Ocular Damage and Wound Healing: From Mechanisms Exploration to Treatment

A special issue of Biomolecules (ISSN 2218-273X). This special issue belongs to the section "Molecular Medicine".

Deadline for manuscript submissions: closed (31 March 2024) | Viewed by 9027

Special Issue Editor


E-Mail Website
Guest Editor
1. Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
2. James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
Interests: cornea wound healing; cornea physiology; fibrosis; intercellular junctions

Special Issue Information

Dear Colleagues,

I am pleased to invite you to make a contribution to this Special Issue of Biomolecules titled "Ocular Damage and Wound Healing: From Mechanisms Exploration to Treatment".

Ocular damage can occur from trauma (both external and iatrogenic), exposure to chemicals or foreign bodies, excessive UV light exposure, as well as a host of aging and disease processes. Significant progress has been made in studying the causes and results of many types of ocular damage, while vision-preserving treatments of damaged ocular structures are still limited. The different tissues within the eye have both similarities and differences in how they can be damaged, how they react to that damage, and how that damage may be treated. This Issue will cover the breadth of the topic of ocular wound healing in the different segments of the eye.

For this Special Issue, we welcome original research manuscripts as well as comprehensive reviews covering the latest developments in the understanding of ocular damage, wound healing, and treatment, from both basic science as well as bench-to-bedside perspectives. Purely clinical studies will not be included in this Issue.

We look forward to receiving your contributions.

Prof. Dr. Mitchell A. Watsky
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cornea wound healing
  • lens wound healing
  • retina wound healing
  • ocular tissue damage
  • disease-related ocular tissue damage
  • ocular damage treatments
  • ocular therapeutics

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 1967 KiB  
Article
NBL1 Reduces Corneal Fibrosis and Scar Formation after Wounding
by Chi-Hao Tsai, Emily Liu, Andrew Phan, Krystal Lynn Lu and Hua Mei
Biomolecules 2023, 13(11), 1570; https://doi.org/10.3390/biom13111570 - 24 Oct 2023
Viewed by 1004
Abstract
Corneal scarring is a leading cause of blindness. Currently, there is no treatment to prevent and/or reduce corneal scar formation under pathological conditions. Our previous data showed that the NBL1 protein, also termed the DAN Family BMP (Bone morphogenetic protein) Antagonist, was highly [...] Read more.
Corneal scarring is a leading cause of blindness. Currently, there is no treatment to prevent and/or reduce corneal scar formation under pathological conditions. Our previous data showed that the NBL1 protein, also termed the DAN Family BMP (Bone morphogenetic protein) Antagonist, was highly expressed in corneal stromal cells upon wounding. Here, we examined the function of NBL1 in corneal wound healing. Mouse corneas were mechanically wounded, followed by a 2-week treatment using NBL1. Wounded corneas treated with vehicle or an Fc tag served as controls. Compared with the controls, NBL1 treatment facilitated wound re-epithelialization, partially restored the stromal thickness, and significantly reduced corneal scar formation. NBL1 treatment did not decrease immune cell infiltration, indicating that the anti-scarring effect was not dependent on immune suppression. We further examined the anti-fibrotic effect of NBL1 on human corneas. Pairs of human corneas were induced to form myofibroblasts (a key player in fibrosis and scarring) upon wounding and incubation in a medium containing TGF-β1. The OS corneas were treated with Fc as a control, and the OD corneas were treated with NBL1. Compared with the control, human corneas treated with NBL1 had significantly fewer myofibroblasts, which was consistent with these mouse data. A further study revealed that NBL1 treatment inhibited BMP canonical (phospho-Smad1/5) and no-canonical (phospho-p38) pathways in human corneas. Data show that NBL1 reduced corneal fibrosis and scar formation in mice and cultured human corneas. The underlying molecular mechanism is not certain because both anti-fibrotic Smad1/5 and pro-fibrotic p38 pathways were inhibited upon NBL1 treatment. Whether the p38 pathway dominates the Smad1/5 pathway during corneal fibrosis, leading to the anti-fibrotic effect of NBL1, needs further investigation. Full article
Show Figures

