As the experimental approach to [...] Read more.
Photocatalytic water oxidation over titanium dioxide (TiO2) was overviewed by surveying briefly the history of water photo-oxidation, followed by profiling the research for the molecular mechanism of oxygen evolution reaction (OER) at the TiO2 surface. As the experimental approach to investigate the reaction mechanism, ESR, NMR, and STM were described as well as FTIR spectroscopy. Detection of reactive oxygen species, which are the intermediate species in the OER, was also involved in discussing the mechanism. As the theoretical approach to the reaction mechanism, some research with density functional theory (DFT) for anatase (101) surface was illustrated. Since the OER activity of rutile TiO2 is higher than that of anatase, and the rutile (011) surface has been assigned to the oxidation facet, we performed a DFT calculation for a (011) surface model molecule. The results were successfully discussed with the reported mechanism. The first oxidation step occurs at the bridging OH site, which faces a Ti5C site. The water molecule which coordinates both sites is oxidized, and the resultant radical coordinates the Ti5C site to form a trapped hole Ti-O•. In the second step, a coordinated water molecule is oxidized at the Ti-O• site to form a Ti-OOH structure. Full article
Show Figures

Figure 1

Article
Tunable Production of Diesel Bio-Blendstock by Rhenium-Catalyzed Hydrogenation of Crude Hexanoic Acid from Grape Pomace Fermentation
Catalysts 2022, 12(12), 1550; https://doi.org/10.3390/catal12121550 - 01 Dec 2022
Viewed by 852
Abstract
The transition from fossil resources to renewable ones represents a pressing need. The acidogenic fermentation of biomass-derived ethanol to carboxylic acids represents a novel and smart possibility, opening the way for the production of further value-added bio-products through cascade chemical approaches. In this [...] Read more.
The transition from fossil resources to renewable ones represents a pressing need. The acidogenic fermentation of biomass-derived ethanol to carboxylic acids represents a novel and smart possibility, opening the way for the production of further value-added bio-products through cascade chemical approaches. In this work, the hydrogenation of commercial hexanoic acid to give 1-hexanol/hexyl hexanoate mixtures was preliminary studied in the presence of commercial rhenium catalysts (Re2O7 and 5 wt% Re/C), which resulted as mainly active and selective towards 1-hexanol. On the other hand, the use of niobium phosphate as the acid co-catalyst markedly shifted the selectivity towards hexyl hexanoate. Moreover, 5 wt% Re/C and physical mixtures of (5 wt% Re/C + niobium phosphate) were further tested for the hydrogenation of crude hexanoic acid obtained through fermentation of white grape pomace, confirming the promising performance of these catalytic systems and their recyclability. For the first time, the employment of 1-hexanol/hexyl hexanoate mixtures as a diesel blendstock was evaluated, highlighting a significant reduction of soot and CO emissions, without any significant change in the engine performance. The promising properties of these oxygenated additives are favorable for the partial replacement of traditional fossil fuels, in accordance with the short-term goals of EU countries. Full article
Show Figures

Graphical abstract

Communication
Hydrogen Evolution Volcano(es)—From Acidic to Neutral and Alkaline Solutions
Catalysts 2022, 12(12), 1541; https://doi.org/10.3390/catal12121541 - 30 Nov 2022
Cited by 1 | Viewed by 1144
Abstract
As the global energy crisis continues, efficient hydrogen production is one of the hottest topics these days. In this sense, establishing catalytic trends for hydrogen production is essential for choosing proper H2 generation technology and catalytic material. Volcano plots for hydrogen evolution [...] Read more.
As the global energy crisis continues, efficient hydrogen production is one of the hottest topics these days. In this sense, establishing catalytic trends for hydrogen production is essential for choosing proper H2 generation technology and catalytic material. Volcano plots for hydrogen evolution in acidic media are well-known, while a volcano plot in alkaline media was constructed ten years ago using theoretically calculated hydrogen binding energies. Here, for the first time, we show that the volcano-type relationships are largely maintained in a wide range of pH values, from acidic to neutral and alkaline solutions. We do this using theoretically calculated hydrogen binding energies on clean metallic surfaces and experimentally measured hydrogen evolution overpotentials. When metallic surfaces are exposed to high anodic potentials, hydrogen evolution can be boosted or significantly impeded, depending on the type of metal and the electrolyte in which the reaction occurs. Such effects are discussed here and can be used to properly tailor catalytic materials for hydrogen production via different water electrolysis technologies. Full article
Show Figures

Figure 1

Article
Synthesis of Polysubstituted 1,2-Dihydro-3H-pyrrolo[1,2-a]indol-3-ones through Domino Palladium-Catalyzed Reactions of Indol-2-ylmethyl Acetates with 1,3-Dicarbonyl Derivatives
Catalysts 2022, 12(12), 1516; https://doi.org/10.3390/catal12121516 - 25 Nov 2022
Cited by 1 | Viewed by 826
Abstract
A straightforward assembly of polysubstituted 1,2-dihydro-3H-pyrrolo[1,2-a]indol-3-ones through a domino palladium-catalyzed reaction of indol-2-ylmethyl acetates with 1,3-dicarbonyl derivatives is described. The key role of the features of the 1,3-dicarbonyls on the reaction outcome has been explored. The employment of 2-methylcyclohexan-1,3-dione [...] Read more.
A straightforward assembly of polysubstituted 1,2-dihydro-3H-pyrrolo[1,2-a]indol-3-ones through a domino palladium-catalyzed reaction of indol-2-ylmethyl acetates with 1,3-dicarbonyl derivatives is described. The key role of the features of the 1,3-dicarbonyls on the reaction outcome has been explored. The employment of 2-methylcyclohexan-1,3-dione as the dicarbonyl source could allow further challenging indole nucleus functionalizations. Full article
(This article belongs to the Special Issue Advances in Transition Metal Catalysis)
Show Figures

Graphical abstract

Article
A Brønsted Acidic Deep Eutectic Solvent for N-Boc Deprotection
Catalysts 2022, 12(11), 1480; https://doi.org/10.3390/catal12111480 - 19 Nov 2022
Viewed by 1572
Abstract
The tert-butyloxycarbonyl (Boc) group is one of the most widely used amine-protecting groups in multistep reactions in synthetic organic chemistry as well as in peptide synthesis. Traditional methods to remove the Boc group have disadvantages in terms of high acidity, the use of [...] Read more.
The tert-butyloxycarbonyl (Boc) group is one of the most widely used amine-protecting groups in multistep reactions in synthetic organic chemistry as well as in peptide synthesis. Traditional methods to remove the Boc group have disadvantages in terms of high acidity, the use of expensive reagents, excessive amounts of catalysts and harmful solvents as well as high temperatures, making them environmentally unsustainable. Therefore, more efforts must be stepwise tightened to make Boc removal practical, clean, and minimize any potential impact. We describe an efficient and sustainable method for N-Boc deprotection by means of a choline chloride/p-toluenesulfonic acid deep eutectic solvent (DES), which is used as a reaction medium plus catalyst. The adopted conditions allow the deprotection of a wide variety of N-Boc derivatives in excellent yields. The strategy has found advantages in greening, simplicity, and short reaction times, resulting in a useful alternative to standard methods. Full article
Show Figures

