Special Issue "Functional Binders and Additives for Rechargeable Batteries"

A special issue of Batteries (ISSN 2313-0105). This special issue belongs to the section "Battery Materials and Interfaces: Anode, Cathode, Separators and Electrolytes or Others".

Deadline for manuscript submissions: 30 April 2024 | Viewed by 760

Special Issue Editors

Dr. Yushi He
E-Mail Website
Guest Editor
Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Interests: advanced energy materials (lithium-ion batteries, sodium-ion batteries, air batteries, etc.); advanced biomaterials (bone regeneration, biofilm, scaffold materials, etc.)
Prof. Dr. Zhong Ma
E-Mail Website
Guest Editor
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
Interests: rechargeable batteries; functional binders; electrocatalysis; advanced materials for secondary batteries; electrocatalysts for fuel cells

Special Issue Information

Dear Colleagues,

Rechargeable batteries, such as lithium-ion batteries, are considered as the candidate technologies for several industrial sectors including electric vehicles, consumer electronics, and stationary energy storage. Increasing the energy density and lifespan of rechargeable batteries, which are restricted by their key components, is crucial to their widespread applications. Except for anode and cathode materials, binders and additives are also critical components of rechargeable batteries that significantly affect whole battery performances, despite only accounting for a very small ratio of the entire electrode or electrolyte. Therefore, it is a big interest to explore new functional binders and additives and investigate their roles in rechargeable batteries.

This Special Issue focuses on the progress of functional binders and additives for rechargeable batteries, such as metal-ion batteries, metal batteries, and metal-air/sulfur batteries.

Potential topics include, but are not limited to:

  • New binders;
  • Mechanical property of binders;
  • Cross-linked polymeric networks;
  • Additives for low-temperature batteries;
  • Additives for high-voltage batteries;
  • Additives for electrocatalysis in batteries.

Dr. Yushi He
Prof. Dr. Zhong Ma
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Batteries is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • functional binders
  • functional additives
  • Li/Na/K-ion battery
  • Mg/Zn/Ca/Al-ion battery
  • metal battery
  • metal-S/O2 battery
  • aqueous battery
  • solid-state battery

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2249 KiB  
Article
The Role of Binders for Water-Based Anode Dispersions in Inkjet Printing
Batteries 2023, 9(11), 557; https://doi.org/10.3390/batteries9110557 - 15 Nov 2023
Viewed by 513
Abstract
Binders play a pivotal role in the production and the operation of lithium-ion batteries. They influence a number of key dispersion characteristics and battery parameters. In the light of growing interest in additive manufacturing technologies, binders were found to decisively govern the processability [...] Read more.
Binders play a pivotal role in the production and the operation of lithium-ion batteries. They influence a number of key dispersion characteristics and battery parameters. In the light of growing interest in additive manufacturing technologies, binders were found to decisively govern the processability due to the induced complex non-Newtonian behavior. This paper examines the relevance of various binder derivatives for aqueous graphite dispersions that can be employed in inkjet printing. Two different carboxymethyl cellulose (CMC) derivatives with strongly deviating molecular weights were employed. The impact of the inherent polymer characteristics on the processability and the electrode characteristics were explored. Therefore, miscellaneous studies were carried out at the dispersion, the electrode, and the cell levels. The results revealed that the CMC with the lower molecular weight affected most of the studied characteristics more favorably than the counterpart with a higher molecular weight. In particular, the processability, encompassing drop formation and drop deposition, the cohesion behavior, and the electrochemical characteristics, were positively impacted by the low-molecular-weight CMC. The adhesion behavior was enhanced using the high-molecular-weight CMC. This demonstrates that the selection of a suitable binder derivative merits close attention. Full article
(This article belongs to the Special Issue Functional Binders and Additives for Rechargeable Batteries)
Show Figures

Figure 1

Back to TopTop