Special Issue "Editorial Board Members’ Collection Series: The Functions of Extracellular Vesicles in Cancer"

A special issue of Cancers (ISSN 2072-6694). This special issue belongs to the section "Methods and Technologies Development".

Deadline for manuscript submissions: 15 April 2024 | Viewed by 3477

Special Issue Editors

1. School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland
2. Radiation and Environmental Science Centre, Focas Research Institute, Technological University Dublin, Camden Row, Dublin 8, Ireland
Interests: low dose radiation; non-targeted effects; out of field effects; individual radiosensitivity; biophotonics for cancer diagnosis
Special Issues, Collections and Topics in MDPI journals
Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25121 Brescia, Italy
Interests: B-cell malignancies; multiple myeloma; Waldenstrom’s macroglobulinemia; bone marrow microenvironment; tumor cell-bone marrow niche interactions; metastasis; neo-angiogenesis; epigenetic; clonal evolution; novel drugs; exosomes; microRNAs; signal transduction
1. Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
2. August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
3. Thoracic Oncology Unit, Hospital Clinic, 08036 Barcelona, Spain
Interests: noncoding RNAs; microRNAs; piwiRNAs; lncRNAs; circularRNAs; extracellular vesicles; exosomes; biomarkers; lung cancer; colorectal cancer; lymphoma; leukemia
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Extracellular vesicles (EVs), such as exosomes and microvesicles, are secreted by most eukaryotic cells and participate in intercellular communication. EVs are considered to be involved in the development and progression of tumors from different tissue sources in numerous ways, including remodeling of the tumor microenvironment, promoting angiogenesis, and regulating the immune escape of tumor cells. Moreover, they have an active role in the metastasis process since they participate in the creation of the pre-metastatic niche and even enhance the survival and extravasation of circulating tumor cells. In addition, EV‐based drug delivery strategies in preclinical and clinical trials have been shown to dramatically decrease cancer development.

Potential topics include, but are not limited to:

  • Extracellular vesicles in the detection of cancer;
  • Nucleic acids in cancer extracellular vesicles;
  • Proteins in cancer extracellular vesicles;
  • Extracellular vesicles as key components of the tumor microenvironment;
  • Extracellular vesicles and tumor immunity;
  • Extracellular vesicles in tumor angiogenesis;
  • Extracellular vesicles and cancer-associated fibroblasts;
  • Regulation of tumor growth and metastasis by extracellular vesicles;
  • Extracellular vesicles and tumorigenesis;
  • Extracellular vesicles and tumor ECM remodeling;
  • Extracellular vesicles and metastasis;
  • Tumor extracellular vesicles and resistance to therapy;
  • Extracellular vesicles and radiotherapy;
  • Extracellular vesicles and treatment monitoring;
  • Extracellular vesicles as nanocarriers of anticancer therapies;
  • Identification of EV biomarkers related to patient outcome.

We look forward to receiving your contributions.

Prof. Dr. Fiona Lyng
Dr. Aldo M. Roccaro
Prof. Dr. Alfons Navarro
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cancers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • extracellular vescicles
  • cancer progression
  • drug delivery
  • cancer biomarkers
  • exosomes
  • liquid Bioipsy
  • therapy

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

27 pages, 1756 KiB  
Review
CAR-T-Derived Extracellular Vesicles: A Promising Development of CAR-T Anti-Tumor Therapy
Cancers 2023, 15(4), 1052; https://doi.org/10.3390/cancers15041052 - 07 Feb 2023
Cited by 2 | Viewed by 3061
Abstract
Extracellular vesicles (EVs) are a heterogenous population of plasma membrane-surrounded particles that are released in the extracellular milieu by almost all types of living cells. EVs are key players in intercellular crosstalk, both locally and systemically, given that they deliver their cargoes (consisting [...] Read more.
Extracellular vesicles (EVs) are a heterogenous population of plasma membrane-surrounded particles that are released in the extracellular milieu by almost all types of living cells. EVs are key players in intercellular crosstalk, both locally and systemically, given that they deliver their cargoes (consisting of proteins, lipids, mRNAs, miRNAs, and DNA fragments) to target cells, crossing biological barriers. Those mechanisms further trigger a wide range of biological responses. Interestingly, EV phenotypes and cargoes and, therefore, their functions, stem from their specific parental cells. For these reasons, EVs have been proposed as promising candidates for EV-based, cell-free therapies. One of the new frontiers of cell-based immunotherapy for the fight against refractory neoplastic diseases is represented by genetically engineered chimeric antigen receptor T (CAR-T) lymphocytes, which in recent years have demonstrated their effectiveness by reaching commercialization and clinical application for some neoplastic diseases. CAR-T-derived EVs represent a recent promising development of CAR-T immunotherapy approaches. This crosscutting innovative strategy is designed to exploit the advantages of genetically engineered cell-based immunotherapy together with those of cell-free EVs, which in principle might be safer and more efficient in crossing biological and tumor-associated barriers. In this review, we underlined the potential of CAR-T-derived EVs as therapeutic agents in tumors. Full article
Show Figures

Graphical abstract

Back to TopTop