Figure 1

Article
Magnetron Sputtered Al Co-Doped with Zr-Fe2O3 Photoanode with Fortuitous Al2O3 Passivation Layer to Lower the Onset Potential for Photoelectrochemical Solar Water Splitting
Catalysts 2022, 12(11), 1467; https://doi.org/10.3390/catal12111467 - 18 Nov 2022
Viewed by 1120
Abstract
In this paper, we investigate the magnetron sputtering deposition of an Al-layer on Zr-doped FeOOH (Zr-FeOOH) samples to fabricate a Zr/Al co-doped Fe2O3 (Al-Zr/HT) photoanode. An Al-layer is deposited onto Zr-FeOOH through magnetron sputtering and the thickness of the Al [...] Read more.
In this paper, we investigate the magnetron sputtering deposition of an Al-layer on Zr-doped FeOOH (Zr-FeOOH) samples to fabricate a Zr/Al co-doped Fe2O3 (Al-Zr/HT) photoanode. An Al-layer is deposited onto Zr-FeOOH through magnetron sputtering and the thickness of the Al deposition is regulated by differing the sputtering time. Electrochemical impedance spectroscopy, intensity-modulated photocurrent spectroscopy, Mott-Schottky and time-resolved photoluminescence spectra analyses were used to study, in depth, the correlations between sputtered Al-layer thicknesses and PEC characteristics. High-temperature quenching (800 °C) assists in diffusing the Al3+ in the bulk of the Zr-doped Fe2O3 photoanode, whilst an unintended Al2O3 passivation layer forms on the surface. The optimized Al-Zr/HT photoelectrode achieved 0.945 mA/cm2 at 1.0 VRHE, which is 3-fold higher than that of the bare Zr/HT photoanode. The Al2O3 passivation layer causes a 100 mV cathodic shift in the onset potential. Al co-doping improved the donor density, thus reducing the electron transit time. In addition, the passivation effect of the Al2O3 layer ameliorated the surface charge transfer kinetics. The Al2O3 passivation layer suppressed the surface charge transfer resistance, consequently expediting the hole migration from photoanode to electrolyte. We believe that the thickness-controlled Al-layer sputtering approach could be applicable for various metal oxide photoanodes to lower the onset potential. Full article
(This article belongs to the Special Issue Theme Issue in Honor of Prof. Dr. Jae Sung Lee)
Show Figures

Graphical abstract

Article
Highly Active Ag-Cu Nanocrystal Catalyst-Coated Brewer’s Spent Grain Biochar for the Mineralization of Methyl Orange and Methylene Blue Dye Mixture
Catalysts 2022, 12(11), 1475; https://doi.org/10.3390/catal12111475 - 18 Nov 2022
Cited by 1 | Viewed by 1273
Abstract
The aim of the present work is to valorise the brewing industry’s waste, i.e., brewer’s spent grain (BSG), into functional biocarbon for environmental catalysis applications. In this context, cost-effective and environmentally friendly biochar support coated with in-situ-generated Ag-Cu nanocrystals, was developed via the [...] Read more.
The aim of the present work is to valorise the brewing industry’s waste, i.e., brewer’s spent grain (BSG), into functional biocarbon for environmental catalysis applications. In this context, cost-effective and environmentally friendly biochar support coated with in-situ-generated Ag-Cu nanocrystals, was developed via the wet impregnation of BSG biomass powder with copper (II) nitrate trihydrate and silver nitrate aqueous solution prior to pyrolysis at moderate temperature (500 °C). Small-size homogenously distributed Ag-Cu nanocrystals (≤80 nm) on the surface of the biochar (Biochar@Ag-Cu) were observed by field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). Elemental compositions were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX). The crystalline nature of the nanoparticles was confirmed by X-ray powder diffraction (XRD). Information about the thermal stability of the materials and quality were obtained by thermogravimetric analysis (TGA) and Raman, respectively. The potentiality of the Biochar@Ag-Cu catalyst in the field of pollutant removal is demonstrated by taking methyl orange and methylene blue as model dyes. A kinetics study was performed and analyzed by UV–vis spectroscopy. Its highly active catalytic nature is proved by the complete mineralization of the methyl orange dye (100%) through oxidative degradation. The reusability of the catalyst has shown 96% removal efficiency after 3 cycles. The linear plot of −Ln (CA/C0) vs. time (R2 = 0.9892) reveals that the mineralization of the methyl orange dye follows pseudo-first-order kinetics (k = 0.603 × 10−2 min−1). A methyl orange + methylene blue dye mixture degradation study has revealed the faster kinetics of the present catalyst towards methylene blue degradation. The current study suggests that BSG Biochar@Ag-Cu can be a potential candidate in contribution towards SDG 6. Full article
(This article belongs to the Special Issue Nanoparticles in the Catalysis)
Show Figures

Graphical abstract

Review
A Critical Review of the Use of Bismuth Halide Perovskites for CO2 Photoreduction: Stability Challenges and Strategies Implemented
Catalysts 2022, 12(11), 1410; https://doi.org/10.3390/catal12111410 - 11 Nov 2022
Cited by 3 | Viewed by 1554
Abstract
Inspired by natural photosynthesis, the photocatalytic CO2 reduction reaction (CO2RR) stands as a viable strategy for the production of solar fuels to mitigate the high dependence on highly polluting fossil fuels, as well as to decrease the CO2 concentration in the [...] Read more.
Inspired by natural photosynthesis, the photocatalytic CO2 reduction reaction (CO2RR) stands as a viable strategy for the production of solar fuels to mitigate the high dependence on highly polluting fossil fuels, as well as to decrease the CO2 concentration in the atmosphere. The design of photocatalytic materials is crucial to ensure high efficiency of the CO2RR process. So far, perovskite materials have shown high efficiency and selectivity in CO2RR to generate different solar fuels. Particularly, bismuth halide perovskites have gained much attention due to their higher absorption coefficients, their more efficient charge transfer (compared to oxide perovskites), and their required thermodynamic potential for CO2RR. Moreover, these materials represent a promising alternative to the highly polluting lead halide perovskites. However, despite all the remarkable advantages of bismuth halide perovskites, their use has been limited, owing to instability concerns. As a consequence, recent reports have offered solutions to obtain structures highly stable against oxygen, water, and light, promoting the formation of solar fuels with promising efficiency for CO2RR. Thus, this review analyzes the current state of the art in this field, particularly studies about stability strategies from intrinsic and extrinsic standpoints. Lastly, we discuss the challenges and opportunities in designing stable bismuth halide perovskites, which open new opportunities for scaling up the CO2RR. Full article
Show Figures

