Special Issue "Metabolic- and Genetic-Associated Fatty Liver Diseases Volume II"

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Endocrinology and Metabolism Research".

Deadline for manuscript submissions: 31 December 2023 | Viewed by 1392

Special Issue Editors

Department of Translational and Precision Medicine, University of Rome Sapienza, Viale del Policlinico 155, 00185 Rome, Italy
Interests: clinical study; molecular biology; NAFLD; cardiovascular risk stratification; atherosclerosis; lipid metabolism; rare disease; hypercholesterolemia; hypertriglyceridemia; precision medicine
Special Issues, Collections and Topics in MDPI journals
Department of Translational and Precision Medicine, University of Rome Sapienza, 00161 Rome, Italy
Interests: molecular biology; genetic associated fatty liver disease; polygenic risk score for NAFLD; monogenic and polygenic lipid disorders; cardiovascular risk stratification
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue of Biomedicine, entitled “Metabolic- and Genetic-Associated Fatty Liver Diseases”, will include a selection of articles (both original and review) focusing on the role of metabolic and genetic factors in non-alcoholic fatty liver disease (NAFLD) and its clinical consequences (progression to liver diseases as well as atherosclerotic cardiovascular disease—ASCVD).

NAFLD is a highly prevalent disease and is usually accompanied by metabolic, inflammatory, coagulation, and blood pressure disturbances. Increasing evidence is questioning the role of fatty liver per se in causing ASCVD, suggesting that the pathogenesis of NAFLD might be crucial in influencing the different associated clinical consequences. We are seeking basic, clinical, and multi-disciplinary research that will aid in building the knowledge base of this topic and help fully characterize the mechanisms underlying the relationship between NAFLD and severe liver diseases or atherosclerosis processes.

Dr. Laura D’Erasmo
Dr. Alessia Di Costanzo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • NAFLD
  • MAFLD
  • NASH
  • fibrosis
  • irrhosis
  • genetics
  • metabolic syndrome
  • pathogenesis
  • atherosclerosis
  • animal models
  • epidemiology

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 17774 KiB  
Communication
Novel Noninvasive Paraclinical Study Method for Investigation of Liver Diseases
Biomedicines 2023, 11(9), 2449; https://doi.org/10.3390/biomedicines11092449 - 03 Sep 2023
Viewed by 546
Abstract
Based on a prior university patent, the authors developed a novel type of bioimpedance-based test method to noninvasively detect nonalcoholic fatty liver disease (NAFLD). The development of a new potential NAFLD diagnostic procedure may help to understand the underlying mechanisms between NAFLD and [...] Read more.
Based on a prior university patent, the authors developed a novel type of bioimpedance-based test method to noninvasively detect nonalcoholic fatty liver disease (NAFLD). The development of a new potential NAFLD diagnostic procedure may help to understand the underlying mechanisms between NAFLD and severe liver diseases with a painless and easy-to-use paraclinical examination method, including the additional function to detect even the earlier stages of liver disease. The aim of this study is to present new results and the experiences gathered in relation to NAFLD progress during animal model and human clinical trials. Full article
(This article belongs to the Special Issue Metabolic- and Genetic-Associated Fatty Liver Diseases Volume II)
Show Figures

Figure 1

15 pages, 1236 KiB  
Article
SAMM50-rs2073082, -rs738491 and -rs3761472 Interactions Enhancement of Susceptibility to Non-Alcoholic Fatty Liver Disease
Biomedicines 2023, 11(9), 2416; https://doi.org/10.3390/biomedicines11092416 - 29 Aug 2023
Viewed by 509
Abstract
Background and aim: Several studies have identified that three SAMM50 polymorphisms (rs2073082, rs738491, rs3761472) are associated with an increased risk of non-alcoholic fatty liver disease (NAFLD). However, the clinical significance of the SAMM50 SNP in relation to NAFLD remains [...] Read more.
Background and aim: Several studies have identified that three SAMM50 polymorphisms (rs2073082, rs738491, rs3761472) are associated with an increased risk of non-alcoholic fatty liver disease (NAFLD). However, the clinical significance of the SAMM50 SNP in relation to NAFLD remains largely unknown. Therefore, we conducted a clinical study and SNP–SNP interaction analysis to further elucidate the effect of the SAMM50 SNP on the progression of NAFLD in the elderly. Methods: A total of 1053 patients over the age of 65 years were recruited. Liver fat and fibrosis were detected by abdominal ultrasound or FibroScan, respectively. Genomic DNA was extracted and then genotyped by Fluidigm 96.96 Dynamic Array. Multivariable logistic regression was used to evaluate the association between NAFLD and SNP. SNP–SNP interactions were analyzed using generalized multivariate dimensionality reduction (GMDR). Results: The risk of NAFLD was substantially higher in people who carried SAMM50-rs2073082 G and -rs738491 T alleles (OR, 1.962; 95% CI, 1.448–2.659; p < 0.001; OR, 1.532; 95% CI, 1.246–1.884; p = 0.021, respectively) compared to noncarriers. Carriers of the rs738491 T and rs3761472 G alleles in the cohort showed a significant increase in liver stiffness measurements (LSM). The combination of the three SNPs showed the highest predictive power for NAFLD. The rs2073082 G allele, rs738491 T allele and rs3761472 G carriers had a two-fold higher risk of NAFLD compared to noncarriers. Conclusions: Our research has demonstrated a strong correlation between the genetic polymorphism of SAMM50 and NAFLD in the elderly, which will contribute to a better understanding of the impact of age and genetics on this condition. Additionally, this study provides a potential predictive model for the early clinical warning of NAFLD. Full article
(This article belongs to the Special Issue Metabolic- and Genetic-Associated Fatty Liver Diseases Volume II)
Show Figures

Figure 1

Back to TopTop