Personalized Biomechanics and Orthopedics of the Lower Extremity

A special issue of Biomechanics (ISSN 2673-7078). This special issue belongs to the section "Gait and Posture Biomechanics".

Deadline for manuscript submissions: closed (15 April 2024) | Viewed by 5086

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biomechanical Engineering, Faculty of Engineering Technologies, University of Twente, 7522 NB Enschede, The Netherlands
Interests: ankle; hindfoot; arthroscopy; knee; joints; talus; bone; tissue; cartilage; surgical tools; design

E-Mail Website
Guest Editor
Department of Biomechanical Engineering, Faculty of Engineering Technologies, University of Twente, 7522 NB Enschede, The Netherlands
Interests: knee; hip; joints; biomechanics; morphology; prosthesis; implants; surgical planning

Special Issue Information

Dear Colleagues,

Our musculoskeletal system enables our mobility. However, all systems, and thus the musculoskeletal system, can break down due to (non-)traumatic events, such as an ankle sprain, knee contusion, or osteoarthritis. Traditionally, reconstructive surgeries of the lower extremity are planned with 2D radiographs, providing many patients with pain reduction and functional restoration. However, modern technologies such as statistical shape modelling, advanced biomechanical simulations, and artificial-intelligence-assisted 3D image processing allow for enhanced 3D-planned and executed reconstructive surgery, taking into account individual patient characteristics. Therefore, this Special Issue invites original papers on personalized biomechanics and orthopedics that highlight the relations between (non-)traumatic events, personalized characteristics (such as morphology), and high-quality orthopedic surgery in the lower extremity. We are especially interested in applications of biomechanical models for translational research, including surgical planning, implant design, optimal reconstruction planes, and attachment sites, as well as papers on the standardization of 3D anatomic and bone coordinate systems, angles, and planes which assist the knowledge transfer for larger cohort analyses.

Prof. Dr. Gabriëlle Tuijthof
Dr. Malte Asseln
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomechanics is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 936 KiB  
Article
Impact of Obesity on Foot Kinematics: Greater Arch Compression and Metatarsophalangeal Joint Dorsiflexion despite Similar Joint Coupling Ratios
by Freddy Sichting, Alexandra Zenner, Lutz Mirow, Robert Luck, Lydia Globig and Nico Nitzsche
Biomechanics 2024, 4(2), 235-245; https://doi.org/10.3390/biomechanics4020013 - 16 Apr 2024
Viewed by 198
Abstract
This study investigates the sagittal plane dynamics of the foot, particularly the metatarsophalangeal (MTP) joint and medial longitudinal arch (MLA) movements, in relation to obesity and foot health. The kinematics of the MTP and arch joints were measured in 17 individuals with class [...] Read more.
This study investigates the sagittal plane dynamics of the foot, particularly the metatarsophalangeal (MTP) joint and medial longitudinal arch (MLA) movements, in relation to obesity and foot health. The kinematics of the MTP and arch joints were measured in 17 individuals with class 2–3 obesity (BMI > 35 kg/m²) and 10 normal-weight individuals (BMI ≤ 24.9 kg/m²) using marker-based tracking. Analysis was conducted during heel lifting while seated and during walking at self-selected speeds. The results indicated that obese participants exhibited 20.92% greater MTP joint dorsiflexion at the end of the push-off phase and 19.84% greater MLA compression during the stance phase compared to normal-weight controls. However, no significant differences were found in the kinematic joint coupling ratio. While these findings reveal the different biomechanical behaviors of the MTP joint and MLA in obese compared to normal-weight individuals, it is important to interpret the implications of these differences with caution. This study identifies specific biomechanical variations that could be further explored to understand their potential impact on foot health in obese populations. Full article
(This article belongs to the Special Issue Personalized Biomechanics and Orthopedics of the Lower Extremity)
Show Figures

