Advances in Cell Therapy of Neurodegenerative Diseases

A special issue of Brain Sciences (ISSN 2076-3425). This special issue belongs to the section "Neurodegenerative Diseases".

Deadline for manuscript submissions: 15 July 2024 | Viewed by 4462

Special Issue Editor


E-Mail Website
Guest Editor
Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47754, Iran
Interests: neurodegenerative diseases; molecular and cellular neuroscience; neuropharmacology

Special Issue Information

Dear Colleagues,

Neurodegenerative diseases are caused by progressive loss of structure and/or function of neurons. The lack of efficient therapies for neurodegenerative disorders leads to a significant burden on society and a high economic impact. Over the past 20 years, stem cell therapy has emerged as a promising strategy for treating neurodegenerative diseases.

This Special Issue of Brain Sciences aims to present a collection of studies detailing the most recent progress of stem cell treatments in neurodegenerative diseases. Authors are invited to submit research articles including experimental and clinical studies and reviews that address a broad range of topics related to cell therapy in neurodegenerative disorders.

Dr. Maryam Ghasemi-Kasman
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Brain Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Alzheimer’s disease
  • Parkinson’s disease
  • amyotrophic lateral sclerosis
  • Huntington’s disease
  • multiple sclerosis
  • embryonic stem cells
  • induced pluripotent stem cells
  • mesenchymal stem cells
  • direct reprogramming

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 7257 KiB  
Article
Molecular Mechanisms of the Anti-Inflammatory Effects of Epigallocatechin 3-Gallate (EGCG) in LPS-Activated BV-2 Microglia Cells
by Ashley Payne, Equar Taka, Getinet M. Adinew and Karam F. A. Soliman
Brain Sci. 2023, 13(4), 632; https://doi.org/10.3390/brainsci13040632 - 07 Apr 2023
Cited by 5 | Viewed by 2281
Abstract
Chronic neuroinflammation is associated with many neurodegenerative diseases, such as Alzheimer’s. Microglia are the brain’s primary immune cells, and when activated, they release various proinflammatory cytokines. Several natural compounds with anti-inflammatory and antioxidant properties, such as epigallocatechin 3-gallate (EGCG), may provide a promising [...] Read more.
Chronic neuroinflammation is associated with many neurodegenerative diseases, such as Alzheimer’s. Microglia are the brain’s primary immune cells, and when activated, they release various proinflammatory cytokines. Several natural compounds with anti-inflammatory and antioxidant properties, such as epigallocatechin 3-gallate (EGCG), may provide a promising strategy for inflammation-related neurodegenerative diseases involving activated microglia cells. The objective of the current study was to examine the molecular targets underlying the anti-inflammatory effects of EGCG in activated microglia cells. BV-2 microglia cells were grown, stimulated, and treated with EGCG. Cytotoxicity and nitric oxide (NO) production were evaluated. Immunoassay, PCR array, and WES™ Technology were utilized to evaluate inflammatory, neuroprotective modulators as well as signaling pathways involved in the mechanistic action of neuroinflammation. Our findings showed that EGCG significantly inhibited proinflammatory mediator NO production in LPS-stimulated BV-2 microglia cells. In addition, ELISA analysis revealed that EGCG significantly decreases the release of proinflammatory cytokine IL-6 while it increases the release of TNF-α. PCR array analysis showed that EGCG downregulated MIF, CCL-2, and CSF2. It also upregulated IL-3, IL-11, and TNFS10. Furthermore, the analysis of inflammatory signaling pathways showed that EGCG significantly downregulated mRNA expression of mTOR, NF-κB2, STAT1, Akt3, CCL5, and SMAD3 while significantly upregulating the expression of mRNA of Ins2, Pld2, A20/TNFAIP3, and GAB1. Additionally, EGCG reduced the relative protein expression of NF-κB2, mTOR, and Akt3. These findings suggest that EGCG may be used for its anti-inflammatory effects to prevent neurodegenerative diseases. Full article
(This article belongs to the Special Issue Advances in Cell Therapy of Neurodegenerative Diseases)
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 1272 KiB  
Review
The Interplay between Mitochondrial Dysfunction and Ferroptosis during Ischemia-Associated Central Nervous System Diseases
by He-Yan Tian, Bo-Yang Huang, Hui-Fang Nie, Xiang-Yu Chen, Yue Zhou, Tong Yang, Shao-Wu Cheng, Zhi-Gang Mei and Jin-Wen Ge
Brain Sci. 2023, 13(10), 1367; https://doi.org/10.3390/brainsci13101367 - 25 Sep 2023
Cited by 1 | Viewed by 1655
Abstract
Cerebral ischemia, a leading cause of disability and mortality worldwide, triggers a cascade of molecular and cellular pathologies linked to several central nervous system (CNS) disorders. These disorders primarily encompass ischemic stroke, Alzheimer’s disease (AD), Parkinson’s disease (PD), epilepsy, and other CNS conditions. [...] Read more.
Cerebral ischemia, a leading cause of disability and mortality worldwide, triggers a cascade of molecular and cellular pathologies linked to several central nervous system (CNS) disorders. These disorders primarily encompass ischemic stroke, Alzheimer’s disease (AD), Parkinson’s disease (PD), epilepsy, and other CNS conditions. Despite substantial progress in understanding and treating the underlying pathological processes in various neurological diseases, there is still a notable absence of effective therapeutic approaches aimed specifically at mitigating the damage caused by these illnesses. Remarkably, ischemia causes severe damage to cells in ischemia-associated CNS diseases. Cerebral ischemia initiates oxygen and glucose deprivation, which subsequently promotes mitochondrial dysfunction, including mitochondrial permeability transition pore (MPTP) opening, mitophagy dysfunction, and excessive mitochondrial fission, triggering various forms of cell death such as autophagy, apoptosis, as well as ferroptosis. Ferroptosis, a novel type of regulated cell death (RCD), is characterized by iron-dependent accumulation of lethal reactive oxygen species (ROS) and lipid peroxidation. Mitochondrial dysfunction and ferroptosis both play critical roles in the pathogenic progression of ischemia-associated CNS diseases. In recent years, growing evidence has indicated that mitochondrial dysfunction interplays with ferroptosis to aggravate cerebral ischemia injury. However, the potential connections between mitochondrial dysfunction and ferroptosis in cerebral ischemia have not yet been clarified. Thus, we analyzed the underlying mechanism between mitochondrial dysfunction and ferroptosis in ischemia-associated CNS diseases. We also discovered that GSH depletion and GPX4 inactivation cause lipoxygenase activation and calcium influx following cerebral ischemia injury, resulting in MPTP opening and mitochondrial dysfunction. Additionally, dysfunction in mitochondrial electron transport and an imbalanced fusion-to-fission ratio can lead to the accumulation of ROS and iron overload, which further contribute to the occurrence of ferroptosis. This creates a vicious cycle that continuously worsens cerebral ischemia injury. In this study, our focus is on exploring the interplay between mitochondrial dysfunction and ferroptosis, which may offer new insights into potential therapeutic approaches for the treatment of ischemia-associated CNS diseases. Full article
(This article belongs to the Special Issue Advances in Cell Therapy of Neurodegenerative Diseases)
Show Figures

Graphical abstract

Back to TopTop