Figure 1

Article
Co(OH)2 Nanoflowers Decorated α-NiMoO4 Nanowires as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting
Catalysts 2022, 12(11), 1417; https://doi.org/10.3390/catal12111417 - 11 Nov 2022
Cited by 4 | Viewed by 1006
Abstract
The development of bifunctional electrocatalysts with high catalytic activity and cyclic stability is an effective method for electrocatalytic water splitting. Herein, a promising hydroxide/oxide Co(OH)2/α-NiMoO4 NWs/CC heterostructure with nanoflowers decorating the nanowires was fabricated on a carbon cloth (CC) substrate [...] Read more.
The development of bifunctional electrocatalysts with high catalytic activity and cyclic stability is an effective method for electrocatalytic water splitting. Herein, a promising hydroxide/oxide Co(OH)2/α-NiMoO4 NWs/CC heterostructure with nanoflowers decorating the nanowires was fabricated on a carbon cloth (CC) substrate via hydrothermal and calcination methods. In contrast to one-dimensional nanomaterials, the interfaces of Co(OH)2 nanoflowers and α-NiMoO4 nanowires on CC provide more active sites for electrocatalytic reactions; therefore, they exhibit obviously enhanced electrocatalytic activities in overall water splitting. Specifically, the Co(OH)2/α-NiMoO4 NWs/CC electrodes exhibit an overpotential of 183.01 mV for hydrogen evolution reaction (HER) and of 170.26 mV for oxygen evolution reactions (OER) at the current density of 10 mA cm−2 in 1.0 M KOH. Moreover, the electrocatalytic oxygen evolution reaction (OER) activity of the Co(OH)2/α-NiMoO4 NWs/CC electrocatalyst was enhanced after long-term stability tests. Full article
Show Figures

Figure 1

Review
Recent Progress of Ga-Based Catalysts for Catalytic Conversion of Light Alkanes
Catalysts 2022, 12(11), 1371; https://doi.org/10.3390/catal12111371 - 05 Nov 2022
Viewed by 1315
Abstract
The efficient and clean conversion of light alkanes is a research hotspot in the petrochemical industry, and the development of effective and eco-friendly non-noble metal-based catalysts is a key factor in this field. Among them, gallium is a metal component with good catalytic [...] Read more.
The efficient and clean conversion of light alkanes is a research hotspot in the petrochemical industry, and the development of effective and eco-friendly non-noble metal-based catalysts is a key factor in this field. Among them, gallium is a metal component with good catalytic performance, which has been extensively used for light alkanes conversion. Herein, we critically summarize recent developments in the preparation of gallium-based catalysts and their applications in the catalytic conversion of light alkanes. First, we briefly describe the different routes of light alkane conversion. Following that, the remarkable preparation methods for gallium-based catalysts are discussed, with their state-of-the-art application in light alkane conversion. It should be noticed that the directional preparation of specific Ga species, strengthening metal-support interactions to anchor Ga species, and the application of new kinds of methods for Ga-based catalysts preparation are at the leading edge. Finally, the review provides some current limitations and future perspectives for the development of gallium-based catalysts. Recently, different kinds of Ga species were reported to be active in alkane conversion, and how to separate them with advanced in situ and ex situ characterizations is still a problem that needs to be solved. We believe that this review can provide base information for the preparation and application of Ga-based catalysts in the current stage. With these summarizations, this review can inspire new research directions of gallium-based catalysts in the catalysis conversion of light alkanes with ameliorated performances. Full article
(This article belongs to the Special Issue Photocatalysis for Energy Transformation Reactions)
Show Figures

Figure 1

Article
Spark Ablation for the Fabrication of PEM Water Electrolysis Catalyst-Coated Membranes
Catalysts 2022, 12(11), 1343; https://doi.org/10.3390/catal12111343 - 02 Nov 2022
Cited by 3 | Viewed by 2006
Abstract
Proton-exchange-membrane (PEM) electrolyzers represent a promising technology for sustainable hydrogen production, owing to their efficiency and load flexibility. However, the acidic nature of PEM demands the use of platinum-group metal-electrocatalysts. Apart from the associated high capital costs, the scarcity of Ir hinders the [...] Read more.
Proton-exchange-membrane (PEM) electrolyzers represent a promising technology for sustainable hydrogen production, owing to their efficiency and load flexibility. However, the acidic nature of PEM demands the use of platinum-group metal-electrocatalysts. Apart from the associated high capital costs, the scarcity of Ir hinders the large-scale implementation of the technology. Since low-cost replacements for Ir are not available at present, there is an urgent need to engineer catalyst-coated membranes (CCMs) with homogeneous catalyst layers at low Ir loadings. Efforts to realize this mainly rely on the development of advanced Ir nanostructures with maximized dispersion via wet chemistry routes. This study demonstrates the potential of an alternative vapor-based process, based on spark ablation and impaction, to fabricate efficient and durable Ir- and Pt-coated membranes. Our results indicate that spark-ablation CCMs can reduce the Ir demand by up to five times compared to commercial CCMs, without a compromise in activity. The durability of spark-ablation CCMs has been investigated by applying constant and dynamic load profiles for 150 h, indicating different degradation mechanisms for each case without major pitfalls. At constant load, an initial degradation in performance was observed during the first 30 h, but a stable degradation rate of 0.05 mV h−1 was sustained during the rest of the test. The present results, together with manufacturing aspects related to simplicity, costs and environmental footprint, suggest the high potential of spark ablation having practical applications in CCM manufacturing. Full article
Show Figures

Graphical abstract

Article
Large-Scale Synthesis of Iron Ore@Biomass Derived ESBC to Degrade Tetracycline Hydrochloride for Heterogeneous Persulfate Activation
Catalysts 2022, 12(11), 1345; https://doi.org/10.3390/catal12111345 - 02 Nov 2022
Cited by 1 | Viewed by 876
Abstract
Iron-based catalysts are widely used in water treatment and environmental remediation due to their abundant content in nature and their ability to activate persulfate at room temperature. Here, eggshell biochar-loaded natural iron slag (IO@ESBC) was successfully synthesized to remove tetracycline hydrochloride (TCH) by [...] Read more.
Iron-based catalysts are widely used in water treatment and environmental remediation due to their abundant content in nature and their ability to activate persulfate at room temperature. Here, eggshell biochar-loaded natural iron slag (IO@ESBC) was successfully synthesized to remove tetracycline hydrochloride (TCH) by activated persulfate. The morphology, structure and chemical composition of IO@ESBC were systematically characterized. The IO@ESBC/PS process showed good performance for TCH removal. The decomposition rate constant (k) for IO@ESBC was 0.011 min−1 and the degradation rate was 3690 mmol/g/h in this system. With the increase of PS concentration and IO@ESBC content, the removal rate of TCH both increased. The IO@ESBC/PS process can effectively remove TCH at pH 3–9. There are different effects on TCH removal for the reason that the addition of water matrix species (humic acid, Cl, HCO3, NO3 and HPO42−). The IO@ESBC/PS system for degrading TCH was mainly controlled by both the free radical pathway (SO4•−, •OH and O2•−) and non-free radical pathway (1O2). The loading of ESBC slows down the agglomeration between iron particles, and more active sites are exposed. The removal rate of TCH was still above 75% after five cycles of IO@ESBC. This interesting investigation has provided a green route for synthesis of composite driving from waste resources, expanding its further application for environmental remediations. Full article
(This article belongs to the Special Issue Advanced Catalytic Material for Water Treatment)
Show Figures