Figure 1

10 pages, 2236 KiB  
Communication
The Relationship between Balance Confidence and Center of Pressure in Lower-Limb Prosthesis Users
by Gary Guerra, John D. Smith and Eun-Jung Yoon
Biomechanics 2023, 3(4), 561-570; https://doi.org/10.3390/biomechanics3040045 - 01 Dec 2023
Viewed by 766
Abstract
Background: Agreement between the activities-specific balance confidence scale (ABC) and center of pressure (CoP) in prosthesis users is still very much unknown. The purpose of this study was to investigate the agreement between ABC and CoP in lower-limb prosthesis users. Methods: Twenty-one individuals [...] Read more.
Background: Agreement between the activities-specific balance confidence scale (ABC) and center of pressure (CoP) in prosthesis users is still very much unknown. The purpose of this study was to investigate the agreement between ABC and CoP in lower-limb prosthesis users. Methods: Twenty-one individuals with lower-limb prostheses were recruited. Participants were provided with the ABC scale and performed static balance tasks during eyes opened (EO) and eyes closed (EC) conditions whilst standing on a force platform. Pearson product moment coefficients between CoP displacements and ABC scores were performed. Participants were also stratified by those who had better (≥80 on ABC scale) and less (<80 on ABC scale) perceived balance confidence. Displacement was compared using an independent t-test with Cohen’s d to estimate effect size with alpha set at 0.05 for these tests. Results: There was a significant inverse moderate relationship between eyes opened displacement (EOD) (18.3 ± 12.5 cm) and ABC (75.1 ± 18.3%), r = (19)−0.58, p = 0.006, as well as eyes closed displacement (ECD) (37.7 ± 22.1 cm) and ABC, r = (19)−0.56, p = 0.008. No significant difference in EOD (t(19) = 1.36, p = 0.189, d = 0.61) and ECD (t(19) = 1.47, p = 0.156, d = 0.66) was seen between those with greater and less balance confidence. Conclusions: Self-report and performance-based balance outcome measures are recommended when assessing lower-limb prostheses users. Full article
(This article belongs to the Special Issue Personalized Biomechanics and Orthopedics of the Lower Extremity)
Show Figures

Figure 1

16 pages, 7478 KiB  
Article
Definition of a Global Coordinate System in the Foot for the Surgical Planning of Forefoot Corrections
by Sanne Krakers, Anil Peters, Sybrand Homan, Judith olde Heuvel and Gabriëlle Tuijthof
Biomechanics 2023, 3(4), 523-538; https://doi.org/10.3390/biomechanics3040042 - 02 Nov 2023
Viewed by 1064
Abstract
Forefoot osteotomies to improve the alignment are difficult procedures and can lead to a variety of complications. Preoperative planning in three dimensions might assist in the successful management of forefoot deformities. The purpose of this study was to develop a global coordinate system [...] Read more.
Forefoot osteotomies to improve the alignment are difficult procedures and can lead to a variety of complications. Preoperative planning in three dimensions might assist in the successful management of forefoot deformities. The purpose of this study was to develop a global coordinate system in the foot for the planning of forefoot corrections. Two strategies (CS1 and CS2) were developed for defining a global coordinate system that meets the criteria of being well-defined, robust, highly repeatable, clinically relevant, compatible with foot CT scans, independent of the ankle joint angle, and does not include bones in the forefoot. The absolute angle of rotation was used to quantify repeatability. The anatomical planes of the coordinate systems were visually inspected by an orthopedic surgeon to evaluate the clinical relevancy. The repeatability of CS1 ranged from 0.48° to 5.86°. The definition of CS2 was fully automated and, therefore, had a perfect repeatability (0°). Clinically relevant anatomical planes were observed with CS2. In conclusion, this study presents an automated method for defining a global coordinate system in the foot according to predefined requirements for the planning of forefoot corrections. Full article
(This article belongs to the Special Issue Personalized Biomechanics and Orthopedics of the Lower Extremity)
Show Figures