Figure 1

15 pages, 36569 KiB  
Article
Effects of Topical 1,25 and 24,25 Vitamin D on Diabetic, Vitamin D Deficient and Vitamin D Receptor Knockout Mouse Corneal Wound Healing
by Xiaowen Lu, Zhong Chen, Jerry Lu and Mitchell Watsky
Biomolecules 2023, 13(7), 1065; https://doi.org/10.3390/biom13071065 - 01 Jul 2023
Cited by 3 | Viewed by 1114
Abstract
Delayed or prolonged corneal wound healing and non-healing corneas put patients at risk for ocular surface infections and subsequent stromal opacification, resulting in discomfort or visual loss. It is important to enhance corneal wound healing efficiency and quality. Vitamin D (Vit D) is [...] Read more.
Delayed or prolonged corneal wound healing and non-healing corneas put patients at risk for ocular surface infections and subsequent stromal opacification, resulting in discomfort or visual loss. It is important to enhance corneal wound healing efficiency and quality. Vitamin D (Vit D) is both a hormone and a vitamin, and its insufficiency has been linked to immune disorders and diabetes. For this study, wound healing and recruitment of CD45+ cells into the wound area of normoglycemic and diabetic mice were examined following corneal epithelial debridement and treatment with 1,25-dihyroxyvitamin D (1,25 Vit D) or 24,25-dihydroxyvitamin D (24,25 Vit D). Treatment with topical 1,25-dihyroxyvitamin D (1,25 Vit D) resulted in significantly increased corneal wound healing rates of normoglycemic, diabetic and diabetic Vit D deficient mice. Furthermore, 24,25-dihydroxyvitamin D (24,25 Vit D) significantly increased corneal wound healing of diabetic Vit D deficient and Vit D receptor knockout (VDR KO) mice. In addition, CD45+ cell numbers were reduced in diabetic and VDR KO mouse corneas compared to normoglycemic mice, and 24,25 Vit D increased the recruitment of CD45+ cells to diabetic mouse corneas after epithelial debridement. CD45+ cells were found to infiltrate into the corneal basal epithelial layer after corneal epithelial debridement. Our data indicate that topical Vit D promotes corneal wound healing and further supports previous work that the Vit D corneal wound healing effect is not totally VDR-dependent. Full article
Show Figures

Figure 1

13 pages, 2857 KiB  
Article
Lipoxin A4 (LXA4) Reduces Alkali-Induced Corneal Inflammation and Neovascularization and Upregulates a Repair Transcriptome
by Jiucheng He, Thang L. Pham, Azucena H. Kakazu, Abhilash Ponnath, Khanh V. Do and Haydee E. P. Bazan
Biomolecules 2023, 13(5), 831; https://doi.org/10.3390/biom13050831 - 13 May 2023
Cited by 2 | Viewed by 1749
Abstract
Purpose: To investigate the anti-inflammatory and anti-angiogenic effects of the bioactive lipid mediator LXA4 on a rat model of severe corneal alkali injury. Methods: To induce a corneal alkali injury in the right eyes of anesthetized Sprague Dawley rats. They were injured with [...] Read more.
Purpose: To investigate the anti-inflammatory and anti-angiogenic effects of the bioactive lipid mediator LXA4 on a rat model of severe corneal alkali injury. Methods: To induce a corneal alkali injury in the right eyes of anesthetized Sprague Dawley rats. They were injured with a Φ 4 mm filter paper disc soaked in 1 N NaOH placed on the center of the cornea. After injury, the rats were treated topically with LXA4 (65 ng/20 μL) or vehicle three times a day for 14 days. Corneal opacity, neovascularization (NV), and hyphema were recorded and evaluated in a blind manner. Pro-inflammatory cytokine expression and genes involved in cornel repair were assayed by RNA sequencing and capillary Western blot. Cornea cell infiltration and monocytes isolated from the blood were analyzed by immunofluorescence and by flow cytometry. Results: Topical treatment with LXA4 for two weeks significantly reduced corneal opacity, NV, and hyphema compared to the vehicle treatment. RNA-seq and Western blot results showed that LXA4 decreased the gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1β and IL-6 and pro-angiogenic mediators matrix metalloproteinase (MMP)-9 and vascular endothelial growth factor (VEGFA). It also induces genes involved in keratinization and ErbB signaling and downregulates immune pathways to stimulate wound healing. Flow cytometry and immunohistochemistry showed significantly less infiltration of neutrophils in the corneas treated with LXA4 compared to vehicle treatment. It also revealed that LXA4 treatment increases the proportion of type 2 macrophages (M2) compared to M1 in blood-isolated monocytes. Conclusions: LXA4 decreases corneal inflammation and NV induced by a strong alkali burn. Its mechanism of action includes inhibition of inflammatory leukocyte infiltration, reduction in cytokine release, suppression of angiogenic factors, and promotion of corneal repair gene expression and macrophage polarization in blood from alkali burn corneas. LXA4 has potential as a therapeutic candidate for severe corneal chemical injuries. Full article
Show Figures