Figure 1

Article
Activity and Structure of Nano-Sized Cobalt-Containing Systems for the Conversion of Lignin and Fuel Oil to Synthesis Gas and Hydrocarbons in a Microwave-Assisted Plasma Catalytic Process
Catalysts 2022, 12(11), 1315; https://doi.org/10.3390/catal12111315 - 27 Oct 2022
Viewed by 779
Abstract
In this study, we present the results of lignin and fuel oil conversion to hydrogen, synthesis gas, and liquid hydrocarbons in the presence of nano-sized cobalt-containing systems in a microwave-assisted plasma catalytic process. The deposition of a small amount of cobalt on lignin [...] Read more.
In this study, we present the results of lignin and fuel oil conversion to hydrogen, synthesis gas, and liquid hydrocarbons in the presence of nano-sized cobalt-containing systems in a microwave-assisted plasma catalytic process. The deposition of a small amount of cobalt on lignin increases its microwave absorption capacity and provides plasma generation in the reaction zone. The role of Co-containing particles in the above catalytic reactions is probably to activate the carbon bonds of lignin, which substantially increases the microwave absorption capacity of the system as a whole. The subsequent use of the cobalt-containing residue of lignin conversion as a catalytic system and MWI-absorbing material results in active fuel oil pyrolysis in a plasma catalytic process to afford gaseous and liquid hydrocarbons. In the plasma catalytic pyrolysis, fuel oil conversion is probably accompanied by the conversion of the organic matter of the residue and agglomeration of cobalt oxide particles. Full article
(This article belongs to the Special Issue Nanoparticles in the Catalysis)
Show Figures

Graphical abstract

Article
Inactivation and Degradation of Influenza A Virus on the Surface of Photoactive Self-Cleaning Cotton Fabric Functionalized with Nanocrystalline TiO2
Catalysts 2022, 12(11), 1298; https://doi.org/10.3390/catal12111298 - 23 Oct 2022
Cited by 2 | Viewed by 1174
Abstract
Chemical modification of cotton-rich fabrics with TiO2 nanoparticles results in photoactive self-cleaning textiles, which can provide, under UV or solar radiation, complete oxidation of low-molecular compounds, degradation of supramolecular structures, and inactivation of microorganisms due to the photocatalytic effect. In this paper, [...] Read more.
Chemical modification of cotton-rich fabrics with TiO2 nanoparticles results in photoactive self-cleaning textiles, which can provide, under UV or solar radiation, complete oxidation of low-molecular compounds, degradation of supramolecular structures, and inactivation of microorganisms due to the photocatalytic effect. In this paper, we describe, based on the example of influenza A (H1N1) virus, a photoinduced antiviral effect of cotton fabric functionalized with nanocrystalline TiO2. Fast inactivation of influenza virus occurs on the irradiated surface of photoactive fabric due to adsorption and photocatalytic degradation. The TiO2 component in the prepared fabric increases the adsorption effect compared to initial cotton due to a high specific area of TiO2 nanocrystallites. Long-term irradiation leads to destruction of all virion structures to the point of RNA molecules. In contrast to pristine cotton, no virus RNA is detected using the polymerase chain reaction (PCR) technique after long-term irradiation of photoactive fabric. The results of this study underline the potential of photoactive self-cleaning fabrics for application in air purification systems and personal protective clothes to provide permanent protection of people against harmful chemical and biological pollutants. Full article
(This article belongs to the Special Issue Photocatalytic Nanomaterials for Abatement of Microorganisms)
Show Figures

Figure 1

Article
Synthesis of Novel Key Chromophoric Intermediates via C-C Coupling Reactions
Catalysts 2022, 12(10), 1292; https://doi.org/10.3390/catal12101292 - 21 Oct 2022
Cited by 2 | Viewed by 1657
Abstract
The fundamentals of Pd-catalyzed Csp2−Csp2 Miyaura borylation, Suzuki cross-coupling, and Stille cross-coupling reactions for a variety of borylated precursors based on phenothiazine (PTZ), phenoxazine (POZ), carbazole (Cz), and quinoxaline (QX) units have been explored. Three palladium-based catalysts were chosen for [...] Read more.
The fundamentals of Pd-catalyzed Csp2−Csp2 Miyaura borylation, Suzuki cross-coupling, and Stille cross-coupling reactions for a variety of borylated precursors based on phenothiazine (PTZ), phenoxazine (POZ), carbazole (Cz), and quinoxaline (QX) units have been explored. Three palladium-based catalysts were chosen for this study: Pd(PPh3)4, Pd(PPh3)2Cl2, and Pd(dppf)Cl2, applying different reaction conditions. Around 16 desired chromophores were successfully designed and synthesized using C-C cross-coupling reactions in moderate to excellent yields, including PTZ, POZ, and Cz units coupled with QX, indolinium iodide, thienyl, phenyl, or triphenylamine moieties. Additionally, PTZ, POZ, and Cz have been employed in synthesizing various pinacol boronate ester derivatives in good to moderate yields. Interestingly, Pd(dppf)Cl2 was found to be the best catalyst for borylation, and C-C cross-coupling reactions occurred in as little as 30 min, with an excellent yield exceeding 98%. Pd(PPh3)4 and Pd(PPh3)2Cl2 catalyzed the reaction to obtain the desired products in moderate to good yields after a long time (20–24 h). On the other hand, the Suzuki-Miyaura cross-coupling between N-(2-methyl)hexyl carbazole pinacol boronate ester derivative 10c and three halogenated quinoxaline derivatives—4-(3-(5-bromothiophen-2-yl)quinoxalin-2-yl)benzaldehyde (27), 4-(5-(3-(5-bromothiophen-2-yl)quinoxalin-2-yl)thiophen-2-yl)benzaldehyde (30), and 4-(3-chloroquinoxalin-2-yl)benzaldehyde (25) catalyzed by Pd(PPh3)4—afforded three carbazole-quinoxaline chromophores (28, 30, and 31, respectively) in 2–3 h, with good to excellent yields reaching 86%. The electron-deficient QX couplers proved to be coupled efficiently using the Stille coupling reaction, which involves the coupling between electron-rich orgaostannane and electron-deficient halide. The synthesized precursors and desired chromophores were characterized by FTIR, 1H-NMR, 13C-NMR, and HRMS. Full article
(This article belongs to the Special Issue The Role of Catalysts in Functionalization of C-H and C-C Bonds)
Show Figures

