Special Issue "Natural Sources Aerosol Remote Monitoring"

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Aerosols".

Deadline for manuscript submissions: 30 September 2023 | Viewed by 2064

Special Issue Editors

Department of Physics, Università degli Studi di Napoli “Federico II”, 80126 Naples, Italy
Interests: lidar; remote sensing; environmental physics; atmospheric aerosol; climate change
CommSensLab, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
Interests: atmospheric lidar; photometers; atmospheric aerosols; atmospheric remote sensing

Special Issue Information

Dear Colleagues,

Atmospheric aerosol particles from both anthropogenic and natural sources represent major uncertainties in our knowledge of atmospheric processes and of the Earth radiative balance. They also play a strong role in the dynamics of climate change and in human health and safety.

Although there is a strong interest in the study of anthropic and natural components, the weight of the latter is still poorly investigated, which causes an unsatisfactory understanding of the interactions of natural aerosols in the terrestrial ecosystem and in their radiative effects. In particular, natural sources have a high contribution to background aerosol concentrations, and therefore, their accurate quantification is essential for the study of the mechanisms, interactions and impact of anthropogenic aerosols within the Earth system. In addition, this background is variable not only due to the uncertainties introduced by the unpredictability of natural events such as volcanic eruptions, desert sand transport, etc., but also as a consequence of human intervention, which is contributing to an increase not only in anthropogenic aerosols but also those of natural origin.

This Special Issue aims to combine the contributions of various studies, which, through the use of remote sensing techniques, investigate aerosols of natural origin and increase knowledge about their properties and mechanisms.

Dr. Alessia Sannino
Dr. Alejandro Rodríguez-Gómez
Dr. Simone Lolli
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • remote sensing
  • natural aerosols
  • climate change
  • atmospheric aerosols
  • desert dust
  • vulcanic ash
  • pollen
  • sea salt
  • marine aerosol
  • biomass burning

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Coupling Coordination Degree of AOD and Air Pollutants in Shandong Province from 2015 to 2020
Atmosphere 2023, 14(4), 654; https://doi.org/10.3390/atmos14040654 - 30 Mar 2023
Viewed by 711
Abstract
In order to reveal the correlation between aerosols and pollution indicators, the MODIS aerosol optical depth (AOD) was used to investigate the distribution of AOD in 16 prefecture-level cities in Shandong Province from 2015 to 2020. This study quantitatively analyzed the coupling degree [...] Read more.
In order to reveal the correlation between aerosols and pollution indicators, the MODIS aerosol optical depth (AOD) was used to investigate the distribution of AOD in 16 prefecture-level cities in Shandong Province from 2015 to 2020. This study quantitatively analyzed the coupling degree and the coupling coordination degree between AOD and pollution indicators based on the coupling coordination model. The results showed that: (1) The annual average AOD in Shandong Province showed a rapid downward trend with a mean value of 0.615. The seasonal AOD of Shandong Province and prefecture-level cities was characterized by spring and summer > autumn and winter. The distribution of AOD in Shandong Province showed a spatial pattern of high in the west and low in the east, and high in the surrounding area and low in the middle. The decreasing rate of AOD was high in the west and low in the east. (2) The annual average AOD and Air Quality Index (AQI) were in a highly coupled and coordinated state. Their spatial distribution pattern decreased from west to east. There were certain fluctuations with seasonal changes, with the largest fluctuation in winter. (3) Except for O3, the overall coupling and coordination level between AOD and each pollutant was relatively high. The coupling coordination effect was as follows: C (PM2.5, AOD) and C (PM10, AOD) > C (NO2, AOD) > C (SO2, AOD), and C (CO, AOD) > C (O3, AOD). Except for the O3, its distribution was characterized by highs in the west and lows in the east. The degree of coupling between each pollution indicator and the seasonal average AOD was high. The study showed that there was a high degree of coupling and coordination between pollutant concentration indicators and AOD, and remote sensing AOD data can be used as an effective supplement to regional pollutant monitoring indicators. Full article
(This article belongs to the Special Issue Natural Sources Aerosol Remote Monitoring)
Show Figures

Figure 1

Article
Aerosol Characterization with Long-Term AERONET Sun-Photometer Measurements in the Naples Mediterranean Area
Atmosphere 2022, 13(12), 2078; https://doi.org/10.3390/atmos13122078 - 10 Dec 2022
Viewed by 763
Abstract
We report on the characterization of columnar aerosol optical and microphysical properties in the Naples Mediterranean area over a period of five years by the ground-based sun–sky–lunar photometer operating at our observational station in the frame of the AERONET network. Statistical and climatological [...] Read more.
We report on the characterization of columnar aerosol optical and microphysical properties in the Naples Mediterranean area over a period of five years by the ground-based sun–sky–lunar photometer operating at our observational station in the frame of the AERONET network. Statistical and climatological analyses of daily mean values of aerosol optical depth at 440 nm (AOD440) and Ångström exponent at 440/870 nm (α440/870) allowed for highlighting their typical seasonal behavior. In particular, we observe higher mean values of the AOD440 during summer or spring, which are consistent with an increased frequency of both Saharan dust transport events and biomass burning episodes affecting the measurement area in these periods of the year. Conversely, α440/870 does not show any typical seasonal trend. In order to gain information on the different aerosol contributions along the atmospheric column, the frequency distributions of AOD440 and α440/870 were analyzed and fitted by a superposition of Gaussian functions. The most populated modes are centered at α440/870 = 1.26 ± 0.07 and AOD440 = 0.16 ± 0.01. These values are associated with continental polluted aerosol mixed with sea salt aerosol and correspond to the background conditions typically observed in clear atmospheric conditions. Daily size distributions averaged over each month highlight that the fine aerosol component always prevails over the coarse fraction, except for the few months in which Saharan dust events are particularly frequent. Finally, the mean value of the SSA at 440 nm resulted as 0.94 ± 0.05, while the refractive index real and imaginary part were 1.47 ± 0.07 and (6.5 ± 0.2) × 10−3, respectively. These values are in agreement with those observed in other Mediterranean sites located in Southern Italy, evidencing a rather characteristic feature of the geographical region. Full article
(This article belongs to the Special Issue Natural Sources Aerosol Remote Monitoring)
Show Figures

Figure 1

Back to TopTop