Figure 1

12 pages, 1047 KiB  
Article
Collagen Crosslinking for Keratoconus: Cellular Signaling Mechanisms
by Dimitrios Karamichos, Sarah E. Nicholas, Asher Khan and Kamran M. Riaz
Biomolecules 2023, 13(4), 696; https://doi.org/10.3390/biom13040696 - 20 Apr 2023
Viewed by 1368
Abstract
Collagen crosslinking (CXL) is a widely used treatment to halt the progression of keratoconus (KC). Unfortunately, a significant number of patients with progressive KC will not qualify for CXL, including those with corneas thinner than 400 µm. The present study aimed to investigate [...] Read more.
Collagen crosslinking (CXL) is a widely used treatment to halt the progression of keratoconus (KC). Unfortunately, a significant number of patients with progressive KC will not qualify for CXL, including those with corneas thinner than 400 µm. The present study aimed to investigate the molecular effects of CXL using in vitro models, mirroring the normal, as well as thinner corneal stroma seen in KCs. Primary human corneal stromal cells were isolated from healthy (HCFs) and keratoconus (HKCs) donors. Cells were cultured and stimulated with stable Vitamin C resulting in 3D self-assembled extracellular matrix (ECM), cell-embedded, constructs. CXL was performed on (a) thin ECM with CXL performed at week 2 and (b) normal ECM with CXL performed at week 4. Constructs without CXL served as controls. All constructs were processed for protein analysis. The results showed modulation of Wnt signaling, following CXL treatment, as measured by the protein levels of Wnt7b and Wnt10a, correlated to the expression of α-smooth muscle actin (SMA). Further, the expression of a recently identified KC biomarker candidate, prolactin-induced protein (PIP), was positively impacted by CXL in HKCs. CXL-driven upregulation of PGC-1 and the downregulation of SRC and Cyclin D1 in HKCs were also noted. Although the cellular/molecular impacts of CXL are largely understudied, our studies provide an approximation to the complex mechanisms of KC and CXL. Further studies are warranted to determine factors influencing CXL outcomes. Full article
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 3192 KiB  
Review
Treatment Strategies for Anti-VEGF Resistance in Neovascular Age-Related Macular Degeneration by Targeting Arteriolar Choroidal Neovascularization
by Yingbin Fu, Zhao Zhang, Keith A. Webster and Yannis M. Paulus
Biomolecules 2024, 14(3), 252; https://doi.org/10.3390/biom14030252 - 21 Feb 2024
Viewed by 1006
Abstract
Despite extensive use of intravitreal anti-vascular endothelial growth factor (anti-VEGF) biologics for over a decade, neovascular age-related macular degeneration (nAMD) or choroidal neovascularization (CNV) continues to be a major cause of irreversible vision loss in developed countries. Many nAMD patients demonstrate persistent disease [...] Read more.
Despite extensive use of intravitreal anti-vascular endothelial growth factor (anti-VEGF) biologics for over a decade, neovascular age-related macular degeneration (nAMD) or choroidal neovascularization (CNV) continues to be a major cause of irreversible vision loss in developed countries. Many nAMD patients demonstrate persistent disease activity or experience declining responses over time despite anti-VEGF treatment. The underlying mechanisms of anti-VEGF resistance are poorly understood, and no effective treatment strategies are available to date. Here we review evidence from animal models and clinical studies that supports the roles of neovascular remodeling and arteriolar CNV formation in anti-VEGF resistance. Cholesterol dysregulation, inflammation, and ensuing macrophage activation are critically involved in arteriolar CNV formation and anti-VEGF resistance. Combination therapy by neutralizing VEGF and enhancing cholesterol removal from macrophages is a promising strategy to combat anti-VEGF resistance in CNV. Full article
Show Figures

Figure 1

8 pages, 2403 KiB  
Review
The Cornea: No Difference in the Wound Healing Response to Injury Related to Whether, or Not, There’s a Bowman’s Layer
by Steven E. Wilson
Biomolecules 2023, 13(5), 771; https://doi.org/10.3390/biom13050771 - 29 Apr 2023
Cited by 3 | Viewed by 2266
Abstract
Bowman’s layer is an acellular layer in the anterior stroma found in the corneas of humans, most other primates, chickens, and some other species. Many other species, however, including the rabbit, dog, wolf, cat, tiger, and lion, do not have a Bowman’s layer. [...] Read more.
Bowman’s layer is an acellular layer in the anterior stroma found in the corneas of humans, most other primates, chickens, and some other species. Many other species, however, including the rabbit, dog, wolf, cat, tiger, and lion, do not have a Bowman’s layer. Millions of humans who have had photorefractive keratectomy over the past thirty plus years have had Bowman’s layer removed by excimer laser ablation over their central cornea without apparent sequelae. A prior study showed that Bowman’s layer does not contribute significantly to mechanical stability within the cornea. Bowman’s layer does not have a barrier function, as many cytokines and growth factors, as well as other molecules, such as EBM component perlecan, pass bidirectionally through Bowman’s layer in normal corneal functions, and during the response to epithelial scrape injury. We hypothesized that Bowman’s layer represents a visible indicator of ongoing cytokine and growth factor-mediated interactions that occur between corneal epithelial cells (and corneal endothelial cells) and stromal keratocytes that maintain the normal corneal tissue organization via negative chemotactic and apoptotic effects of modulators produced by the epithelium on stromal keratocytes. Interleukin-1 alpha, produced constitutively by corneal epithelial cells and endothelial cells, is thought to be one of these cytokines. Bowman’s layer is destroyed in corneas with advanced Fuchs’ dystrophy or pseudophakic bullous keratopathy when the epithelium becomes edematous and dysfunctional, and fibrovascular tissue commonly develops beneath and/or within the epithelium in these corneas. Bowman’s-like layers have been noted to develop surrounding epithelial plugs within the stromal incisions years after radial keratotomy. Although there are species-related differences in corneal wound healing, and even between strains within a species, these differences are not related to the presence or absence of Bowman’s layer. Full article
Show Figures

Figure 1

Back to TopTop