Graphical abstract

Article
Computational Insights into Ru, Pd and Pt fcc Nano-Catalysts from Density Functional Theory Calculations: The Influence of Long-Range Dispersion Corrections
Catalysts 2022, 12(10), 1287; https://doi.org/10.3390/catal12101287 - 21 Oct 2022
Cited by 1 | Viewed by 1224
Abstract
Ruthenium, palladium and platinum fall within the group of noble metals that are widely used in catalysis, especially for the electrocatalytic production of hydrogen. The dominant phase of the bulk Ru metal is hexagonal close-packed (hcp), which has been studied extensively. [...] Read more.
Ruthenium, palladium and platinum fall within the group of noble metals that are widely used in catalysis, especially for the electrocatalytic production of hydrogen. The dominant phase of the bulk Ru metal is hexagonal close-packed (hcp), which has been studied extensively. However, significantly less attention has been paid to the face-centred cubic (fcc) phases, which have been observed in nanoparticles. In this study, we have carried out density functional theory calculations with long-range dispersion corrections [DFT-D2, DFT-D3 and DFT-D3-(BJ)] to investigate the lattice parameters, surface energies and work functions of the (001), (011) and (111) surfaces of Ru, Pd and Pt in the fcc phase. When investigating the surface properties of the three metals, we observed that the DFT-D2 method generally underestimated the lattice parameters by up to 2.2% for Pt and 2.8% for Ru. The surface energies followed the observed trend (111) < (001) < (011) for both Ru and Pd with all three methods, which is comparable to experimental data. For Pt the same trend was observed with DFT-D2 and DFT-D3(BJ), but it deviated to Pt (111) < Pt (011) < Pt (001) for the DFT-D3 method. DFT-D2 overestimated the surface energies for all three Miller Indexes by 82%, 73%, and 60%, when compared to experimental values. The best correlation for the surface energies was obtained with the DFT-D3 and DFT-D3(BJ) methods, both of which have deviate by less than 15% deviation for all surfaces with respect to experiment. The work function followed the trend of Φ (111) < Φ (001) < Φ (011) for all three metals and calculated by all three methods. Five different types of Ru, Pd and Pt nanoparticles were considered, including icosahedral, decahedral, cuboctahedral, cubic and spherical particles of different sizes. The bulk, surface and nanoparticle calculations showed that the DFT-D2 method for Pt overestimated the exchange-correlation, leading to higher energy values that can be contributed erroneously to a more stable structure. The calculations showed that as soon as the surface-to-bulk ratio > 1, the energy per atom resembles bulk energy values. Full article
Show Figures

Figure 1

Article
Photo-Charging a Zinc-Air Battery Using a Nb2O5-CdS Photoelectrode
Catalysts 2022, 12(10), 1240; https://doi.org/10.3390/catal12101240 - 15 Oct 2022
Cited by 1 | Viewed by 947
Abstract
Integrating a photoelectrode into a zinc-air battery is a promising approach to reducing the overpotential required for charging a metal-air battery by using solar energy. In this work, a photo-fuel cell employing a Nb2O5/CdS photoanode and a Zn foil [...] Read more.
Integrating a photoelectrode into a zinc-air battery is a promising approach to reducing the overpotential required for charging a metal-air battery by using solar energy. In this work, a photo-fuel cell employing a Nb2O5/CdS photoanode and a Zn foil as a counter-electrode worked as a photoelectrochemical battery that saves up to 1.4 V for battery charging. This is the first time a Nb2O5-based photoelectrode is reported as a photoanode in a metal-air battery, and the achieved gain is one of the top results reported so far. Furthermore, the cell consumed an organic fuel, supporting the idea of using biomass wastes as a power source for sunlight-assisted charging of metal-air batteries. Thus, this device provides additional environmental benefits and contributes to technologies integrating solar energy conversion and storage. Full article
(This article belongs to the Special Issue Advanced Catalysts for Electrochemical Energy Storage and Conversion)
Show Figures

Graphical abstract

Article
Assessment of a Euro VI Step E Heavy-Duty Vehicle’s Aftertreatment System
Catalysts 2022, 12(10), 1230; https://doi.org/10.3390/catal12101230 - 14 Oct 2022
Viewed by 1247
Abstract
The latest generation of heavy-duty vehicles (Euro VI step E) have to respect low emission limits both in the laboratory and on the road. The most challenging pollutants for diesel vehicles are NOx and particles; nevertheless, NH3 and N2O [...] Read more.
The latest generation of heavy-duty vehicles (Euro VI step E) have to respect low emission limits both in the laboratory and on the road. The most challenging pollutants for diesel vehicles are NOx and particles; nevertheless, NH3 and N2O need attention. In this study, we measured regulated and unregulated pollutants of a Euro VI step E Diesel vehicle. Samples were taken downstream of (i) the engine, (ii) the Diesel oxidation catalyst (DOC) and catalyzed Diesel particulate filter (cDPF), and (iii) the selective catalytic reduction (SCR) unit for NOx with an ammonia slip catalyst (ASC). In addition to typical laboratory and real-world cycles, various challenging tests were conducted (urban driving with low payload, high-speed full-load driving, and idling) at 23 °C and 5 °C. The results showed high efficiencies of the DOC, DPF, and SCR under most testing conditions. Cold start cycles resulted in high NOx emissions, while high-temperature cycles resulted in high particle emissions. The main message of this study is that further improvements are necessary, also considering possible reductions in the emission limits in future EU regulations. Full article
(This article belongs to the Special Issue Catalytic Removal and Resource Utilization of NOx)
Show Figures

Figure 1

Review
Recent Strategies in Nickel-Catalyzed C–H Bond Functionalization for Nitrogen-Containing Heterocycles
Catalysts 2022, 12(10), 1163; https://doi.org/10.3390/catal12101163 - 02 Oct 2022
Cited by 1 | Viewed by 1433
Abstract
N-heterocycles are ubiquitous in natural products, pharmaceuticals, organic materials, and numerous functional molecules. Among the current synthetic approaches, transition metal-catalyzed C–H functionalization has gained considerable attention in recent years due to its advantages of simplicity, high atomic economy, and the ready availability [...] Read more.
N-heterocycles are ubiquitous in natural products, pharmaceuticals, organic materials, and numerous functional molecules. Among the current synthetic approaches, transition metal-catalyzed C–H functionalization has gained considerable attention in recent years due to its advantages of simplicity, high atomic economy, and the ready availability of starting materials. In the field of N-heterocycle synthesis via C–H functionalization, nickel has been recognized as one of the most important catalysts. In this review, we will introduce nickel-catalyzed intramolecular and intermolecular pathways for N-heterocycle synthesis from 2008 to 2021. Full article
(This article belongs to the Special Issue The Role of Catalysts in Functionalization of C-H and C-C Bonds)
Show Figures