Figure 1

12 pages, 3066 KiB  
Article
Patient-Specific 3D Virtual Surgical Planning Using Simulated Fluoroscopic Images to Improve Sacroiliac Joint Fusion
by Nick Kampkuiper, Jorm Nellensteijn, Edsko Hekman, Gabriëlle Tuijthof, Steven Lankheet, Maaike Koenrades and Femke Schröder
Biomechanics 2023, 3(4), 511-522; https://doi.org/10.3390/biomechanics3040041 - 01 Nov 2023
Viewed by 1042
Abstract
Sacroiliac (SI) joint dysfunction can lead to debilitating pain but can be treated with minimally invasive sacroiliac joint fusion (SIJF). This treatment is commonly performed using 2D fluoroscopic guidance. This makes placing the implants without damaging surrounding neural structures challenging. Virtual surgical planning [...] Read more.
Sacroiliac (SI) joint dysfunction can lead to debilitating pain but can be treated with minimally invasive sacroiliac joint fusion (SIJF). This treatment is commonly performed using 2D fluoroscopic guidance. This makes placing the implants without damaging surrounding neural structures challenging. Virtual surgical planning (VSP) using simulated fluoroscopic images may improve intraoperative guidance. This article describes a workflow with VSP in SIJF using simulated fluoroscopic images and evaluates achieved implant placement accuracy. Ten interventions were performed on 10 patients by the same surgeon, resulting in a total of 30 implants; the median age was 39 years, and all patients were female. The overall mean implant placement accuracy was 4.9 ± 1.26 mm and 4.0 ± 1.44°. There were no malpositioning complications. VSP helped the surgeon understand the anatomy and determine the optimal position and length of the implants. The planned positions of the implants could be reproduced in surgery with what appears to be a clinically acceptable level of accuracy. Full article
(This article belongs to the Special Issue Personalized Biomechanics and Orthopedics of the Lower Extremity)
Show Figures

Figure 1

12 pages, 2630 KiB  
Article
Relationship between Body Center of Mass Velocity and Lower Limb Joint Angles during Advance Lunge in Skilled Male University Fencers
by Kenta Chida, Takayuki Inami, Shota Yamaguchi, Yasumasa Yoshida and Naohiko Kohtake
Biomechanics 2023, 3(3), 377-388; https://doi.org/10.3390/biomechanics3030031 - 18 Aug 2023
Cited by 1 | Viewed by 1077
Abstract
We investigated the influence of advance lunging in fencing from the perspective of velocity and lower limb joint angles to identify how the joint angles contribute to the peak velocity in a lunge with advance (LWA). Fourteen skilled athletes (age: 19.6 ± 0.9 [...] Read more.
We investigated the influence of advance lunging in fencing from the perspective of velocity and lower limb joint angles to identify how the joint angles contribute to the peak velocity in a lunge with advance (LWA). Fourteen skilled athletes (age: 19.6 ± 0.9 years, height: 171.2 cm ± 5.2 cm, weight: 63.7 kg ± 5.3 kg, and fencing experience: 9.7 ± 3.1 years) participated by performing two types of attacking movements, and data were collected with a 3D movement analysis system. A correlation between the peak velocity of the body center of mass (CoM) in an advance lunge and several joint angle variables (rear hip peak flexion angle (r = 0.63), rear ankle peak dorsiflexion angle (r = −0.66), rear ankle range of motion (r = −0.59), and front hip peak extension angle (r = 0.54)) was revealed. In addition, the joint angle variables that significantly predicted peak CoM velocity during an LWA were the rear knee peak flexion angle (β = 0.542), rear knee peak extension angle (β = −0.537), and front knee peak extension angle (β = −0.460). Our findings suggest that the rear leg hip joint, rear leg ankle joint, and front leg hip joint may control the acceleration generated by an LWA. Furthermore, more flexion of the rear leg knee joint in the early phase of the lunge and greater extension of the rear and front leg knee joints at the end of the lunge phase may help increase peak velocity. Full article
(This article belongs to the Special Issue Personalized Biomechanics and Orthopedics of the Lower Extremity)
Show Figures

Figure 1

Back to TopTop