Figure 1

Review
Membrane Bioreactors: A Promising Approach to Enhanced Enzymatic Hydrolysis of Cellulose
Catalysts 2022, 12(10), 1121; https://doi.org/10.3390/catal12101121 - 27 Sep 2022
Cited by 1 | Viewed by 1127
Abstract
The depletion of fossil fuel resources and the negative impact of their use on the climate have resulted in the need for alternative sources of clean, sustainable energy. One available alternative, bioethanol, is a potential substitute for, or additive to, petroleum-derived gasoline. In [...] Read more.
The depletion of fossil fuel resources and the negative impact of their use on the climate have resulted in the need for alternative sources of clean, sustainable energy. One available alternative, bioethanol, is a potential substitute for, or additive to, petroleum-derived gasoline. In the lignocellulose-to-bioethanol process, the cellulose hydrolysis step represents a major hurdle that hinders commercialization. To achieve economical production of bioethanol from lignocellulosic materials, the rate and yield of the enzymatic hydrolysis of cellulose, which is preferred over other chemically catalyzed processes, must be enhanced. To achieve this, product inhibition and enzyme loss, which are two major challenges, must be overcome. The implementation of membranes, which can permeate molecules selectively based on their size, offers a solution to this problem. Membrane bioreactors (MBRs) can enhance enzymatic hydrolysis yields and lower costs by retaining enzymes for repeated usage while permeating the products. This paper presents a critical discussion of the use of MBRs as a promising approach to the enhanced enzymatic hydrolysis of cellulosic materials. Various MBR configurations and factors that affect their performance are presented. Full article
(This article belongs to the Special Issue Enzymatic Catalysis in Bio-Based Chemicals Production)
Show Figures

Figure 1

Review
Catalytic Dehydration of Isopropanol to Propylene
Catalysts 2022, 12(10), 1097; https://doi.org/10.3390/catal12101097 - 22 Sep 2022
Cited by 1 | Viewed by 1820
Abstract
Catalytic dehydration of isopropanol to propylene is a common reaction in laboratories to characterize the acid–base properties of catalysts. When acetone is produced, it is the sign of the presence of basic active sites, while propylene is produced on the acid sites. About [...] Read more.
Catalytic dehydration of isopropanol to propylene is a common reaction in laboratories to characterize the acid–base properties of catalysts. When acetone is produced, it is the sign of the presence of basic active sites, while propylene is produced on the acid sites. About 2/3rd of the world production of isopropanol is made from propylene, and the other third is made from acetone hydrogenation. Since the surplus acetone available on the market is mainly a coproduct of phenol synthesis, variations in the demand for phenol affect the supply position of acetone and vice versa. High propylene price and low demand for acetone should revive the industrial interest in acetone conversion. In addition, there is an increasing interest in the production of acetone and isopropanol from CO/CO2 via expected more environmentally friendly biochemical conversion routes. To preserve phenol process economics, surplus acetone should be recycled to propylene via the acetone hydrogenation and isopropanol dehydration routes. Some critical impurities present in petrochemical propylene are avoided in the recycling process. In this review, the selection criteria for the isopropanol dehydration catalysts at commercial scale are derived from the patent literature and analyzed with academic literature. The choice of the process conditions, such as pressure, temperature and gas velocity, and the catalysts’ properties such as pore size and acid–base behavior, are critical factors influencing the purity of propylene. Dehydration of isopropanol under pressure facilitates the downstream separation of products and the isolation of propylene to yield a high-purity “polymer grade”. However, it requires to operate at a higher temperature, which is a challenge for the catalyst’s lifetime; whereas operation at near atmospheric pressure, and eventually in a diluted stream, is relevant for applications that would tolerate a lower propylene purity (chemical grade). Full article
Show Figures

Graphical abstract

Article
Self-Supported Polymeric Ruthenium Complexes as Olefin Metathesis Catalysts in Synthesis of Heterocyclic Compounds
Catalysts 2022, 12(10), 1087; https://doi.org/10.3390/catal12101087 - 21 Sep 2022
Cited by 2 | Viewed by 922
Abstract
New ruthenium olefin metathesis catalysts containing N-heterocyclic carbene (NHC) connected by a linker tether to a benzylidene ligand were studied. Such obtained self-chelated Hoveyda–Grubbs type complexes existed in the form of an organometallic polymer but could still catalyze olefin metathesis after being dissolved [...] Read more.
New ruthenium olefin metathesis catalysts containing N-heterocyclic carbene (NHC) connected by a linker tether to a benzylidene ligand were studied. Such obtained self-chelated Hoveyda–Grubbs type complexes existed in the form of an organometallic polymer but could still catalyze olefin metathesis after being dissolved in an organic solvent. Although these polymeric catalysts exhibited a slightly lower activity compared to structurally related nonpolymeric catalysts, they were successfully used in a number of ring-closing metathesis reactions leading to a variety of heterocyclic compounds, including biologically and pharmacologically related analogues of cathepsin K inhibitor and sildenafil (Viagra™). In the last case, a good solubility of a polymeric catalyst in toluene allowed the separation of the product from the catalyst via simple filtration. Full article
(This article belongs to the Special Issue Catalysis in Heterocyclic and Organometallic Synthesis II)
Show Figures

Figure 1

Article
Pd-Catalyzed Hirao P–C Coupling Reactions with Dihalogenobenzenes without the Usual P-Ligands under MW Conditions
Catalysts 2022, 12(10), 1080; https://doi.org/10.3390/catal12101080 - 20 Sep 2022
Cited by 1 | Viewed by 767
Abstract
A literature survey of the P–C coupling reactions of 1,4-and 1,2-bromo-iodobenzenes with diphenylphosphine oxide or diethyl phosphite under different conditions comprising Pd-, Ni-, or Cu-catalysis revealed that, depending on the experimental details, the yields of the corresponding >P(O)-bromobenzenes were rather diverse and occasionally [...] Read more.
A literature survey of the P–C coupling reactions of 1,4-and 1,2-bromo-iodobenzenes with diphenylphosphine oxide or diethyl phosphite under different conditions comprising Pd-, Ni-, or Cu-catalysis revealed that, depending on the experimental details, the yields of the corresponding >P(O)-bromobenzenes were rather diverse and occasionally contradicting. Therefore, the reactivity of a series of 1,4-, 1,3- and 1,2-dibromo- and bromo-iodobenzenes with the above mentioned P-reagents was evaluated under the “P-ligand-free” microwave (MW)-assisted conditions elaborated by us. Starting from dibromobenzenes and iodo-bromoarenes, practical and competent syntheses were developed for phosphonoyl- and phosphinoyl-bromoarenes, and, in a few instances, for arenes with two P-functions. The cheaper dibromobenzenes may be substituted for the bromo-iodo derivatives. In all, 12 products were prepared in yields of 45–82%. They were fully characterized. The method described does not require the use of traditional P-ligands. Full article
(This article belongs to the Special Issue Catalysis in Heterocyclic and Organometallic Synthesis II)
Show Figures

Graphical abstract

Article
Semi-Hydrogenation of Acetylene to Ethylene Catalyzed by Bimetallic CuNi/ZSM-12 Catalysts
Catalysts 2022, 12(9), 1072; https://doi.org/10.3390/catal12091072 - 19 Sep 2022
Cited by 1 | Viewed by 1167
Abstract
The purpose of this work is to develop a low-cost and high-performance catalyst for the selective catalytic hydrogenation of acetylene to ethylene. Non-precious metals Cu and Ni were selected as active ingredients for this study. Using ZSM-12 as a carrier, Cu-Ni bimetallic catalysts [...] Read more.
The purpose of this work is to develop a low-cost and high-performance catalyst for the selective catalytic hydrogenation of acetylene to ethylene. Non-precious metals Cu and Ni were selected as active ingredients for this study. Using ZSM-12 as a carrier, Cu-Ni bimetallic catalysts of CuNix/ZSM-12 (x = 5, 7, 9, 11) with different Ni/Cu ratios were prepared by incipient wetness impregnation method. The total Cu and Ni loading were 2 wt%. Under the optimal reaction conditions, the acetylene conversion was 100%, and the ethylene selectivity was 82.48%. The CuNi7/ZSM-12 prepared in this work exhibits good performance in the semi-hydrogenation of acetylene to ethylene with low cost and has potential for industrial application. Full article
Show Figures

Graphical abstract

Review
Recent Advances in Electrochemical Nitrogen Reduction Reaction to Ammonia from the Catalyst to the System
Catalysts 2022, 12(9), 1015; https://doi.org/10.3390/catal12091015 - 07 Sep 2022
Cited by 5 | Viewed by 2391
Abstract
As energy-related issues increase significantly, interest in ammonia (NH3) and its potential as a new eco-friendly fuel is increasing substantially. Accordingly, many studies have been conducted on electrochemical nitrogen reduction reaction (ENRR), which can produce ammonia in an environmentally friendly manner [...] Read more.
As energy-related issues increase significantly, interest in ammonia (NH3) and its potential as a new eco-friendly fuel is increasing substantially. Accordingly, many studies have been conducted on electrochemical nitrogen reduction reaction (ENRR), which can produce ammonia in an environmentally friendly manner using nitrogen molecule (N2) and water (H2O) in mild conditions. However, research is still at a standstill, showing low performances in faradaic efficiency (FE) and NH3 production rate due to the competitive reaction and insufficient three-phase boundary (TPB) of N2(g)-catalyst(s)-H2O(l). Therefore, this review comprehensively describes the main challenges related to the ENRR and examines the strategies of catalyst design and TPB engineering that affect performances. Finally, a direction to further develop ENRR through perspective is provided. Full article
Show Figures

Figure 1

Review
Achievements and Perspectives in Metal–Organic Framework-Based Materials for Photocatalytic Nitrogen Reduction
Catalysts 2022, 12(9), 1005; https://doi.org/10.3390/catal12091005 - 06 Sep 2022
Cited by 7 | Viewed by 1598
Abstract
Metal–organic frameworks (MOFs) are coordination polymers with high porosity that are constructed from molecular engineering. Constructing MOFs as photocatalysts for the reduction of nitrogen to ammonia is a newly emerging but fast-growing field, owing to MOFs’ large pore volumes, adjustable pore sizes, controllable [...] Read more.
Metal–organic frameworks (MOFs) are coordination polymers with high porosity that are constructed from molecular engineering. Constructing MOFs as photocatalysts for the reduction of nitrogen to ammonia is a newly emerging but fast-growing field, owing to MOFs’ large pore volumes, adjustable pore sizes, controllable structures, wide light harvesting ranges, and high densities of exposed catalytic sites. They are also growing in popularity because of the pristine MOFs that can easily be transformed into advanced composites and derivatives, with enhanced catalytic performance. In this review, we firstly summarized and compared the ammonia detection methods and the synthetic methods of MOF-based materials. Then we highlighted the recent achievements in state-of-the-art MOF-based materials for photocatalytic nitrogen fixation. Finally, the summary and perspectives of MOF-based materials for photocatalytic nitrogen fixation were presented. This review aims to provide up-to-date developments in MOF-based materials for nitrogen fixation that are beneficial to researchers who are interested or involved in this field. Full article
Show Figures

Graphical abstract

Article
Silver(I)-Catalyzed C4-H Amination of 1-Naphthylamine Derivatives with Azodicarboxylates at Room Temperature
Catalysts 2022, 12(9), 1006; https://doi.org/10.3390/catal12091006 - 06 Sep 2022
Viewed by 1164
Abstract
A highly facile and efficient protocol for silver(I)-catalyzed C4–H amination of 1-naphthylamine derivatives with readily available azodicarboxylates utilizing picolinamide as a bidentate directing group is reported, providing an alternative strategy for the synthesis of 4-aminated 1-naphthylamine derivatives. The reaction proceeded smoothly in acetone [...] Read more.
A highly facile and efficient protocol for silver(I)-catalyzed C4–H amination of 1-naphthylamine derivatives with readily available azodicarboxylates utilizing picolinamide as a bidentate directing group is reported, providing an alternative strategy for the synthesis of 4-aminated 1-naphthylamine derivatives. The reaction proceeded smoothly in acetone at room temperature undergoing a self-redox process under the base and external oxidant-free conditions, affording the desired products with good to excellent yields. Full article
(This article belongs to the Special Issue Advances in Transition Metal Catalysis)
Show Figures

Graphical abstract

Article
Well-Defined Ultrasmall V-NiP2 Nanoparticles Anchored g-C3N4 Nanosheets as Highly Efficient Visible-Light-Driven Photocatalysts for H2 Evolution
Catalysts 2022, 12(9), 998; https://doi.org/10.3390/catal12090998 - 05 Sep 2022
Viewed by 981
Abstract
Exploring low-cost and highly active, cost-effective cocatalysts is of great significance to improve the hydrogen evolution performance of semiconductor photocatalysts. Herein, a novel ultrasmall V-doped NiP2 nanoparticle, as an efficient cocatalyst, is reported to largely upgrade the photocatalytic hydrogen evolution reaction (HER) [...] Read more.
Exploring low-cost and highly active, cost-effective cocatalysts is of great significance to improve the hydrogen evolution performance of semiconductor photocatalysts. Herein, a novel ultrasmall V-doped NiP2 nanoparticle, as an efficient cocatalyst, is reported to largely upgrade the photocatalytic hydrogen evolution reaction (HER) of g-C3N4 nanosheets under visible-light irradiation. Experimental results demonstrate that V-NiP2 cocatalyst can enhance the visible-light absorption ability, facilitate the separation of photo-generated electron-hole pairs and boost the transfer ability of electrons of g-C3N4. Moreover, the V-NiP2/g-C3N4 hybrid exhibits prominent photocatalytic HER activity 17 times higher than the pristine g-C3N4 counterpart, even outperforming the 1 wt.% platinum-loaded g-C3N4. This work displays that noble-metal-free V-NiP2 cocatalyst can serve as a promising and efficient alternative to Pt for high-efficiency photocatalytic H2 evolution. Full article
Show Figures

Graphical abstract

Article
Understanding 2D-IR Spectra of Hydrogenases: A Descriptive and Predictive Computational Study
Catalysts 2022, 12(9), 988; https://doi.org/10.3390/catal12090988 - 01 Sep 2022
Viewed by 1251
Abstract
[NiFe] hydrogenases are metalloenzymes that catalyze the reversible cleavage of dihydrogen (H2), a clean future fuel. Understanding the mechanism of these biocatalysts requires spectroscopic techniques that yield insights into the structure and dynamics of the [NiFe] active site. Due to [...] Read more.
[NiFe] hydrogenases are metalloenzymes that catalyze the reversible cleavage of dihydrogen (H2), a clean future fuel. Understanding the mechanism of these biocatalysts requires spectroscopic techniques that yield insights into the structure and dynamics of the [NiFe] active site. Due to the presence of CO and CN ligands at this cofactor, infrared (IR) spectroscopy represents an ideal technique for studying these aspects, but molecular information from linear IR absorption experiments is limited. More detailed insights can be obtained from ultrafast nonlinear IR techniques like IRpump-IRprobe and two-dimensional (2D-)IR spectroscopy. However, fully exploiting these advanced techniques requires an in-depth understanding of experimental observables and the encoded molecular information. To address this challenge, we present a descriptive and predictive computational approach for the simulation and analysis of static 2D-IR spectra of [NiFe] hydrogenases and similar organometallic systems. Accurate reproduction of experimental spectra from a first-coordination-sphere model suggests a decisive role of the [NiFe] core in shaping the enzymatic potential energy surface. We also reveal spectrally encoded molecular information that is not accessible by experiments, thereby helping to understand the catalytic role of the diatomic ligands, structural differences between [NiFe] intermediates, and possible energy transfer mechanisms. Our studies demonstrate the feasibility and benefits of computational spectroscopy in the 2D-IR investigation of hydrogenases, thereby further strengthening the potential of this nonlinear IR technique as a powerful research tool for the investigation of complex bioinorganic molecules. Full article
(This article belongs to the Special Issue Perspectives in Bioinorganic Catalysis)
Show Figures

Figure 1

Review
The Emergence of the Ubiquity of Cerium in Heterogeneous Oxidation Catalysis Science and Technology
Catalysts 2022, 12(9), 959; https://doi.org/10.3390/catal12090959 - 29 Aug 2022
Cited by 2 | Viewed by 1449
Abstract
Research into the incorporation of cerium into a diverse range of catalyst systems for a wide spectrum of process chemistries has expanded rapidly. This has been evidenced since about 1980 in the increasing number of both scientific research journals and patent publications that [...] Read more.
Research into the incorporation of cerium into a diverse range of catalyst systems for a wide spectrum of process chemistries has expanded rapidly. This has been evidenced since about 1980 in the increasing number of both scientific research journals and patent publications that address the application of cerium as a component of a multi-metal oxide system and as a support material for metal catalysts. This review chronicles both the applied and fundamental research into cerium-containing oxide catalysts where cerium’s redox activity confers enhanced and new catalytic functionality. Application areas of cerium-containing catalysts include selective oxidation, combustion, NOx remediation, and the production of sustainable chemicals and materials via bio-based feedstocks, among others. The newfound interest in cerium-containing catalysts stems from the benefits achieved by cerium’s inclusion, which include selectivity, activity, and stability. These benefits arise because of cerium’s unique combination of chemical and thermal stability, its redox active properties, its ability to stabilize defect structures in multicomponent oxides, and its propensity to stabilize catalytically optimal oxidation states of other multivalent elements. This review surveys the origins and some of the current directions in the research and application of cerium oxide-based catalysts. Full article
Show Figures

Graphical abstract

Article
Photocatalytic Oxidative Desulfurization of Thiophene by Exploiting a Mesoporous V2O5-ZnO Nanocomposite as an Effective Photocatalyst
Catalysts 2022, 12(9), 933; https://doi.org/10.3390/catal12090933 - 24 Aug 2022
Cited by 1 | Viewed by 1099
Abstract
Due to increasingly stringent environmental regulations imposed by governments throughout the world, the manufacture of low-sulfur fuels has received considerable assiduity in the petroleum industry. In this investigation, mesoporous V2O5-decorated two-dimensional ZnO nanocrystals were manufactured using a simple surfactant-assisted [...] Read more.
Due to increasingly stringent environmental regulations imposed by governments throughout the world, the manufacture of low-sulfur fuels has received considerable assiduity in the petroleum industry. In this investigation, mesoporous V2O5-decorated two-dimensional ZnO nanocrystals were manufactured using a simple surfactant-assisted sol–gel method for thiophene photocatalytic oxidative desulfurization (TPOD) at ambient temperature applying visible illumination. When correlated to pure ZnO NCs, V2O5-added ZnO nanocomposites dramatically improved the photocatalytic desulfurization of thiophene, and the reaction was shown to follow the pseudo-first-order model. The photocatalytic effectiveness of the 3.0 wt.% V2O5-ZnO photocatalyst was the greatest among all the other samples, with a rate constant of 0.0166 min−1, which was 30.7 significantly greater than that of pure ZnO NCs (0.00054 min−1). Compared with ZnO NCs, and owing to their synergetic effects, substantial creation of hydroxyl radical levels, lesser light scattering action, quick transport of thiophene species to the active recenters, and efficient visible-light gathering, V2O5-ZnO nanocomposites were found to have enhanced photocatalytic efficiency. V2O5-ZnO nanocomposites demonstrated outstanding stability during TPOD. Using mesoporous V2O5-ZnO nanocomposites, the mechanism of the charge separation process was postulated. Full article
(This article belongs to the Special Issue The Role of Catalysts in Functionalization of C-H and C-C Bonds)
Show Figures

Figure 1